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Empirical Evidence on Role of Money

® Big questions in monetary economics:
® How is an economy with money different from an economy
without money?
® What effects do change in monetary policy have on real
activity and inflation?

® Before we add money to canonical RBC model, turn to
empirical evidence.
® Will provide facts any successful model must match and
motivate features we will add to model.

® Estimating effect of monetary policy is hard because policy is
endogenous and expectations affect equilibrium today.
® |n fact, if monetary policy is successful and countercyclical,
estimates of its effect would be biased towards zero.
® Intuition: Monetary policy would move around but output

would be stable.
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Introduction to VARs

® Before we get started, introduce a key econometric tool:
Vector Autoregression or VAR.

® Proposed by Sims (1980), who won the Nobel Prize for it.
® Wanted a way to describe economic time series with minimal
theoretical restrictions.

® This is a key tool in macro to summarize relationships between
macroeconomic time series.

® To motivate / test models.
® Examine response to structural shocks.
® Frequently used at central banks.
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Stationarity and White Noise

e Cannot find regularities if things do not repeat themselves.

® |eads to concept of stationarity.

® A time series {x;} is stationary if the mean, variance, and
autocorrelation can be well approximated by sufficiently long
time averages.

® In other words, {x;} is covariance stationary if:

E{x} =pVtand E{(x — p) (xe—k — p)} = 8« V t, k

® Sometimes not a great assumption (e.g., economies in
transition), but for post-war US GDP, it works.
® Otherwise, detrend or difference.

® A white noise process has mean zero, a constant variance, and
is serially uncorrelated.
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Autoregressions

® An autoregression is a regression of a time series {x;} on lags
of itself.

e Example: AR(1)
xt = Po + Pixe—1+ €t

® Stationary and stable if |3;]| < 1
® Otherwise goes off to infinity and never mean reverts.

e Can estimate AR(p)
Xt = o + Pixe—1 + Poxt—2 + ... + BpXt—p + €t

by OLS if {x:} is stationary and & is a white noise process.
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Vector Autoregression

® A vector autoregression is a generalization of an autoregression
in which x; is a vector of time series.

® Simple example we will use:

X = [ Yt }
Zt
® However can be of arbitrary size n.
® The reduced-form single-lag VAR of x; is then:
Xt = Ao + Arxe—1 + e

where Ag is an n x 1 vector and A; is an n X n matrix.
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Reduced-Form VAR: Estimation

® More generally, for a VAR of size n with p lags,
Xt = Ao + A]_thl + A2Xt72 + ...+ Apthp + €t

X¢, Ao, and e; are n x 1 vectors and A; are n X n matrices.

® There are thus n + pn? coefficients and (n+ 1) n/2 in the
variance-covariance matrix.

® The right hand side only contains predetermined variables of a
stationary process, and the error terms are assumed to be
serially uncorrelated with constant variance (can relax).

® So can estimate each equation by OLS.
® Application of seemingly unrelated regression.
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Forecasting

e (Can forecast using VAR:

Eixey1 = Ao + Arxe
Eixt12 = Ao + A1Eixey1 = Ao + A1 [Ao + Arxe]

e Often-used diagnostic tool is the forecast error variance
decomposition (FEVD).
® Tells us proportion of variance of moments in {y;} or {z:} due
to ey + and e ;.
® Like a partial R? of forecast error by forecast horizon.
® See econometrics class for derivation.
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Impulse Responses

® Theorem: VAR has a vector moving average representation.

e Example with one lag (and a zero constant term, to keep
things simple):

Xt = Axe—1 + &
=A(Axt—2 +er—1) + et
=e + Aer_1 + A2€t_2 + A3et_3 + ...

® The response of x; to a one unit shock to e; ¢+ in period t after
n periods with no other e shocks is:

/R(n):A"[H
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Impulse Response Functions

IR(n):A"[é]

® This is called an impulse response function to ey; and is a
convenient way to represent how shocks {e;} affect {x:}.
® (Can plot graphically and create standard error bands.

® Intuitively, this is the difference between two processes {x;}
that are made up of identical shocks {e;} except in period t,
where an additional unit one shock is added to ej ;.
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Structural VARs

® Unfortunately, reduced form VARs are restrictive.

1. No simultaneous causality
2. Shocks have to be uncorrelated and white noise.

® Note: These are the same problem written different ways.
® Generalize to a structural VAR.

® Tackle problem 1 first and allow for simultaneous causality:

Yt = bio — b12z: + 711yt—1 + 71221 + €yt
zy = boo — bo1yr +o1Ye—1 + V222i—1 + €t

where €, ; and €, ; are independent white noise processes.

