Input Sourcing and Multinational Production

Stefania Garetto
What this Paper is About

- A large portion of international trade flows happens within firms’ boundaries:
 - in the year 2000, 50% of U.S. imports and 32% of exports happened between parents and affiliates of multinational firms\(^1\).

- Antrás (2003): intrafirm imports arise due to incomplete contracts between firms and suppliers.

- This paper: intrafirm imports arise due to **TECHNOLOGY HETEROGENEITY** and to the implications of **IMPERFECT COMPETITION** on **PRICES**.

\(^1\) Bernard, Jensen and Schott (2007).
A firm can either insource or outsource input production. Two forces drive this decision:

1. TECHNOLOGY HETEROGENEITY: by outsourcing, a firm can exploit a supplier’s better technology;

2. IMPERFECT COMPETITION: by outsourcing, a firm has to pay a mark-up price (depending on the degree of competition in the market).
Main Idea

- A firm can either insource or outsource input production.

 Two forces drive this decision:

 1. **TECHNOLOGY HETEROGENEITY**: by outsourcing, a firm can exploit a supplier’s better technology;

 2. **IMPERFECT COMPETITION**: by outsourcing, a firm has to pay a mark-up price (depending on the degree of competition in the market).

- Intrafirm transactions happen between a firm and itself:

 1. the parent’s technology is transferred to its affiliates;

 2. intrafirm transactions are priced at marginal cost (transfer pricing).
• Unified **general equilibrium** framework: firms can trade **and** set plants abroad to produce.

• Theory of **optimal pricing** in presence of multinationals.
 ○ “pro-competition effect” of multinational firms.

• **Quantitative exercise:**
 ○ Gains from trade **versus** gains from vertical FDI/intrafirm trade;
 ○ Quantitative relevance of productivity differences **versus** market structure in shaping firms’ decisions.
Related Literature

- On input sourcing and multinational production:

- On technology heterogeneity shaping world production:

- On the gains from trade and multinational production:
 Rodríguez-Clare (2007), Ramondo and Rodríguez-Clare (2009),
 Burstein and Monge-Naranjo (2009)
Setup of the Model

- a homogeneous final good produced with labor and a continuum of differentiated inputs;

- 2 types of firms: final good producers and input producers (or suppliers);

- monopolistic competition across suppliers:
 \[\Downarrow \]
 a supplier produces one unit of input with labor \(z \sim \psi(z) \), and sells it at price \(p(z) \);

- perfectly competitive final good producers use labor and inputs:
 \[\Downarrow \]
 for each input, decide whether to **OUTSOURCE** it or to **INTEGRATE** production;
 \[\Downarrow \]
 sourcing decision based on the lowest cost option: for each input, in-house unit labor requirement \(x \sim \phi(x) \).
The Inputs Space
The Inputs Space

Introduction

Closed Economy
- Setup
- Firm's Problem
- Prices
- Equilibrium

Open Economy

Welfare Analysis

Conclusions
The Inputs Space: the Firm’s Problem

Introduction

Closed Economy
- Setup
- Firm’s Problem
- Prices
- Equilibrium

Open Economy

Welfare Analysis

Conclusions
The Inputs Space: Optimal Sourcing

Introduction

- Closed Economy
 - Setup
 - Firm’s Problem
 - Prices
 - Equilibrium

- Open Economy

- Welfare Analysis

- Conclusions
The Final Good Producer’s Problem

\(q(x, z) \) is the quantity produced of an input for which the potential buyer has unit cost \(x \) and the supplier has unit cost \(z \) and charges a price \(p(z) \).

