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Pharmaceutical R&D organizations have no shortage of experimental data or annotation information.

However, the sheer volume and complexity of this information results in a paralyzing inability to make

effective use of it for predicting drug efficacy and safety. Data integration efforts are legion, but even in

the rare instances where they succeed, they are found to be insufficient to advance programs because

interpretation of query results becomes a research project in itself. In this review, we propose a coherent,

interoperable platform comprising knowledge engineering and hypothesis generation components for

rapidly making determinations of confidence in mechanism and safety (among other goals) using

experimental data and expert knowledge.
Introduction
In his excellent analysis of the business of biotechnology, Gary

Pisano [1] observed that the biotechnology industry differs from

other high-tech sectors in that (1) it is characterized by ‘profound

and persistent uncertainty’ in R&D, related to our shallow under-

standing of how human biological processes and systems respond

to therapeutic intervention; (2) its various specialized disciplines

must work in an integrated fashion, that is the R&D process cannot

be broken into separate problems to be solved independently; and

(3) much of the knowledge in its various disciplines is ‘intuitive or

tacit, rendering the task of harnessing collective learning espe-

cially daunting.’

Pisano is completely correct, in our experience. The high-stakes

nature of drug discovery and development has now reached

critical levels. George Milne, former president of Pfizer Research,

commented that despite dramatic investments in R&D, the overall

productivity of the pharmaceutical industry has not increased over

the past decade [2]. The grim statistics collected by various senior

leaders in the industry are remarkably consistent: the ratio of pre-

clinical candidates to approved product has been roughly 25 to 1, a

staggering 96% attrition rate [2–4]. These punishing odds are a

direct consequence of the complexities in translating the sound

theoretical basis for molecular target selection into clinical proof
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of concept and the difficulties associated with predicting the in vivo

and clinical safety of novel compounds. Pisano is also accurate in

his assessment that our limited knowledge is highly decentralized

and mostly tacit in nature. In other words, the expertise and

experience required to successfully complete the process of dis-

covering and developing a new drug is necessarily spread out

among thousands of people in different departments at different

geographic locations. Yet there are technologies, some new and

some old (even ancient), we can use to strengthen our approach.

Data integration is not the answer
Data integration (see Glossary) has been the rallying cry of the

pharmaceutical industry for many years now, the sentiment being

that if we could just get all of the information we need in one place

so that we can query it, we will have eliminated many of the

roadblocks to our success in moving compounds through the

pipeline. All of the answers will be available at the end of every

query. There is no doubt that properly integrated biological infor-

mation can make the drug discovery process much more efficient

by providing testable hypotheses after visualization and mental

processing [5,6]. These high-value hypotheses might lead to the

uncovering of a causal relationship between the biological activity

of an enzyme or receptor to the progression of a disease, or the

discovery of a secreted biomarker that correlates with a particular

adverse event. However, whether or not we have collectively
08), doi:10.1016/j.drudis.2008.01.008
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GLOSSARY

Data integration: the process of combining disparate data
and providing a unified view of these data
Domain: a body of knowledge, such as biology
Domain knowledge: the terminology and facts of a domain
without a focus on any particular task
Graph (mathematics): a set of objects called nodes or
vertices connected by a set of links called edges
Inference engine: that part of a knowledge system that uses
the knowledge in a knowledge base to reason its way to
solutions to problems
Knowledge base: repository for the knowledge used by a
knowledge system
Knowledge system: short-hand for knowledge-based
system; a computer system that represents and uses
knowledge to carry out a task
Ontology: a formal description of set of entities within a
domain and the relationships between those entities, used to
reason about the entities within that domain
Semantics:what a symbol means, separate and distinct from
the symbol itself
Triple: a statement of a relationship, called the predicate,
between a subject (the entity the triple is about) and the
object of the triple (another entity or value)
Triple store: a data store (such as Kowari) geared towards
storing and returning RDF triples in response to queries
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worked out a sustainable solution for ‘properly’ integrating bio-

logical information remains an open question. Indeed, the

remarks of Buneman and co-authors in their piece featured in

Towards 2020 Science [7] are sobering: ‘attempts to solve the issues

of scientific data management by building large, centralized,

archival repositories are both dangerous and unworkable.’