® Cannot directly estimate because y; is correlated with ¢, ; and
vice-versa, violating exclusion restriction.
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Reduced-Form Representation

® Write structural VAR as a matrix:
1 b2 ye | | bwo Y11 V12 V-1 Eyt
= + +
by 1 z b2o Y21 V22 zpq €zt
Bx; =Tog+Tix¢_1 + &t
® Premultiply by B~! to get reduced-form representation:
Xt = Ao+ A1xe—1 + &

where Ag = BTy, Ay = B71I'y, and e; = B 1¢;.
e Note reduced form errors e; are of form:

e1t = (eyt — bi2ezt) / (1 — biobo1)

® Stationary white noise, but correlated with one another.
® For IRFs and FEVDs, want responses to ,; not e,;.
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The Identification Problem
® Cannot invert from reduced form to structural VAR unless add

restrictions.
® Reduced form has 9 unknowns, six as plus 3 terms of var-covar

matrix:
Yt = a10 + a11yt-1 + a12Zt-1 + €1t
Zy = ago + a21yr—1+ azi-1 + e
® Structural form has 10 unknowns, 8 bs and s plus 2 terms of
var-covar matrix (uncorrelated shocks):
Yt = bio — b12zt + M11yt—1 + V1221 + €yt
zy = byo — boryr +21ye-1 + V20Ze-1
® Fundamentally under-identified.

® Intuitively, es depend on both €,; and ¢,; so cannot invert

from es to es. Extra parameters determine this relationship.
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Recursive VARs and Identification

® Solution is recursive system:
® Assume y; has contemporaneous effect on z;, but z; has no
contemporaneous effect on y;.
® Jargon: “order’ y; first, in the sense that it is “causally prior.”
® System is:

Ye = bio +m1yt—1 + 71221 + €yt
zy = boo — bo1yr + o1Ye—1 + V22zi—1 + €t
SO

€1t = Eyt and ey = e, — b21€yt

e Exactly identified because one parameter (b12) is now a zero.
O parameters in both structural VAR and reduced form.
® Intuition: Can now distinguish ¢,; and €, shocks.
® Only €,; shocks affect contemporaneous values of y;.

® ¢y, attributed completely to €,;; can invert es to get es.
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Cholesky Decomposition

® |ower triangular assumption on the structural residuals is
called a Cholesky decomposition.
® Most common identification scheme for VAR.

® Generalize this to n variable and p lag VAR.

® B s then an n x n matrix.

® Exact identification requires (n* — n) /2 restrictions between
the regression residuals and structural innovations.

® Cholesky does this by setting exactly (n2 - n) /2 values of the
B matrix to zero.
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Error Correlation Version

® Assume instead there is no simultaneous causality but
e; = Ce; where ¢; are the independent structural shocks and
C is an n X n matrix:

xt = Ao + Aixe—1 + Cey
® Equivalent to reduced form VAR
Clx =C A+ C A 1 + et

® Same as before. Recursive VAR if C~1 is lower triangular.
® Same problem — cannot tell apart shocks.
® Now direct relationship between es and es instead of
relationship arising through simultaneous causality.
e Alternate interpretation of Cholesky: Assume ¢,; affects both
yr and z; but €,+ has no contemporaneous effect on z.
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Cholesky Decomposition: Key Assumptions

® Cholesky is a STRONG assumption.

® No reverse-causality

® No omitted variables correlated with “lower ordered” variables
and “higher ordered” variables.

® Strong exclusion restriction.

® “Ordering” sounds innocuous. It's not.
® n! possible orderings!

18/ 47



VARs v e 0 r Approaches 2| Experiments

000000000000 000e00

Stock and Watson: VAR Criticisms in Practice
1. What really are the VAR “shocks?”

® Concern: Shocks reflect factors omitted from model. If
correlated with included variables, then OVB.
® |n practice: imagine you order policy last and thus statistically
model effect of variables on policy.
® Assuming regression captures all channels through which
policy responds to developments in economy.
® Omitted channels may lead to correlation between policy and
outcomes.
® Ex: “Price puzzle” of why inflation rises with negative
monetary shock.
® One answer is Fed is forward looking and rises rates when it
(correctly) anticipated inflation.
® VAR omits variables that predict this inflation.
2. Parameter instability.
3. Timing assumptions do not reflect real-time data availability,

causing misspecification.
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Other Approaches Natural Experiments

Other SVAR Identification Schemes

® VARs criticized for being too reduced form.

® Structural VAR (SVAR) approach uses economic theory rather
than Cholesky decomposition invert reduced form VAR to
structural VAR (that is, to recover structural innovations from
reduced form residuals).

® Must impose (n? — n) /2 restrictions.