The final good producer solves:

\[
\min_{q(x, z)} \int_0^\infty \int_0^\infty \min\{x, p(z)\} q(x, z) \phi(x) \psi(z) \, dx \, dz \\
\text{s.t.} \quad \left[\int_0^\infty \int_0^\infty q(x, z)^{1-1/\eta} \phi(x) \psi(z) \, dx \, dz \right]^{\eta/(\eta-1)} \geq q
\]

where \(\eta > 1 \) and the wages are normalized to 1.
Demand and Price Indexes

The final good producer’s problem has solution:

\[q^I(x, p(z)) = \left(\frac{x}{p} \right)^{-\eta} q \quad \forall (x, z) \in \{(x, z) : x \leq p(z)\} \]

\[q^T(x, p(z)) = \left(\frac{p(z)}{p} \right)^{-\eta} q \quad \forall (x, z) \in \{(x, z) : x \geq p(z)\} \]

where \(p \) is the aggregate price index:

\[p = \left[p_I^{1-\eta} + p_T^{1-\eta} \right]^{1/(1-\eta)} \]

\[p_I = \left[\int_0^\infty \int_0^{p(z)} x^{1-\eta} \phi(x) \psi(z) dx dz \right]^{1/(1-\eta)} \]

\[p_T = \left[\int_0^\infty p(z)^{1-\eta} \left[1 - \Phi(p(z)) \right] \psi(z) dz \right]^{1/(1-\eta)} \]
The Supplier’s Problem

A supplier with draw z chooses the optimal price $p(z)$ such to maximize its expected profits:

$$\max_{p(z)} \left[p(z) - z \right] \int_{p(z)}^{\infty} q^T(x, p(z)) \phi(x) dx.$$

where $q^T(p(z))$ is given by (2).

The first order condition is:

$$[p(z) - z] \underbrace{q^T(x, p(z)) \phi(p(z)) - \frac{\partial q^T(x, p(z))}{\partial p(z)} [1 - \Phi(p(z))]}_{\text{extensive margin}} - \underbrace{\frac{\partial q^T(x, p(z))}{\partial p(z)} [1 - \Phi(p(z))]}_{\text{intensive margin}} = \ldots$$

$$\ldots = \int_{p(z)}^{\infty} q^T(x, p(z)) \phi(x) dx$$

[1 - \Phi(p(z))]"
Pricing Rule

$$p(z) = \left[1 - \frac{1}{\eta + \frac{\phi(p(z))}{1 - \Phi(p(z))p(z)}} \right]^{-1} z. \quad (6)$$

For $$\phi(x) = \lambda e^{-\lambda x}$$:

![Diagram showing pricing strategy and mark-up over marginal cost](image-url)

$$\frac{\partial p(z)}{\partial \eta} < 0$$ $$\frac{\partial p(z)}{\partial \lambda} < 0$$
Equilibrium in the Final Good Market

- Final good production function: \(c = q^{\alpha}l_f^{1-\alpha} \);
- Population constraint: \(L = l_i + l_f \);
- Linear input production technology implies: \(l_i = kq \);
 ↓
- Solve population constraint as a linear equation in \(q \), then compute \(l_i \) and \(l_f \).

Intrafirm share of input sourcing:

\[
S_I = \left(\frac{p_I}{p} \right)^{1-\eta} = \left[1 + \frac{\int_0^\infty \int_0^{p(z)} x^{1-\eta} \phi(x) \psi(z) dx dz}{\int_0^\infty p(z)^{1-\eta} \left[1 - \Phi(p(z)) \right] \psi(z) dz} \right]^{-1}
\]
Open Economy: Setup

- N countries;
- country-specific distributions $\phi_i(x_i)$ and $\psi_i(z_i)$;
- each final good producer in each country decides whether to OUTSOURCE or to INSOURCE each input, and WHERE;
- suppliers in each country can sell worldwide;
 \[\downarrow\]
- sourcing decision based on the lowest cost option ($2N$ available).

REMARKS:

1. **Foreign integration (FDI)** ⇒ a final good producer transfers its domestic technology x_i to the destination country, but hires local workers at local wages.

2. Final good producers cannot enter the inputs market ⇒ FDI is only VERTICAL (no export platforms).
The Final Good Producer’s Problem

- $z = (z_1, z_2, \ldots, z_N)$ and $\psi(z) = \prod_{j=1}^{N} \psi_j(z_j)$;
- $w_i =$ wage level in country i;
- $t_{ij} =$ iceberg cost of trade between countries i and j ($t_{ij} \geq 1$);
- $\tau_{ij} =$ iceberg cost for a firm from i to insource an input in j ($\tau_{ij} \geq 1$).

