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Eighteen low and medium resolution empirical energy functions were
tested for their ability to distinguish correct from incorrect folds from
three test sets of decoy protein conformations. The energy functions
included 13 pairwise potentials of mean force, covering a wide range of
functional forms and methods of parameterization, four potentials that
attempt to detect properly formed hydrophobic cores, and one environ-
ment-based potential. The ®rst of the three test sets consists of large
ensembles of plausible conformations for eight small proteins, all of
which have correct native secondary structure and are reasonably com-
pact. The second is the set of all subconformations in a database of
known protein structures applied to the sequences in that database
(ungapped threading). The third is a set of ensembles of 1000 confor-
mations each for seven small proteins taken from molecular dynamics
simulations at 298 K and 498 K. Our results show that there are functions
effective for each challenge set; moreover, success in one test is no guar-
antee of success in another. We examine the factors that seem to be im-
portant for accurate discrimination of correct structures in each of the test
sets, and note that extremely simple functions are often as effective as
more complex functions.
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Introduction

Protein structure prediction has remained elusive
because it requires an energy function that can
distinguish the correct conformation from the
astronomically large number of possibilities (see
reviews by Wodak & Rooman, 1993; Sippl, 1995).
Such an effective energy function is the common
prerequisite for all theoretical approaches to pro-
tein folding. Energy functions are often used to
drive the conformational changes of a polypeptide
chain as it folds through phase space (Wilson &
Doniach, 1989; Covell, 1992, 1994; Sun, 1993;
Bowie & Eisenberg, 1994; Dandekar & Argos, 1994,
1996; Kolinski & Skolnick, 1994; Wallqvist &
Ullner, 1994; Vieth et al., 1994, 1995; Monge et al.,
1995; Mumenthaler & Braun, 1995; Srinivasan &
Rose, 1995; Sun et al., 1995). Alternatively, they are
employed to discriminate amongst candidate (or
``decoy'') folds generated by methods that are in-
dependent (or semi-independent) of the energy
function. For instance, many investigators elect to

use large sets of decoy folds constructed by un-
gapped threading methods (Hendlich et al., 1990;
Maiorov & Crippen, 1992; Bryant & Lawrence,
1993; Kocher et al., 1994; Sippl, 1995; Huang et al.,
1995). The resulting structures tend to be non-com-
pact and quite dissimilar to the actual target fold
and hence do not present a serious challenge to
many discrimination functions. Using functions to
align the sequences upon existing structures (i.e.
``inverse protein folding'') can yield candidates
that more closely resemble the native structure
(Bowie et al., 1991; Ouzounis et al., 1993; Sippl &
Weitckus, 1992; Jones et al., 1992; Godzik et al.,
1992; Bryant & Lawrence, 1993; Wilmanns &
Eisenberg, 1993; Fischer & Eisenberg, 1996). Other
studies build and evaluate decoys that differ only
slightly from the native using molecular dynamics
(MD) simulations of crystal structures (Wang et al.,
1995a,b; Huang et al., 1996). Simulations at room
temperature can easily produce thousands of struc-
tures that only differ slightly from the crystal struc-
ture (Huang et al., 1996). A drawback to room
temperature simulation methods is that the confor-
mational space they explore is quite limited. High
temperature simulations sample more of phase

Abbreviations used: MD, molecular dynamics; RMS,
root-mean-square.
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space but yield structures that compromise the
compactness of the fold, the integrity of secondary
structure elements, and the close packing of the
side-chains (Huang et al., 1996). Finally, candidate
folds may be generated by exhaustive searches
either using lattice (Hinds & Levitt, 1992, 1994) or
off-lattice representations (Cohen et al., 1979; Park
& Levitt, 1995, 1996; Yue & Dill, 1996). Lattice rep-
resentations must sacri®ce structural features such
as secondary structure elements or else employ
many (>12) states per residue. However, our off-
lattice model, in which secondary structure el-
ements are held ®xed and all conformations of se-
lected loop residues are explored, can generate
conformations within a 2 AÊ coordinate root-mean
squared-deviation (RMS) of the native structure
using only four discrete dihedral angle states (Park
& Levitt, 1995).