® Examples:

® Gali (1999) splits Solow residual into tech and non-tech shocks
by assuming that only tech shocks affect long-run productivity.
® Sign restrictions (Uhlig).
® Assuming cross-sectional regression holds
(e.g., Beraja, Hurst, and Ospina, 2016).
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Local Projections

e Jorda (2005) proposes more robust estimate of impulse
response by local projection.

® Assume you have a shock S; and an outcome Y;. Idea is to
directly and non-parametrically estimate the impulse response:

Yern = Bo+ BnSt + 4 X + el

® Then the fis for h =0, ..., T is the estimated T-period
impulse response.

® Controls X; often include lags of outcome and shock to control
for autocorrelation and anticipatory effects.

® | ocal projections increasingly popular.
® | ess extrapolation of model at long horizons.
® More robust to misspecification, which compounds at long
horizons.
® But much wider standard errors. Bias-variance tradeoff
between LP and SVAR (Plagborg-Moller and Wolf, 2021; Li,
Plagborg-Moler, and Wolf, 2022).
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VAR Evidence on Non-Neutrality

® Apply VARs to study the effects of monetary shocks.

e Key challenge is endogeneity.

® Changes in monetary policy occur for good reasons.
® Error term g; correlated with outcome:

Ay; = a+ BAi; + &

e Start with simple VAR from Stock and Watson (2001).
® 3 variables: inflation, unemployment, and Federal Funds
interest rate.
® Order 7, us, R: in recursive VAR.

® 7. affects us and R: contemporaneously but not vice-versa.
® 4, affects R: contemporaneously but not vice-versa.

® See paper for data description
(FEVD, Granger Causality tests).
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IRFs: Taylor Rule

Inflation Shock to
Interest Rate
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IRFs: Phillips Curve

Tuflatton Shock to
Inflation
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Inflation Inflation
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IRFs: Monetary Non-Neutrality

.50

Interest Rate Shock to
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Interest Rate Shock to Interest Rate Shock to
Unemployment . Interest Rate

25 /47



VAR Evidence
0000e000000

IRFs: Two Structural Approaches

® Stock and Watson then use a structural VAR in which impose
a Taylor rule for identification rather than recursive VAR.
® |n solid: backward-looking Taylor rule.
® In dashed: forward-looking Taylor rule.
® Structural assumptions (and hence ordering) not innocuous.
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Christiano, Eichenbaum, and Evans (2005)

® Paper does a lot. For now just focus on VAR evidence.

® Run an 9-variable VAR. Ordering:

1. Real GDP

Real Consumption
GDP Deflator

Real Investment
Real Wage

Labor Productivity
Federal Funds Rate
Real Profits

9. M2 Growth

® Economic conditions can affect monetary policy, but monetary
policy only affects economic conditions with a lag.

N AEWN

® Trying to get around endogeneity of monetary policy by
statistically modeling it. But still Stock-Watson concerns.

27 /47



VAR Evidence
000000e0000

CEE: IRF To Money Shock
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CEE: IRF To Money Shock
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CEE: IRF To Money Shock
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CEE: IRF To Money Shock
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Christiano, Eichenbaum and Evans (2005) Summary

1. Hump-shaped response of output, consumption and
investment, peaking at 1% years and returning to trend after 3.

Hump-shaped response of inflation, peaking after two years.
Interest rate falls for one year

Real profits, wages, and labor prod rise.

o~ W

Growth rate of money rises immediately.

® Phillips curve and Taylor rule as in Stock and Watson still hold.

e Consistent with significant monetary non-neutrality
= money affects real outcomes.
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Other Approaches

® \We may not like recursive VAR approach to identifying
monetary shocks.

® Five other approaches that try to deal with causality more
directly of which | want you to be aware.

Large Shocks

Discontinuity-Based Approach

Narrative Approach

High Frequency Approach

AR A

Natural Experiments

® Good summary: Section 4 of Nakamura and Steinsson (2018)
“ldentification in Macroeconomics.”
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Large Shocks: Friedman and Schwartz (1963)

® Friedman and Schwartz (1963) famously argue that Fed made
Great Depression worse.

® Focus on policy actions that are “of major magnitude,” not
caused by other developments, sharp results that they compare
to science experiment.
® But others have questioned since.
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40
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Breakdown of Bretton Woods: Mussa (1986)

® |n 1973 Bretton Woods fixed exchange rate system breaks.
® Discontinuous and purely monetary change.
® |f money is neutral, should not affect real variables like real
exchange rates.

® Monthly change in real Mark-Dollar exchange rate:

Percent
0

1960 1965 1970 1975 1980 1985
Year

e But ltskhoki and Mukhin (2022) argue this is not evidence of
monetary non-neutrality but instead financial frictions in

foreign exchange markets. 3547
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Narrative Approach

e Narrative approach of Romer and Romer (1989) updated by
Romer and Romer (2023)
® |dentify exogenous monetary shocks by using historical record.
® Go through meeting transcripts, historical material, etc. to find
a change in monetary policy unrelated to state of the economy
e.g. a change in the Fed's preferences.