A final good producer in country i solves:

$$\min_{q_i(x_i, z)} \int_{\mathbb{R}_+^N} \int_{0}^{\infty} c_i(x_i, z) q_i(x_i, z) \phi_i(x_i) \psi(z) dx_i dz$$

s.t. $\left[\int_{\mathbb{R}_+^N} \int_{0}^{\infty} q_i(x_i, z)^{1-1/\eta} \phi_i(x_i) \psi(z) dx_i dz \right]^{\eta/(\eta-1)} \geq q_i$

where:

$$c_i(x_i, z) = \min_j \{ \tau_{ij} w_j x_i, p_{ij}(z_j) \}.$$
The final good producer’s problem has solution:

\[q_i(x_i, z) = \left(\frac{m_i x_i}{p_i} \right)^{-\eta} q_i \quad \forall (x_i, z) \text{ s.t. } c_i(x_i, z) = m_i x_i \]

\[q^T_i(x_i, z) = \left(\frac{p_{ij}(z_j)}{p_i} \right)^{-\eta} q_i \quad \forall (x_i, z) \text{ s.t. } c_i(x_i, z) = p_{ij}(z_j) \]

where \(m_i \equiv \min_k \{ \tau_{ik} w_k \} \) and:

\[p_i = \left[(p^I_i)^{1-\eta} + \sum_{j=1}^{N} (p^T_{ij})^{1-\eta} \right]^{1/(1-\eta)} \]

\[p^I_i = \left[\int_{B^I_i} [m_i x_i]^{1-\eta} \phi_i(x_i) \psi(z) dx_i dz \right]^{1/(1-\eta)} \]

\[p^T_{ij} = \left[\int_{B^T_{ij}} [p_{ij}(z_j)]^{1-\eta} \phi_i(x_i) \psi(z) dx_i dz \right]^{1/(1-\eta)} \]
Demand and Price Indexes

The final good producer’s problem has solution:

\[q^I_i(x_i, z) = \left(\frac{m_i x_i}{p_i} \right)^{-\eta} q_i \quad \forall (x_i, z) \text{ s.t. } c_i(x_i, z) = m_i x_i \]

\[q^T_i(x_i, z) = \left(\frac{p_{ij}(z_j)}{p_i} \right)^{-\eta} q_i \quad \forall (x_i, z) \text{ s.t. } c_i(x_i, z) = p_{ij}(z_j) \]

where \(m_i \equiv \min_k \{ \tau_{ik} w_k \} \) and:

\[p_i = \left[(p^I_i)^{1-\eta} + \sum_{j=1}^{N} (p^T_{ij})^{1-\eta} \right]^{1/(1-\eta)} \]

\[p^I_i = \left[\int_{B^I_i} [m_i x_i]^{1-\eta} \phi_i(x_i) \psi(z) dx_i dz \right]^{1/(1-\eta)} \]

\[p^T_{ij} = \left[\int_{B^T_{ij}} [p_{ij}(z_j)]^{1-\eta} \phi_i(x_i) \psi(z) dx_i dz \right]^{1/(1-\eta)} \]
A supplier in country \(j \) chooses the optimal price \(p_{ij}(z_j) \) to charge in country \(i \) to:

\[
\max_{p_{ij}(z_j)} \left[p_{ij}(z_j) - t_{ij} w_j z_j \right] \left(\frac{p_{ij}(z_j)}{p_i} \right)^{-\eta} q_i A_{ij}(p_{ij}(z_j))
\]

where \(A_{ij}(p_{ij}(z_j)) \) is the mass of buyers from \(i \) buying good \((x_i, z)\) from a supplier from \(j \):