Clearly, a good energy function lies at the heart of
all structure prediction methods: (1) as a driving
function for folding polypeptides from an extended
or random state, or (2) as a scoring scheme to dis-
tinguish native (or native-like) conformations from
a pool of candidates generated independently of
the function itself; or (3) a way of aligning se-
quence upon existing structures to detect native-
like matches. It is not clear whether energy func-
tions that are good for one of these tasks are also
good for the others. Does there exist a single func-
tion that is universally effective? If no single meth-
od is effective against all types of decoys, i.e. if
different challenges require particular types of en-
ergy functions, then we must elucidate the under-
lying common features amongst the functions that
make them speci®c for the different problems.

In previous work we have examined the discrimi-
nation power of some commonly used types of en-
ergy functions using large ensembles of plausible
folds with correct secondary structure (Park &
Levitt, 1996). We have also investigated the effec-
tiveness of a simple hydrophobic ®tness function
to identify correct folds from ensembles generated
by ungapped threading and molecular dynamics
simulations (Huang et al., 1995, 1996). In this work,
we expand our study of energy functions that dis-
tinguish native and near-native structures from
non-native structures (i.e. the second class of pro-
blems listed above). In addition to introducing
both new potentials and variants of the potentials
tested in our earlier work (Huang et al., 1995, 1996;
Park & Levitt, 1996), we also apply each function
to the entire spectrum of decoy sets (ungapped
threading, MD simulation, and exhaustive enumer-
ation).

Success (or failure) in each set provides useful in-
formation about how each function might be best
used. For instance, models produced by inverse
folding result from optimizing the alignment of se-
quence upon the template using the energy func-
tion and search strategy such as the ``branch and
bound'' algorithm (Lathrop & Smith, 1995) or
some variant of a dynamic programming algor-
ithm (Needleman & Wunsch, 1970; Taylor &

Orengo, 1989). Therefore, if the function is defeated
by decoys that are unoptimized in sequence-tem-
plate alignment (i.e. by ungapped threading), it is
unlikely to be useful for inverse folding. Functions
that perform well against near-native decoys gen-
erated by MD are likely to be useful for minimiz-
ation in continuous space, perhaps in the ®nal
stages of building a model by ab initio means or se-
lecting among models generated by alignment
upon known homologues. Finally, a function that
screens effectively against exhaustively generated
folds by our four-state procedure selects folds that
are compact, globular, and exhibit proper tertiary
arrangement. These are qualities desirable in a
function integral in any ab initio approach.

This broad-reaching study aims to answer some
basic questions regarding energy functions. By
modifying the potentials discussed in earlier work
(Huang et al., 1995, 1996; Park & Levitt, 1996), we
can assess the effect of changing the functional
forms on the discrimination ability in the various
challenges. Quantitative measures of the perform-
ance of each function on each challenge set are pro-
vided. The similarities in the different potentials,
evaluated by the correlations in performance be-
tween pairs of energy functions, will also be dis-
cussed. We will show how the competence of the
energy functions varies with the type of challenge
and discuss some of the underlying causes of the
observed differential performance.

Results

The procedure that we followed in this study was
simple. We tested 18 reduced representation em-
pirical energy functions, most of which are variants
of functions typically used for ab initio protein
structure prediction or sequence-structure match-
ing on three different sets of possible confor-
mations. The energy functions examined are
described in Methods and summarized in Table 1.