The scientific data repositories in use throughout the pharma-

ceutical industry today are characterized by being siloed (isolated,

unconnected to any other repositories or applications), redundant

(many ‘new’ repositories being built contain information already

present somewhere else), and inaccessible (researchers typically

have very limited query capability, if they have access at all).

Furthermore, current bioinformatics systems do not have the

ability to reason, that is, to automatically produce novel insights

that were not previously captured and integrated. Consider the

analogous situation related to the Human Genome Project (http://

www.ornl.gov/sci/techresources/Human_Genome/home.shtml).

As we undertook to sequence the entire human genome, many of

us believed that when we were finished, medicine would be

revolutionized. The reality is that the human genome has been

completely sequenced for some years now, and while this accom-

plishment should in no way be diminished from the major scien-

tific and technical achievement that it is, the fact remains that

medicine has not quite been revolutionized (see Towards 2020

Science, p. 60 [7]). It is true that you can download the entire

human genome (and soon even your own genome’s sequence) to

your iPod and take it to your physician, but alas, it is unlikely that

this will have any impact on the quality of care you receive.

Semantics is required to interpret information
Genomic technologies indeed require time to mature before sig-

nificant societal benefits can be realized. Nevertheless, one major

reason we cannot make better use of the fully sequenced human
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genome is that it currently lacks semantics (but help may be on the

way [8]). For your physician, there is simply not enough meaning

associated with the information to make it directly useful for your

treatment. Some prior interpretation of the information is neces-

sary to endow it with meaning before it can be used to diagnose

and guide treatment. Indeed, information becomes knowledge

when it is interpreted, absorbed, and socialized such that it

becomes part of an individual’s knowledge resource base [9].

Interpretation endows information with practical meaning, which

ultimately allows it to be applied to a particular purpose.

The point is that we will not make the best use of the sequence of

the human genome unless we know its meaning, and by the same

token, the pharmaceutical industry cannot expect to derive max-

imum benefit from the mere integration of its data without the

corresponding semantics. Providing such interpretation in the

domain (see Glossary) of pharmaceutical R&D is made very diffi-

cult because of its enormous complexity. We are only beginning to

learn how to interpret thousands of empirical data points per

experiment in the context of everything known about biology,

chemistry, and other disciplines. This is because, as Peter Karp has

pointed out [10], our conceptualizations of biology have grown in

size and complexity to such an extent that even experts cannot

hold them in their heads in order to reason with them. Unfortu-

nately, this is something we simply must learn how to do, because

it is increasingly clear that we need to understand everything we

can about the biological context of targets and their mechanisms

of action in order to truly understand disease and drug treatment.

How, then, can we use technology to interpret information ger-

mane to pharmaceutical research and convert it into knowledge?

Beyond data integration
In 1975, Newell and Simon presented the Physical Symbol System

Hypothesis in their Turing Award paper [11]. This hypothesis

states that a physical symbol system has the necessary and suffi-

cient means for general intelligent action; in other words, any

system exhibiting general intelligence (e.g. the ability to make

plans and formulate hypotheses) will necessarily be found to

manipulate symbols that represent entities in the physical world,

and that the ability to do so is all that is necessary for general

intelligent behavior. Knowledge systems (see Glossary), which are

well-established artificial intelligence (AI) systems, are physical

symbol systems that comprise a reasoning engine or problem-

solving process coupled with a domain-specific knowledge base

(see Glossary). The reasoning engine is a system for making

inferences from the information in the knowledge base, usually

using a set of rules from a rule base. A knowledge base is a way to

store and manipulate the physical symbols that represent entities

in a domain of interest, such as the enzymes, targets, metabolites,

and other elements in a pathway relevant to the domain of

pharmaceutical R&D. Knowledge engineering is a practical disci-

pline that provides the tools and techniques for creating knowl-

edge systems.