\[
A_{ij}(p_{ij}(z_j)) = \left[1 - \Phi_i \left(\frac{p_{ij}(z_j)}{m_i} \right) \right] \cdot \prod_{k \neq j} \left[1 - F_{ik}(p_{ij}(z_j)) \right] \cdot \prod_{k \neq j} \left[1 - F_{ik}(z_k) \right] \cdot \prod_{k \neq j} \left[1 - F_{ik}(z_k) \right]
\]

and \(F_{ij}(p_{ij}(z_j)) \) denotes the CDF of the distribution of the prices \(p_{ij}(z_j) \).
F.O.B prices \((p_{ij}(z_j)/t_{ij}) \), for \(\phi_i(x_i) = \lambda_i e^{-\lambda_i x_i} \), \(\psi_j(z_j) = \mu_j e^{-\mu_j z_j} \):

\[
\frac{\partial p_{ij}(z_j)}{\partial \eta} < 0 \\
\frac{\partial p_{ij}(z_j)}{\partial m_i} > 0 \\
\frac{\partial p_{ij}(z_j)}{\partial t_{ik}} > 0, \quad \forall k \neq j \\
\frac{\partial p_{ij}(z_j)}{\partial \mu_k} < 0, \quad \forall k
\]
General Equilibrium

Final good production function:
\[c_i = q_i^\alpha (l_i^f)^{1-\alpha} \quad \forall i = 1, \ldots N. \]

Population constraint:
\[L_i = l_i^f + \sum_{j=1}^{N} (l_{ji}^I + l_{ji}^T) \quad \forall i = 1, \ldots N. \]

Linear production technologies imply:
\[L_i = \frac{(1 - \alpha)p_i}{\alpha w_i} q_i + \sum_{j=1}^{N} (k_{ji}^I q_j + k_{ji}^T q_j) \quad \text{for } i = 1, \ldots N \]

(linear system of \(N \) equations in the \(N \) unknowns \(\{q_i\}_{i=1}^{N} \)).

Market clearing:
\[r_i c_i = L_i w_i + \int_0^\infty \pi_i(z_i) \psi_i(z_i) dz_i \quad \forall i = 1, \ldots N. \]

\(r_i \) \(c_i \) total expenditure
\(L_i \) \(w_i \) labor income
\(\int_0^\infty \pi_i(z_i) \psi_i(z_i) dz_i \) total profits
Two-country world – Home (H) and Foreign (F). Look for w_H/w_F s.t.:

$$ED_H = L_H w_H + \int_0^\infty \pi_H(z_H) \psi_H(z_H) dz_H - r_H c_H = 0.$$
Insourcing: Changes of Location

Introduction

Closed Economy

- Setup
- Firm’s Problem
- Prices
- General Equilibrium

Open Economy

- Setup
- Firm’s Problem
- Prices
- General Equilibrium

Welfare Analysis

Conclusions

- \(w_H \in (0, \frac{w_F}{\tau}) \) \Rightarrow both countries integrate in \(H \);
- \(w_H \in \left(\frac{w_F}{\tau}, \tau w_F \right) \Rightarrow both countries integrate domestically;
- \(w_H \in (\tau w_F, \infty) \Rightarrow both countries integrate in \(F \).\)
The Gains from Multinational Sourcing

Calibrate the model to:

- Compute the **gains from foreign insourcing**:
 - Disentangle the gains from arm’s length trade from the gains from FDI/intrafirm trade;
 - Assess the quantitative importance of productivity and technology *versus* competition and market structure.

- Gains from foreign insourcing arise because:
 - Firms from the origin country match **high productivity** with the **low wages** of the host country;
 - Consumers in the host country experience an **increase in relative wages**;
 - **Prices decrease** due to increased competition among suppliers.
Calibration