The functions we examined can be classi®ed by
two broad characteristics. The ®rst is the reference
state necessary for the generation of parameters in
a statistical-mechanical framework. The Con-
tact(MJ), VdW(MJ), VdW(MJ)12, and VdW(MJ)4
functions all have the unfolded state as refer-
ence. The Contact(HL), VdW(HL), Histogram,
VdW(HL)12, VdW(HL)4, Shell, Shell(top), Shellm,
and Shell(top)m, HF(stat) and HF(stat)m functions
all have the compact state as reference. The Sur-
face, HF, and HF(sm) functions do not have a re-
ference state since they are not derived statistically
from the database of known structures. The second
broad classi®cation of the energy functions is that
of distance dependence. Strictly speaking, all of the
energy functions are distance-dependent: even for
simple contact-based functions a pair of residues
typically has an energy of eij if they are closer than
some cutoff distance and 0 if they are not. For the
purposes of the current study, however, we speak
of functions that have only an on/off dependency
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as non-distance-dependent. The Contact(MJ), Con-
tact(HL), Shell, Shell(top), and HF functions are
all therefore non-distance-dependent. All the
other functions are distance-dependent, either be-
cause they have a continuous functional form or
because they have distinct energies for different
inter-residue distances.

The three test sets of conformations used in this
study are described in Methods and summarized
in Table 2. The ®rst test set consists of ensembles
of plausible conformations generated exhaustively
for eight small proteins. All conformations in
these ensembles have correct secondary structure,
and are reasonably compact. They have RMS de-

viations ranging from �2 AÊ to 15 AÊ from the ap-
propriate X-ray structure. The second test set
consists of possible substructures from a database
of known X-ray structures applied to all se-
quences in that database, the ungapped threading
test. The RMS error for this set ranges from �8 AÊ

to over 30 AÊ . The ®nal test set consists of ensem-
bles of 1000 conformations each generated by
molecular dynamics simulation at 298 K and
498K for ®ve small proteins. The RMS deviations
fall between 0 and �3 AÊ for the former and
�10 AÊ for the latter.

Figure 1 shows the distribution of RMS deviations
for typical examples of each of our test sets for

Table 1. Energy functions examined

Energy function Description

Contact(MJ) Residue-residue contact function. The reference state is the unfolded polypeptide chain, and energy
parameters are calculated from contact frequencies determined by atom-atom contacts in database of
known structures. The a-carbon backbone of each residue is treated as a distinct interacting center in
addition to a side-chain interacting center

Contact(HL) Residue-residue contact function. Identical to Contact(MJ), except the reference state is the compact
state

VdW(MJ) Distance-dependent residue-residue potential. The energy parameters for the Contact(MJ) function are
®t to a function of the form A/r8-B/r4

VdW(HL) Distance-dependent residue-residue potential. Identical to VdW(MJ) except based on Contact(HL)
parameters

Surface Crude estimate of the exposed hydrophobic surface area using the approximate solvent accessibility
algorithm of Wodak & Janin (1980)

Histogram Pairwise potential of mean force which calculates interaction energies based on residue-residue
separations in space and in sequence (Hendlich et al., 1990)

VdW(MJ)12 Distance-dependent residue-residue potential. Identical to VdW(MJ) except the functional form is
A/r12-B/r6

VdW(MJ)4 Distance-dependent residue-residue potential. Identical to VdW(MJ) except the functional form is
A/r4-B/r2

VdW(HL)12 Distance-dependent residue-residue potential. Identical to VdW(MJ)12 except based on Contact (HL)
parameters

VdW(HL)4 Distance-dependent residue-residue potential. Identical to VdW(MJ)4 except based on Contact(HL)
parameters

Shell Residue-residue contact function. Parameters are derived from the frequency of residue-residue
contacts determined by a simple distance cutoff of 7 AÊ

Shell(top) Residue-residue contact potential. Like the Shell function but residue-residue contact frequencies are
normalized by relative likelihood of contacts between residues separated by different numbers of
amino acids in sequence

Shellm Residue-residue contact potential. Like the Shell function, but uses ®ve different sets of parameters,
each of which are calculated using different distance cutoffs (6, 7, 8, 9 and 10 AÊ )

