"The Spatial Diffusion of Technology" by D.Comin, M. Dmitriev, and E. Rossi-Hansberg

Discussion by Stefania Garetto Boston University

March 23, 2012

- Results
- Outline
- Comments
- Conclusions

Space, Time, and Technology Diffusion

How does technology diffuses across countries and over time?

~				
20	m	m	Or	1
Ju			a	v

- Results
- Outline
- Comments
- Conclusions

Space, Time, and Technology Diffusion

How does technology diffuses across countries and over time?

- CDR study empirically and theoretically the role of **cross-country interactions** in the technology adoption process.
- Main idea: technology diffuses by interactions with adopters, and interactions are more likely with agents located nearby. As a result:
 - 1. Technology diffuses **more slowly** to locations far away from adoption leaders.
 - 2. The effect of distance vanishes over time.
- Empirically: use CHAT dataset (cool!) to construct a measure of **spatial distance from technology (SDT)** and show that SDT has a robust negative effect on adoption.

BOSTON UNIVERSITY

This Discussion

Summary

- Results
- Outline
- Comments
- Conclusions

The empirical analysis is VERY clear and careful about identifying the effects of country interactions on technology adoption.

• CDR provide **the simplest model** that is able to generate the desired relationship between time, space and technology.

BOSTON UNIVERSITY

This Discussion

Summary

- Results
- Outline
- Comments

Conclusions

- The empirical analysis is VERY clear and careful about identifying the effects of country interactions on technology adoption.
- CDR provide **the simplest model** that is able to generate the desired relationship between time, space and technology.

This discussion:

- 1. shows why we may or may not need a more complicated model to address these facts;
- 2. asks a few questions about the interpretation of the model.

Interactions and Space

Key equation in CDR:

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

 $G(0, r, t+h) = G(0, r, t) \left[\frac{\int_0^1 G(0, l, t) e^{-\delta |l-r|dl}}{\int_0^1 e^{-\delta |l-r|dl}} \right]^{\alpha h}$

Interactions and Space

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Key equation in CDR:

$$G(0, r, t + h) = G(0, r, t) \left[\frac{\int_0^1 G(0, l, t) e^{-\delta |l - r| dl}}{\int_0^1 e^{-\delta |l - r| dl}} \right]^{\alpha h}$$

Two possible extensions:

1. Allow the meeting rate α to depend on location

Interactions and Space

Key equation in CDR:

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

 $G(0, r, t+h) = G(0, r, t) \left[\frac{\int_0^1 G(0, l, t) e^{-\delta |l-r|dl}}{\int_0^1 e^{-\delta |l-r|dl}} \right]^{\alpha h}$

Two possible extensions:

1. Allow the **meeting rate** α to **depend on location** \Rightarrow does not change the qualitative results, but makes the effect of distance slower to vanish over time.

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions and Space

Key equation in CDR:

$$G(0, r, t+h) = G(0, r, t) \left[\frac{\int_0^1 G(0, l, t) e^{-\delta |l-r|dl}}{\int_0^1 e^{-\delta |l-r|dl}} \right]^{\alpha h}$$

Two possible extensions:

- 1. Allow the **meeting rate** α to **depend on location** \Rightarrow does not change the qualitative results, but makes the effect of distance slower to vanish over time.
- 2. Define locations on a **bi-dimensional space**

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions and Space

Key equation in CDR:

$$G(0, r, t+h) = G(0, r, t) \left[\frac{\int_0^1 G(0, l, t) e^{-\delta |l-r|dl}}{\int_0^1 e^{-\delta |l-r|dl}} \right]^{\alpha h}$$

Two possible extensions:

- 1. Allow the **meeting rate** α to **depend on location** \Rightarrow does not change the qualitative results, but makes the effect of distance slower to vanish over time.
- 2. Define locations on a **bi-dimensional space** \Rightarrow might be important for the empirical implementation.

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 2.

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Summary

Comments

- Interactions and Space
- In Practice

-4 -6 -8 log(percentage of adopters) -10 -12 -14 -16 -18 0 0.5 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 1 0.1 0

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 60.

location

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 120.