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>definition</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.25</td>
<td>1 - labor share in non-tradeables</td>
<td>Alvarez and Lucas (2007)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>1.8 (1.2)</td>
<td>elasticity of substitution</td>
<td>model restrictions</td>
</tr>
<tr>
<td>(t)</td>
<td>1.1</td>
<td>iceberg trade cost</td>
<td></td>
</tr>
<tr>
<td>(\tau)</td>
<td>2.65 (2.66)</td>
<td>iceberg FDI cost</td>
<td></td>
</tr>
<tr>
<td>(L_{us}/L_{row})</td>
<td>0.16</td>
<td>relative labor in efficiency units</td>
<td>to match data</td>
</tr>
<tr>
<td>(\mu_{us}/\mu_{row})</td>
<td>1.92 (1.77)</td>
<td>suppliers’ relative productivity</td>
<td></td>
</tr>
<tr>
<td>(\lambda_{us}/\lambda_{row})</td>
<td>1.92 (1.77)</td>
<td>buyers’ relative productivity</td>
<td></td>
</tr>
</tbody>
</table>
Calibration (contd.)

Trade and FDI iceberg costs, labor force in efficiency units, and relative productivity:

\[t = 1.1 \] \hspace{2cm} \textit{U.S. intrafirm import share} = 13.5\%

\[\tau = 2.65 \] \hspace{2cm} \textit{U.S. import/GDP} = 13.3\%

\[\frac{L_{us}}{L_{row}} = 0.16 \] \hspace{2cm} \textit{U.S. GDP/World GDP} = 30\%

\[\frac{\mu_{us}}{\mu_{row}} = 1.92 \] \hspace{2cm} \textit{U.S. GDP per worker/ROW GDP per worker}^2 = 2.22

(Assume \(\lambda_{us}/\lambda_{row} = \mu_{us}/\mu_{row} \). All data are for the year 2004).

\[\text{(GDP per worker)}^2_{row} = \sum_{i \neq us} \left(\frac{GDP_i}{\text{labor force}_i} \times \frac{\text{imports}_{us, i}}{\text{imports}_{us, row}} \right). \]
The Gains from Insourcing

\[
\text{welfare gain} = \left(\frac{\text{consumption in calibrated model}}{\text{consumption in model without integration}} - 1 \right) \times 100
\]

<table>
<thead>
<tr>
<th></th>
<th>baseline calibration</th>
<th>FDI reform</th>
<th>higher market power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((\eta = 1.8,)</td>
<td>((\eta = 1.8,)</td>
<td>((\eta' = 1.2,)</td>
</tr>
<tr>
<td></td>
<td>(\tau = 2.65))</td>
<td>(\tau' = 1.82))</td>
<td>(\tau = 2.66))</td>
</tr>
<tr>
<td>U.S. welfare gains (%)</td>
<td>4.87</td>
<td>6.95</td>
<td>13.29</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domestic integration</td>
<td>4.16</td>
<td>0</td>
<td>11.35</td>
</tr>
<tr>
<td>foreign integration</td>
<td>0.71</td>
<td>6.95</td>
<td>1.94</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>productivity effect</td>
<td>4.63</td>
<td>6.41</td>
<td>4.41</td>
</tr>
<tr>
<td>competition effect</td>
<td>0.24</td>
<td>0.54</td>
<td>8.88</td>
</tr>
<tr>
<td>intrafirm import share (%)</td>
<td>13.7</td>
<td>62.52</td>
<td>13.7</td>
</tr>
<tr>
<td>(\Delta%) in av. dom. mark-up</td>
<td>-8.2</td>
<td>-8.74</td>
<td>-42.33</td>
</tr>
</tbody>
</table>
The Gains from Insourcing (contd.)

<table>
<thead>
<tr>
<th></th>
<th>baseline calibration ($\eta = 1.8$, $\tau = 2.65$)</th>
<th>FDI reform ($\eta = 1.8$, $\tau' = 1.82$)</th>
<th>higher market power ($\eta' = 1.2$, $\tau = 2.66$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW welfare gains (%)</td>
<td>12.39</td>
<td>14.87</td>
<td>23.1</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domestic integration</td>
<td>11.84</td>
<td>11.84</td>
<td>22.58</td>
</tr>
<tr>
<td>foreign integration</td>
<td>0.55</td>
<td>3.33</td>
<td>0.52</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>productivity effect</td>
<td>11.76</td>
<td>14.35</td>
<td>14.37</td>
</tr>
<tr>
<td>competition effect</td>
<td>0.63</td>
<td>0.52</td>
<td>8.73</td>
</tr>
<tr>
<td>Δ% in av. dom. mark-up</td>
<td>-8.3</td>
<td>-8.25</td>
<td>-42.99</td>
</tr>
</tbody>
</table>
Gains from Trade and FDI