Shell(top)m Residue-residue contact potential. Like the Shell(top) function, but uses ®ve different sets of parameters
HF Hydrophobic ®tness function. An energy function without parameters that scores for the formation of

true hydrophobic cores (Huang et al., 1995)
HF(sm) A variant of the HF potential that uses a sigmoidal function for counting residue contacts rather than a

step function
HF(stat) Statistically derived hydrophobic ®tness function. Score is based on a potential of mean force for the

number of residues within 7 AÊ of each residue
HF(stat)m Like HF(stat) except ®ve different distance cutoff ranges (6,7,8,9 and 10 AÊ ) are used

Table 2. Test sets used

Test set Description

Ensembles of plausible conformations Large ensembles of from 30,000 to 200,000 conformations generated by exhaustive
exploration of loops while preserving native secondary structure for 8 small proteins
(Park & Levitt, 1996)

Ungapped threading 103 protein sequences are superimposed without any gaps on all possible contiguous
subconformations of the same set of 103 proteins. The number of conformations
available to each protein ranges from 1 to about 20,000 (Huang et al., 1995)

Molecular dynamics ensembles 1000 conformations each for 7 small proteins taken from 1 ns trajectories generated by
molecular dynamics simulation in solution at 298 K and 498 K (Huang et al., 1996)
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1r69. Figure 2 shows their energy distributions for
a representative function (Shellm). There is signi®-
cant overlap between the different test sets, both in
RMS deviation and energy. As the sets become less
like the X-ray structure (larger RMS), the energy
also tends to be less favorable; this behavior does,
however, depend on which energy function is
used. It is also noteworthy that the different en-
sembles have distinct characteristics. The un-
gapped threading structures have RMS deviations
that overlap those of the ensembles of plausible
conformations, yet the latter are mostly compact
while the former are not. The 498 K simulations
provide structures that are somewhat compact but
have distorted secondary structure.

We proceed now to describe the results for each
of these test sets in turn, and then concentrate on
the different functions' overall strengths and
weaknesses.

Ensembles of plausible conformations

There are two questions that we can ask about en-
ergy functions using our ensembles of plausible
conformations: how well can they identify the cor-
rect structure, and how well can they identify
nearly correct structures? These ensembles are par-
ticularly useful for the latter question because they
contain many conformations within 4 AÊ RMS of
the correct structures and several within 2 AÊ RMS.
Here we refer to structures nearer than 4 AÊ to the
appropriate X-ray structure as native-like.

Identification of X-ray conformations

Table 3 shows the Rank scores, average Q-scores
and average Z-scores for X-ray structure identi®-
cation from our ensembles of plausible confor-
mations. The results for the Contact(MJ),
Contact(HL), VdW(MJ), VdW(HL), Surface, and
Histogram energy functions were presented by

Park & Levitt (1996) but are shown again to facili-
tate comparisons. Several of the new functions all
have average Q-scores (hQi) better than the best
described previously (the VdW(MJ) function).
These include the VdW(MJ)12, VdW(HL)4, Shellm
and Shell(top)m functions. In particular, the ®rst
two of these rank X-ray structure ®rst in energy as
often as not. The VdW(MJ)12 energy function is
even comparable to the best combination of energy
functions described by Park & Levitt (1996), which
had hQi � 5.10. It is remarkable how a simple
change of functional form improves performance
so drastically.

For this test there are also several disappointing
functions. The two variants of the HF function,
(HF and HF(sm)), the original of which does very
well in ungapped threading (Huang et al., 1995; see
below), although not the worst functions, are only
middling performers. It should be noted, however,
that these HF functions stumbled most noticeably
for 1sn3 and 4pti, two small, heavily disul®de-
bonded proteins. The HF score, which does not re-
cognize disul®de bonds, is not expected to perform
well for these two proteins. The Contact(MJ) func-
tion, with its average Q-score of 0.46, is marginally
better than a random discriminator (hQi � 0.3).