A properly designed knowledge system provides the means to

manipulate symbols representing entities in some domain of

interest computationally. Such manipulation allows computers

to perform various kinds of seemingly intelligent behavior within

the domain, including reasoning and other useful kinds of com-

putation. Because the pharmaceutical R&D domain is so complex,
08), doi:10.1016/j.drudis.2008.01.008
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FIGURE 2

A small directed graph. The circles in the graph are ‘nodes,’ and the arrows are
‘edges.’
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the benefit of such a system to researchers already overwhelmed

with information is clear. However, the choices made in creating a

knowledge system can have another, perhaps unexpected benefit:

the right knowledge system can help solve the problem that

attempts at data integration have failed to solve.

To see how this might work, consider a knowledge base repre-

senting the domain of human diabetes. Imagine that the facts, or

assertions, relevant to diabetes were represented as subject-pre-

dicate-object ‘triples’ like

p53 decreases-expression-of insulin-receptor

This assertion, represented graphically in Figure 1, is about the

transcription factor p53, and it describes how p53 down-regulates

the expression of the insulin receptor. Now, further imagine that

thousands of such facts, all in some way relevant to diabetes, are

interconnected by having some subjects serve as objects of other

triples (see Glossary), and vice versa. The resulting construct is a

mathematical graph (see Glossary), a set of nodes (here represent-

ing entities like p53) and interconnecting edges or lines (here

representing relationships such as decreases-expression-of) repre-

senting facts about diabetes. Figure 2 depicts a simple graph. The

blue circles (nodes) represent entities in the domain, and the

arrows (edges) represent the relationships between them. The fact

that the edges are arrows indicating directionality, and not merely

lines, indicates that the graph is a directed graph, just what is

needed to represent a particular relationship between a subject

and an object (though not necessarily the converse).

The semantics associated with the entities and their relation-

ships are formally described, and thus controlled, by a set of

ontologies: formal descriptions of the domain, including the

entities in it and how they can (and cannot) interact. We can

develop a simple if-then rule base that takes advantage of the

semantics in the ontologies and the regular graph structure to

implement an expert reasoning system over the graph (Figure 3).

Finally, imagine that the graph of diabetes knowledge is stored in a

relational database, the schema for which being relatively straight-

forward because of the simple node-edge architecture of graphs.

Toward a universal, interoperable knowledge
architecture
Now, suppose we would like to create a knowledge base about a

separate but related domain, such as dyslipidemia. What would we

need to do to accomplish that? We notice that the subject-pre-

dicate-object triple format for representing assertions in the ori-
Please cite this article in press as: Slater, T, Beyond data integration, Drug Discov Today (20

FIGURE 1

A graphical representation of an assertion, or triple. Circles represent the
subject and predicate of the assertion, and an arrow from the subject to the

object represents the predicate.
ginal domain is flexible and powerful and therefore perfectly

serviceable for the new domain. Because the assertions about

our new domain are represented as subject-predicate-object triples,

we can simply duplicate our original database schema and reuse it

as-is. There is no need to design a new database schema, because

the kinds of information being stored (entities and relationships,

or nodes and edges) are the same as before. Since our database

schema has not changed and our knowledge representation is

identical, we can continue to use the same algorithms for search-

ing, traversing, manipulating, and visualizing the graph.

We will have to make some changes to accommodate the new

domain, however. We will probably need to modify our ontologies

and rule base to some extent in order to represent dyslipidemia-

specific concepts, but there is likely to be sufficient overlap that

such modifications will be minimal. We will also have to populate

the new knowledge base schema with information relevant to

dyslipidemia. That notwithstanding, it is probable that we will be

able to reuse a significant portion of the assertions from the

original diabetes knowledge base for this purpose.

So, how does this help overcome the limitations of data inte-

gration? Because each knowledge base built in this way shares
08), doi:10.1016/j.drudis.2008.01.008