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>autarky</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>costless trade and no FDI</td>
<td>1.13</td>
<td>1.05</td>
</tr>
<tr>
<td>costless trade and costless FDI</td>
<td>1.23</td>
<td>1.06</td>
</tr>
</tbody>
</table>

- **U.S. gains from trade:**
 - 10% (Alvarez and Lucas (2007)), 17% (Eaton and Kortum (2002)).

- **U.S. gains from “openness”:**
 - \(\approx 10\%\) (Rodríguez-Clare (2007)), 9% (Burstein and Monge-Naranjo (2007)).
Conclusions

- New GE framework to think about firms’ sourcing decisions:
 location + organizational structure driven by technology heterogeneity and imperfect competition.

- This theory contributes to understanding:
 - the **effect of multinational firms on competition**: optimal pricing of tradeables;
 - the **determinants of intrafirm trade**: market structure and cost advantages;
 - the **gains from intrafirm trade**.
Why is Intrafirm Trade so Important?

- Intrafirm trade is the by-product of a firm setting a plant in another country.
 Understanding intrafirm trade helps to understand:
 - the nature/structure/operations of multinational firms;
 - the relationship between trade and foreign direct investment.

- Intrafirm transactions are priced differently than arm’s length transactions\(^3\):
 - transfer prices and arm’s length prices respond differently to changes in the economy
 \[\downarrow\]
 different pass-through of changes in marginal costs, transportation costs or exchange rates.

\(^3\)Bernard, Jensen and Schott (2006).
Input Differentiation and Intrafirm Trade

Given α, η, L_i, λ_i, μ_i, t_{ij}, $\tau_{ij} \forall j$, the intrafirm share of imports of country i is:

$$
\sigma_i = \left[1 + \sum_{j \neq i} \int_{B_{ij}^T} [p_{ij}(z_j)]^{1-\eta} \phi_i(x) \psi(z) dx_i dz \right]^{-1}
$$

$$(\text{where } m_i = \tau_{ij} w_j \text{ for } j \neq i).$$

Proposition 1: $\frac{\partial \sigma_i}{\partial \eta} < 0$.

Higher differentiation across inputs ("low" η)
\downarrow
higher “outside” prices: $\frac{\partial p_{ij}(z_j)}{\partial \eta} < 0 \ \forall j$
\downarrow
higher incentive to do intrafirm sourcing.
Data

\[
\ln(\sigma_{st}) = \beta_0 + \beta_1 D^\eta_s + \varepsilon_{st}
\]

- \(\sigma_{st}\) ≡ **Intrafirm share of import**: imports of U.S. parents from their foreign affiliates/ total U.S. imports (29 manufacturing BEA sectors for 4 years).

- \(D^\eta_s\) ≡ **Input differentiation variable**: from Broda and Weinstein (2006)’s estimates of (3-digit SITC) sector elasticities \(\eta_i\):

\[
D_{SITC_{s}}^\eta = \begin{cases}
1 & \text{if } \eta_s < \text{median}(\eta_s); \\
0 & \text{if } \eta_s \geq \text{median}(\eta_s).
\end{cases}
\]

Aggregate into BEA manufacturing industries:

\[
D_{BEA_{s}}^\eta = \sum_{SITC_{s} \in BEA_{s}} \frac{\text{import}_{SITC_{s}}}{\text{import}_{BEA_{s}}} \times D_{SITC_{s}}^\eta
\]

\((D^\eta_{BEA_{s}} \in [0, 1]\) and assigns value 0 to commodities and value 1 to highly differentiated products).
Sector Differentiation Variable