In our previous survey of energy functions we con-
cluded that distance-dependent energy functions
worked better than non-distance-dependent func-
tions. Indeed the two best functions in this study,
VdW(MJ)12 and VdW(HL)4, are distance-depen-
dent. However, we see now that two non-distance-
dependent functions, Shell and Shell(top), work
quite well. Moreover, the distance-dependent ver-
sion of the HF function, HF(sm), performs con-
siderably worse than its non-distance-dependent
analog, HF, although there are other differences be-
tween the two functions besides distance depen-
dence. In any case, smoothing of energy functions
is not a certain route to improved performance.

Figure 1. Distribution of RMS deviations from the X-ray
structure for different test sets for the protein 1r69. Figure 2. Distribution of Shellm energies for the differ-

ent test sets for the protein 1r69.
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Identification of native-like conformations

Table 4 shows the best Rank scores, average Q-
scores and average Z-scores for native-like struc-
ture identi®cation from our ensembles of plausible
structures. As one would expect, the discrimination
of native-like conformations is poorer than the dis-
crimination of X-ray structures for all functions. Es-
pecially interesting, however, is the performance of
the different functions relative to each other.

Here we ®nd the best performing functions to
be the Shell(top) and Shell(top)m functions with
average Q-scores of 2.21 and 2.10, respectively.
Although both these functions are reasonable per-
formers for X-ray structure identi®cation, they are
not the best. The VdW(HL)4 function, which ex-
celled at identifying X-ray structures, is still third
best with an average Q-score of 1.92. However, the
VdW(MJ)12 function, which also excelled, slips
markedly relative to the others (hQi � 1.33).

It is clear from Table 4 that the importance of dis-
tance dependence, per se, is less obvious for native-
like structure identi®cation. The best function,
Shell(top), is not distance-dependent, and two
other non-distance-dependent functions, Shell and
Contact(HL), do reasonably well with average Q-
scores above 1.5.

Ungapped Threading

Table 5 shows the results for the ungapped thread-
ing test. The ®rst row shows the percentage of se-
quences for which the correct structure is ranked
®rst in energy of all applicable substructures in the
database of 103 proteins. The second and third row

show the average Q-scores and Z-scores. Six of the
18 functions can be considered quite successful: the
Histogram, Shell, Shell(top), Shellm, Shell(top)m,
and HF functions all succeed more than 80% of the
time. Indeed, those sequences for which these func-
tions fail are almost all either membrane proteins,
polypeptides that are normally part of strongly
bound multisubunit proteins, proteins that have
large prosthetic groups, or small proteins that de-
pend strongly on disul®de bonds for stability.

The most interesting aspect of these results is how
they differ from the results found for our ensem-
bles of plausible conformations. The best function
in this test, the Shell(top)m, is reasonably good at
identifying X-ray structures from the plausible en-
sembles, and it was among the best at ®nding
native-like structures. On the other hand, the
VdW(MJ)12 and VdW(HL)4 functions, which were
superb at X-ray structure identi®cation and reason-
ably effective at native-like structure identi®cation,
are mediocre performers here. The Surface energy
function, although no better than the aforemen-
tioned VdW functions, is greatly improved relative
to its performance in the ensembles of plausible
structures.

The average Q-score and frequency of success are
perfectly rank-correlated for the top six performers.
These top performers also have the best (most
negative) average Z-scores, although the rank
correlation is lower. One anomaly is that the
HF function has a disproportionately favorable
average Z-score. The Histogram function, for
example, succeeds in identifying correct struc-
tures as often as the HF function and yet has

Table 3. X-ray rank from ensembles of plausible conformations

Contact Contact VdW(MJ) VdW(MJ) VdW(HL) VdW(HL)
Protein (MJ) (HL) VdW(MJ) VdW(HL) Surface Histogram 12 4 12 4