FIGURE 3

A knowledge system comprises a knowledge base and a reasoning engine. In

the proposed architecture, the reasoning engine generates hypotheses by
applying the appropriate rules from the rule base to the knowledge base

graph.
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FIGURE 4

An interconnected set of knowledge systems.
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exactly the same relational database schema, the same knowledge

representation scheme (triples and ontologies), and the same

algorithms for working with it, each knowledge base is a fungible

resource. If not for the actual content, any knowledge base can be

substituted for any other. If the knowledge bases are connected to

each other over a network (Figure 4), such as the World Wide Web,

then the same search tools, algorithms, rule bases, and visualiza-

tion methods can be used across all of them. Rather than attempt-

ing to achieve data integration by ‘getting all the data in one

place,’ the stated goal of so many doomed integration projects,

success is achieved by virtue of the uniformity of the underlying

information architecture and the software used to access and

manipulate it. The goal is not to put all of our information in

one place; the goal is interoperability between repositories. ‘Bou-

tique’ knowledge bases, relevant to just a particular indication,

molecule type (such as compound), or any other particular con-

cepts, are not only accommodated but encouraged, because they

keep database sizes small and therefore increase manageability,

decrease computation demands, and they cannot become silos or

‘data tombs’ [12] because of their uniform architecture and explicit

semantics (see Glossary).

Putting it all together
A practical system for implementing a physical symbol system can

be built using current technologies. Such a system requires the

following components:
� A knowledge representation scheme for representing facts or

observations in a given domain
� A relational database schema for representing mathematical

graphs
� A knowledge acquisition system for creating graph-based

knowledge bases
� A set of algorithms for manipulating, searching, and visualizing

graphs
� An expert system for reasoning over the knowledge base
Please cite this article in press as: Slater, T, Beyond data integration, Drug Discov Today (20
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Ideally, the knowledge representation scheme will be powerful

and flexible enough to represent any fact in a given domain, while

at the same time being simple enough to perform well during

computation over a large body of such facts. In the complex

domains of life sciences and drug discovery, the knowledge repre-

sentation chosen must take the form of a common format for the

integration and combination of data taken from diverse sources.

Adoption of such a format is the only way to avoid the pitfalls of

data integration attempted in the past. The Semantic Web (http://

www.w3.org/2001/sw/) community, under the direction of Sir Tim

Berners-Lee and the World-Wide Web Consortium (W3C, http://

www.w3c.org/), has recommended the Resource Description Fra-

mework (RDF, http://www.w3.org/TR/rdf-syntax-grammar/) as

the way to represent triples. The set of all such triples in a knowl-

edge system comprises a graph which constitutes the system’s

knowledge base.

Other W3C standards, including RDF Schema (RDFS, http://

www.w3.org/TR/rdf-schema/) and Web Ontology Language

(OWL, http://www.w3.org/TR/owl-features/) augment RDF with

sufficient expressive power to support inference (see Glossary) and

other more sophisticated operations on the knowledge repre-

sented. The W3C supports the Healthcare and Life Sciences (HCLS,

http://www.w3.org/2001/sw/hcls/) Interest Group, whose mission

is to facilitate the development and adoption of Semantic Web

technologies in those domains.

The relational database schema for representing graphs serves as

a fungible resource for the creation of graph-based knowledge

bases in any domain. Because of the simple and uniform way in

which knowledge is represented, the database schema itself is

uncomplicated, suitable for duplication and reuse for any number

of knowledge bases in any domain without modification. Ideally, a

special-purpose triple store (see Glossary) would be employed, but

in our hands, currently available triple-store technology cannot

adequately support reasoning over large graphs.

The knowledge acquisition system is necessary to flesh out the

graph with assertions from the domain. The assertions can come

from structured sources, such as GenBank (http://www.ncbi.nlm.-

nih.gov/Genbank/), or they may come from unstructured sources,

such as the scientific literature. Unfortunately, pre-assembled

knowledge bases are very rarely available for purchase, so they

must be created for the task at hand. This often requires the use of

text mining and other technologies to make the process efficient

in the face of huge amounts of information (see the recent review

by Jensen et al. [13], and references therein for an excellent

discussion on this topic).

A set of algorithms for manipulating, searching, and visualizing

graphs is essential in order to make use of this information

architecture. Fortunately, mathematical graphs have been a sub-

ject of research since Leonard Euler published the first paper in the

history of graph theory (on the Seven Bridges of Königsberg) in

1736, so algorithms for searching and manipulating graphs are

well studied. Such algorithms are necessary for reasoning over

information represented as a graph. Visualization of large graphs

using computers is still an unsolved research problem; however,

good solutions for graphs of moderate size (3000 nodes or so) are

readily available at reasonable cost.