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>D_{BEAS}^η</th>
<th>Code</th>
<th>Description</th>
<th>D_{BEAS}^η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grain, Mill and Bakery Prod.</td>
<td>0</td>
<td>21</td>
<td>Construction, Mining, etc.</td>
<td>0.4979</td>
</tr>
<tr>
<td>2</td>
<td>Beverages</td>
<td>0</td>
<td>22</td>
<td>Computer and Office Equip.</td>
<td>0.4092</td>
</tr>
<tr>
<td>4</td>
<td>Other Food and Kindred Prod.</td>
<td>0.4303</td>
<td>23</td>
<td>Other Nonelectric Machinery</td>
<td>0.6464</td>
</tr>
<tr>
<td>5</td>
<td>Apparel and Other Textile Prod.</td>
<td>0.4938</td>
<td>24</td>
<td>Household Appliances</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Pulp, Paper and Boardmills</td>
<td>0</td>
<td>25</td>
<td>Household Audio and Video</td>
<td>0.8958</td>
</tr>
<tr>
<td>9</td>
<td>Printing and Publishing</td>
<td>1</td>
<td>26</td>
<td>Electronic Components</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Drugs</td>
<td>1</td>
<td>27</td>
<td>Other Electrical Machinery</td>
<td>0.3919</td>
</tr>
<tr>
<td>11</td>
<td>Soaps, Cleaners and Toilet Gds</td>
<td>0.7006</td>
<td>28</td>
<td>Motor Vehicles and Equip.</td>
<td>0.6503</td>
</tr>
<tr>
<td>12</td>
<td>Agricultural Chemicals</td>
<td>0.2304</td>
<td>29</td>
<td>Other Transportation Equip.</td>
<td>0.2657</td>
</tr>
<tr>
<td>13</td>
<td>Industrial Chemicals and Synt.</td>
<td>0.4891</td>
<td>30</td>
<td>Lumber, Wood, Furniture</td>
<td>0.5101</td>
</tr>
<tr>
<td>14</td>
<td>Other Chemicals</td>
<td>1</td>
<td>31</td>
<td>Glass Products</td>
<td>0.5518</td>
</tr>
<tr>
<td>15</td>
<td>Rubber Prod.</td>
<td>0.8827</td>
<td>32</td>
<td>Stone, Clay, Concrete, Gypsum</td>
<td>0.8330</td>
</tr>
<tr>
<td>16</td>
<td>Miscellaneous Plastic Prod.</td>
<td>0</td>
<td>33</td>
<td>Instruments and Apparatus</td>
<td>0.9650</td>
</tr>
<tr>
<td>19</td>
<td>Fabricated Metal Prod.</td>
<td>0.4464</td>
<td>34</td>
<td>Other Manufacturing</td>
<td>0.5131</td>
</tr>
<tr>
<td>20</td>
<td>Farm and Garden Machinery</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

\[\ln(\sigma_{st}) = \beta_0 + \beta_1 D_s^n + \varepsilon_{st} \]

Data for 29 BEA manufacturing sectors, for 4 years (Source: BEA, BW (2006))
\[\ln(\sigma_{st}) = \beta_0 + \beta_1 D_s^\eta + \beta_2 \ln(K_{st}/L_{st}) + \varepsilon_{st} \]

<table>
<thead>
<tr>
<th>Dep. Var: (\ln(\sigma_{st}))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_s^\eta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.474***</td>
<td>1.474***</td>
<td>1.478***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.251)</td>
<td>(0.434)</td>
<td>(0.442)</td>
<td></td>
</tr>
<tr>
<td>(\ln(K_{st}/L_{st}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.829***</td>
<td>1.005***</td>
<td>1.005***</td>
<td>1.018***</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.143)</td>
<td>(0.246)</td>
<td>(0.255)</td>
</tr>
<tr>
<td>clustered errors</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>year fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>adj. (R^2)</td>
<td>0.185</td>
<td>0.370</td>
<td>0.381</td>
<td>0.385</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>No. of clusters</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>