4rxn 29,184 10,154 49 324 285 12,277 3 6942 1388 2
4pti 126,900 129,987 286 5074 10,963 1488 4 30,719 4763 12,293
1r69 19,423 78 77 222 2939 2703 1 10,174 810 1
2cro 57,484 478 160 8 19,092 8 1 16,765 157 4
1sn3 55,387 16,067 2 8 31,000 6188 1 7609 61 2
1ctf 54,658 46 2 16 2592 1 1 10,095 118 1
3icb 141,032 234 1327 32 6965 1 3 40,007 201 1
1ubq 22,527 63 1 1 719 7 1 15,374 1 1

hQi 0.46 2.19 3.66 3.53 1.55 3.13 4.96 1.01 2.90 4.49

hZi ÿ0.21 ÿ1.85 ÿ3.95 ÿ2.53 ÿ1.78 ÿ2.91 ÿ3.98 ÿ1.27 ÿ2.34 ÿ3.23

Protein Shell Shell(top) Shellm Shell(top)m HF HF (sm) HF(stat) HF(stat)m

4rxn 41 16 85 31 253 13,791 1 2
4pti 473 627 246 161 17,811 17,441 105 42
1r69 131 227 158 30 201 7287 1173 4
2cro 84 495 103 85 228 36,340 7532 563
1sn3 610 469 314 370 7464 6153 1828 231
1ctf 9 3 1 1 472 14,292 14 1
3icb 1 1 1 1 42 31,021 1 1
1ubq 2 1 5 1 9 10,458 3 9

hQi 3.61 3.63 3.69 3.95 2.60 1.00 3.42 4.08

hZi ÿ3.65 ÿ3.84 ÿ3.46 ÿ3.96 ÿ4.15 ÿ1.31 ÿ1.81 ÿ2.31
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an average Z-score of ÿ4.05 as compared to
ÿ11.31 for the HF function.

Molecular dynamics generated ensembles

Our third test set consists of ensembles of confor-
mations generated by molecular dynamics simu-
lations at 298 K and 498 K for seven small proteins.
There are 1000 conformations in each set, one con-
formation for every picosecond of the one nanose-
cond simulations.

298 K conformations

The conformations generated by 298 K simulations
have mean RMS deviations of 1.72 AÊ from the
starting X-ray structures. One therefore expects
that these sets will be a fairly severe test. For the

most part this turns out to be true. Several func-
tions barely do better than chance, namely the
VdW(HL), Histogram, VdW(HL)12 and HF(stat)
energy functions.

Most surprising, however, is the fact that some
functions do quite well (Table 6). The Contact(MJ),
VdW(MJ), Surface, VdW(MJ)4, HF and HF(sm)
functions all have average Q-scores better than 1.5.
It is particularly interesting to note that the Surface
function does best of all. For the ensembles of
plausible conformations this function is a mediocre
performer. Figure 3 shows a plot of RMS deviation
versus Surface energy for the 298 K and 498K dy-
namics structures of ubiquitin (1ubq). In contrast is
Figure 4, in which the same plot is shown for the
Histogram energy function, a poor performer. The
much better performance of the Surface function
(Figure 3) is obvious in the striking correlation of

Table 5. Structure identi®cation from ungapped threading

Contact Contact VdW(MJ) VdW(MJ) VdW(HL) VdW(HL)
(MJ) (HL) VdW(MJ) VdW(HL) Surface Histogram 12 4 12 4

% Successes 9 44 25 27 64 82 42 12 8 64
hQi 1.61 2.57 2.16 1.79 3.12 3.42 2.60 1.77 0.82 3.26
hZi ÿ1.88 ÿ3.21 ÿ2.04 ÿ1.96 ÿ3.20 ÿ4.05 ÿ2.74 ÿ1.65 ÿ0.57 ÿ4.50

Shell Shell(top) Shellm Shell(top)m HF HF (sm) HF(stat) HF(stat)m

% Successes 86 87 89 90 84 61 45 64
hQi 3.59 3.63 3.65 3.65 3.56 3.21 2.98 3.27
hZi ÿ7.08 ÿ7.48 ÿ7.07 ÿ7.69 ÿ11.31 ÿ4.83 ÿ2.76 ÿ3.04