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 180.

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 240.

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions in a Bi-Dimensional Space: Innovator at the Boundary

Figure 2: Percentage of Adopters in a bi-dimensional space, t = 300.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 2.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 60.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 120.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 180.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 240.

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

Figure 3: Percentage of Adopters in a bi-dimensional space, t = 300.

Comments

- Interactions and Space
- In Practice

Conclusions

Interactions in a Bi-Dimensional Space: Comparison

Figure 4: Percentage of adopters, in-Figure 3 novator at the boundary, t = 300. Novator

Figure 5: Percentage of adopters, innovator in the center, t = 300.

- Diffusion is **much faster** when the innovator is in the center!!! (compared to what happens in a one-dimensional space)

- Also allows more realistic initial conditions and to differentiate the N-S and E-W dimensions.

How does Technology Diffusion Takes Place in Practice?

Summary

Comments

- Interactions and Space
- In Practice

Conclusions

• CDR present a **mechanical model**: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.

Comments

- Interactions and Space
- In Practice

Conclusions

How does Technology Diffusion Takes Place in Practice?

• CDR present a **mechanical model**: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.

Comments

- Interactions and Space
- In Practice
- Conclusions

How does Technology Diffusion Takes Place in Practice?

CDR present a mechanical model: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.
 Que prove DO emotion a beaut to abreal any adaption 2

Can we DO anything about technology adoption?

• How does technology adoption happens **in practice**? What favors communication across locations?

Comments

- Interactions and Space
- In Practice
- Conclusions

How does Technology Diffusion Takes Place in Practice?

CDR present a mechanical model: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.
 U

- How does technology adoption happens in practice? What favors communication across locations?
 Maybe trade and multinational production have a role... and the estimates of α, δ are correlated with measures of openness
 - "gravity" in technology diffusion as a more general version of the "gravity in affiliate sales" pointed our by Keller and Yeaple (2010)

Comments

- Interactions and Space
- In Practice
- Conclusions

How does Technology Diffusion Takes Place in Practice?

CDR present a mechanical model: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.
 Image: Comparison of the second second

- How does technology adoption happens in practice? What favors communication across locations?
 Maybe trade and multinational production have a role... and the estimates of α, δ are correlated with measures of openness
 - "gravity" in technology diffusion as a more general version of the "gravity in affiliate sales" pointed our by Keller and Yeaple (2010)
- The model explains the evolution of ONE technology at a time. Are there **interactions** in adoption **across technologies**?

Comments

- Interactions and Space
- In Practice
- Conclusions

How does Technology Diffusion Takes Place in Practice?

CDR present a mechanical model: no decisions have to be taken, no role for agents' optimizing behavior in the diffusion of technologies across countries.
 Image: Construction of the second secon

- How does technology adoption happens in practice? What favors communication across locations?
 Maybe trade and multinational production have a role... and the estimates of α, δ are correlated with measures of openness
 - "gravity" in technology diffusion as a more general version of the "gravity in affiliate sales" pointed our by Keller and Yeaple (2010)
- The model explains the evolution of ONE technology at a time. Are there **interactions** in adoption **across technologies**? Diffusion of the internet/transportation technologies might have affected the diffusion of other technologies.

BOSTON

-					
C	 m	m	0	123	
0			0	1 \	
				- 2	

Conclusions

Conclusions

In this paper:

- New data measuring technology adoption DIRECTLY sheds light on how technology diffusion happens over time and across space.
- A very simple model is able to account for the diffusion patterns observed in the data.

The mechanism in the paper can be fruitfully used in more complex settings:

- Moving "forward": Desmet and Rossi-Hansberg (2011) nest a similar idea in a spatial growth model;
- Moving "backward": how can economic agents affect technology diffusion?

Meeting Rate and Distance

Summary

Comments

Conclusions

Appendix

Figure 6: Adoption Rate in CDR.

Figure 7: Adoption Rate in CDR allowing the meeting rate to depend on distance.