® Examples:

® In December 1988, change view of what level of inflation is
acceptable and raise rates.

® January 1972 think unemployment settled too high and lower.

® No monetary shocks 1988-2016! Only one expansionary shock!

® |mpulse responses to these “exogenous’ policy dates show
non-neutrality.
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Narrative Approach

® More quantitative method in Romer and Romer (2004):
® Determine intended FFR at meeting based on Fed's internal
staff “Greenbook” forecast.
® Regression controlling for level and change in forecasts of
output, inflation, and unemployment.
® Difference from FFRI agreed upon at meeting to obtain shock.

® |RFs show non-neutrality:
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High-Frequency Approach

® Shock series based on response of Fed funds futures in short
window around Fed announcements.
® Captures verbal communication in addition to rate
® Giirkaynak-Sack-Swanson (2005): Forward rates at long
horizons affected by MP contrary to standard models.
® Would like to look at responses of macro variables to show
non-neutrality, but those are not at daily frequency!

® Two solutions to get at non-neutrality:

® Gertler and Karadi (2015) time aggregate high frequency
shocks and use as external instruments in VAR with
low-frequency outcomes (e.g. inflation and output).

® Nakamura and Steinsson (2018) compare responses of high
frequency nominal and inflation-indexed Treasuries to separate
real interest rate response and inflation expectations.

® |ssue with high frequency approach: Shocks are very small,
lack of precision in local projection without VAR structure.
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High-Frequency Approach: Gertler-Karadi (2015)
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High-Frequency Approach Finds Non-Neutrality

® Gertler-Karadi (2015): Non neutrality, no price puzzle, credit
spreads respond to monetary policy.

® Nakamura-Steinsson (2018)

® Monetary shocks have large and persistent effects on real
interest rates.

® Monetary shocks have small effects on expected inflation at
short horizons (< 1 year) and grows to a large effect over 2-3
years (hump shaped response).

® Argue results imply that Fed announcements provide
information that affects beliefs about economic fundamentals
beyond interest rates.

® Which do we prefer?
® Some issues of time aggregation here. N-S is more convincing
for real interest rates and inflation expectations.
® But sometimes we want to look at outcomes that are not as
high frequency (e.g. output, realized inflation, credit spreads)
and have to bite the time aggregation bullet. 40,47
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Natural Experiments

® |deal Evidence: Experiment where randomly change money
supply in some places.

® Problem: Central banks are run by economists.
® Changes in money supply are not random!

® Solution: Natural experiments. Examples:
® Hyperinflations: inflation tracks money supply.
® U.S. Great Depression (Freidman and Schwartz, 1963).
® Gold Standard and Great Depression (Eichengreen and Sachs,
1985).
® Breakdown of Bretton Woods (Mussa, 1986).
® Volcker disinflation in early 1980s.
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France in 1724: A Surprise 45% Deflation

® Money: coins with no face value.
® Government sets nominal value by decree, can change it
overnight and without warning.
® \elde (2009) examines an episode where three times in 1724,
French cut value of currency overnight by a cumulative 45%.
® Ex: September 22, 1724 at 8am, all 5 livre coins are now 4
livre coins.
® “The high price level reduced the real value of soldiers’ wages
and harmed government creditors.”
® Why? King and his misters wanted to (before economists!).
® Revalue some in 1726.

® Expectations:
® Had done before, but always fast inflations and gradual
deflations.
® Velde argues these three deflations were “unforetold.” Kept

secret to reduce capital losses by state.
42 /47



Natural Experiments

[e]e] le]e]ele)

Value of a Coin

0.6

0.2

-0.2

0.4r

log scale ; index: ME = 1 in Jan 1724

-0.6

-D8F

'

sofiresd i L L L L 4
1690 1695 1700 1705 1710 1715 1720 1725

43 /47



Foreign Exchange Prices Adjust Instantaneously
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Commodities and Goods Prices Fall Slowly
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Industrial Sector Contracts 30%
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Summary: Strong Evidence of Non-Neutrality

® |ntroduced tool of VAR.

® Recursive and structural.
® Discussed assumptions, flaws, and benefits.

® Looked at VAR, narrative, high-frequency, and natural
experiment evidence for monetary non-neutrality.

® Strong evidence that money is non-neutral:
it has effects on real economy.
® Strong evidence of hump-shaped inflation responses.

® Next class: Introduce money and add it to RBC framework.

® Can it explain the facts presented here?
® Read Gali Ch. 2.
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