Table 4. Best native-like ranks from ensembles of plausible conformations

Contact Contact VdW(MJ) VdW(MJ) VdW(HL) VdW(HL)
Protein (MJ) (HL) VdW(MJ) VdW(HL) Surface Histogram 12 4 12 4

4rxn 2116 1 15 5 330 1840 100 57 2 2
4pti 3949 364 101 35 768 416 876 1480 445 106
1r69 1270 115 71 135 496 34 34 230 413 31
2cro 195 20 27 129 153 15 15 28 149 9
1sn3 16,239 122 149 3525 1141 7530 198 2614 5786 439
1ctf 24,156 28 98 28 2454 40 81 3,624 97 40
3icb 3538 86 533 2 373 6 16 842 6 1
1ubq 9895 46 18 22 22 182 32 4,100 55 6

hQi ÿ0.40 1.52 1.33 1.51 0.57 1.01 1.33 0.37 1.15 1.92

hZi 0.03 ÿ0.74 ÿ0.98 ÿ0.89 ÿ0.87 ÿ1.27 ÿ0.96 ÿ0.43 ÿ0.73 ÿ1.45

Protein Shell Shell(top) Shellm Shell(top)m HF HF (sm) HF(stat) HF(stat)m

4rxn 2 3 74 30 27 55 97 20
4pti 49 31 104 106 2468 10,288 1923 114
1r69 22 16 41 11 40 653 240 125
2cro 16 5 25 9 6 49 439 61
1sn3 47 4 47 11 42 1873 512 942
1ctf 91 9 1 1 2342 4241 5 3
3icb 6 4 1 1 22 547 3 44
1ubq 93 29 88 76 63 3,443 22 2

hQi 1.78 2.21 1.83 2.10 1.23 0.22 1.21 1.57

hZi ÿ1.53 ÿ1.63 ÿ1.54 ÿ1.74 ÿ1.51 ÿ0.59 ÿ0.81 ÿ1.04
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energy and RMS deviation. Also surprising is the
fact that the HF(sm) function comes in second,
beating the HF function by 0.47 in average Q-
score. For the ensembles of plausible conformations
and for ungapped threading the HF(sm) func-
tion is a distinctly poorer performer than the
HF function.

498 K structures

Conformations generated by molecular dynamics
at 498 K are much further on average from the
starting X-ray conformations than those from the
298 K simulations, with an average RMS deviation

from the X-ray structures of 5 AÊ . Moreover, at this
temperature the secondary structure elements are
partially unfolded. We would therefore expect that
these conformations will be less of a challenge to
the energy functions than the 298 K conformations.

Indeed they are. Table 7 shows that six energy
functions, Contact (MJ), VdW(MJ), Surface,
VdW(MJ)4, HF and HF(sm) all achieved average
Q-scores of 2.7 or better. Perhaps the most interest-
ing ®nding with this test set is the number of func-
tions that discriminate extremely poorly. The
VdW(HL) and VdW(HL)12 functions are even anti-
selective, so to speak. They consistently rate the
correct structures as among the highest in energy.

Table 6. X-ray ranks from 298 K dynamics ensembles

Contact Contact VdW(MJ) VdW(MJ) VdW(HL) VdW(HL)
Protein (MJ) (HL) VdW(MJ) VdW(HL) Surface Histogram 12 4 12 4