Finally, an expert system (or similar system for reasoning) is

required for hypothesis generation over the large space repre-
08), doi:10.1016/j.drudis.2008.01.008
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sented in the knowledge bases. These typically take the form of a

set of if-then rules representing knowledge from domain experts.

For example, one such rule might look like, ‘If protein-X increases

the expression of gene-Y, and gene-Y’s expression is measured to

be significantly increased, then posit that the concentration or

activity of protein-X is also increased.’ Of course, such a rule is

invalid as a logical argument; it is the ‘fallacy of affirming the

consequent.’ However, as a heuristic for exploring a set of possi-

bilities in the service of hypothesis generation, rules of this form

turn out to be quite useful, especially when reasoning defeasibly

such that conclusions and assertions can be retracted when better-

supported ones are discovered.

In theory, serial application of such if-then rules, especially

when starting at nodes representing molecular entities (such as

genes) which have been empirically measured in the laboratory,

can provide the basis for a graph traversal over related assertions.

These traversals can represent chains of causal reasoning which

ultimately provide explanations for experimental results, and in

most cases are too complicated for human minds to make. We are

aware of at least one company that has successfully used this

methodology for the interpretation of experimental data sets, in

particular molecular profiling data, from several diverse and com-

plex disease areas across several different model systems [14]. We

are also intrigued and encouraged by academic efforts in compu-

tational hypothesis evaluation [15] and hypothesis formation [16]

in the context of biological systems.

Conclusion
What does knowledge engineering have to do with addressing

the demoralizing attrition rates faced by drug discovery project

teams? In our opinion, an R&D organization’s lack of confi-

dence in the efficacy or safety of a novel therapeutic agent in

patient populations is a result of their inability to relate events

and observations at the molecular level (i.e. results from in vitro

assays against which initial drug leads are found and then

optimized) to the desired endpoints at the preclinical and

clinical stages of testing or vice versa (see the review by Butcher

et al. [17] and references therein). Consider the challenges

associated just with trying to nominate a ‘safe’ compound for

clinical development. Classical in vivo toxicity studies

require timelines and quantities of experimental compound

that are fundamentally incompatible with the lead optimization

process, and there are few prospective in vitro toxicology assays
Please cite this article in press as: Slater, T, Beyond data integration, Drug Discov Today (20
with cycle times short enough to run alongside a medicinal

chemistry campaign. Molecular profiling technologies, such as

DNA microarrays for toxicogenomics [18], are powerful in that

they produce large-scale, systems-level molecular data in

response to a toxicant, and one can even train accurate classi-

fication models using standard algorithms from these data [19].

However, because this technology still requires samples from

whole animals, they cannot practically be used in lead optimi-

zation cycles, nor do multivariate signatures or classification

models lend themselves well for informing compound design.

Any fundamental breakthrough awaits interpretation and ratio-

nalization of the manifold molecular state changes occurring in

a target organ into a sequence of comprehensible biological

processes or pathways, ideally through a triggering event such as

an off-target activity by the compound. Hence, there is a need

for a framework to represent, populate, and assemble domain-

specific knowledge [20], over which algorithms can reason and

propose mechanisms of toxicity, perhaps resulting in more

efficient discovery of qualified biomarkers and new in vitro

screens. The ability to deduce causal relationships from these

data might likewise be applied towards elucidating the mechan-

ism of compounds showing desirable in vivo activity (e.g.

improving insulin sensitivity or elevating HDL cholesterol

levels).

Here we have described an idealized information architecture

that obviates the recurring need to integrate and re-integrate

data even as it provides the tools and techniques for powerful

computational reasoning. While many of the standards and

technologies we mention above are themselves being actively

researched and developed (some with significant and unsolved

technological problems), many are available now and appear in

practical solutions. Pharmaceutical R&D is an information-

based endeavor. Accordingly, we believe that significant com-

petitive advantages will be enjoyed by those companies that are

best able to represent, encode, and combine their precious

internal knowledge with findings in the biomedical literature

for the express purpose of automating the formation of relevant

and experimentally testable hypotheses for drug discovery and

development.
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