1ctf 635 393 380 880 12 128 352 346 778 355
1hdd 157 125 79 636 1 434 229 28 365 135
1pgb 64 126 7 1 1 407 147 16 1 2
1r69 1 15 19 640 3 1001 32 16 424 199
1ubq 1 12 2 341 3 930 129 5 205 233
4icb 171 438 1 333 1 397 330 1 925 14
8lyz 1 1 1 1001 1 1 41 1 1001 5

hQi 1.71 1.33 2.01 0.63 2.71 0.72 0.88 1.99 0.66 1.36

hZi ÿ2.13 ÿ1.80 ÿ2.63 0.16 ÿ3.07 ÿ0.20 ÿ1.08 ÿ2.91 0.46 ÿ1.49

Protein Shell Shell(top) Shellm Shell(top)m HF HF(sm) HF(stat) HF(stat)m

1ctf 806 858 955 748 748 27 654 418
1hdd 88 468 451 124 2 1 974 184
1pgb 420 810 319 438 173 191 5 1
1r69 194 472 271 390 88 1 346 7
1ubq 108 621 692 655 40 88 396 766
4icb 2 23 39 6 1 1 259 39
8lyz 1 1 1 1 1 1 962 828

hQi 1.27 0.81 0.85 1.03 1.72 2.19 0.57 1.13

hZi ÿ1.58 ÿ0.62 ÿ1.22 ÿ1.50 ÿ2.46 ÿ4.18 0.05 ÿ0.85

Figure 3. RMS deviation (in AÊ ) from the native structure
of ubiquitin (1ubq) as a function of Surface energy for
the 298 K (small points) and 498 K (large points)
dynamics conformations. The energy of the X-ray struc-
ture is shown as a small circle on the Y axis.

Figure 4. RMS deviation (in AÊ ) from the native structure
of ubiquitin (1ubq) as a function of Histogram energy
for the 298 K (small points) and 498 K (large points)
dynamics conformations. The energy of the X-ray struc-
ture is shown as a small circle on the Y axis.
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These two functions also do worse for the 498 K
ensembles than the 298 K ensembles.

Function similarities

The differential performance of the 18 energy func-
tions led us to wonder whether there was some ob-
jective way to identify similarities and differences
among the energy functions that were not obvious
from the de®nitions of the functions. To be more
precise, we noted at the beginning of Results that
the reference state used for parameter generation
and distance-dependence are two obvious charac-
teristics by which the energy functions can be
classi®ed. Are there any other less obvious simi-
larities among the functions?

We have attempted to answer this question, at
least partially, by mapping the energy functions to
points in two-dimensional space, using the corre-
lation in performance for different test sets be-
tween all pairs of functions as a distance metric.
The details of this procedure are described in
Methods. Figure 5 shows a plot of the positions of
the different energy functions in this two-dimen-
sional projection. The distance between two func-
tions in this space corresponds to the correlation in
performance between those functions over the
different test sets. The closer together two functions
are, the more highly correlated their performances.

The most obvious feature in Figure 5 is the cluster-
ing of the Histogram function and all the Shell-
style functions. A priori, one would expect the
Shell-type functions to be highly similar. The fact
that the Histogram function is so similar to the
Shell-type functions is interesting. Perhaps this, to-

gether with the fact that the various Shell functions
are better than the Histogram function in all our
test sets, is an indication that the additional com-
plexity of the Histogram function is unnecessary.
The Shell and Shell(top) functions have 210 par-
ameters while the Histogram function has 80,000.

Keeping in mind that the similarities shown in
Figure 5 are likely to be suggestive only, it is still
interesting to note that the (HL) and (MJ) style
functions are segregated. The broken curve shows
the boundary. All of the Shell style functions and
the Histogram function are also on the same side
of the line as the (HL)-derived functions. It is
notable that two functions are close to the dividing
line: VdW(MJ)12 and VdW(HL)4. These functions
are the best performers in the plausible ensemble
test.

We can also see two isolated pairs of functions that
are also highly similar: Surface-HF(sm) and Con-
tact(MJ)-VdW(MJ)4. The similarity of the Surface
and HF(sm) functions is to be expected. They are
both fairly simple measures of hydrophobic burial.
The other similar pair is dif®cult to understand.
The Contact(MJ) and VdW(MJ)4 functions are hy-
drophobicity-emphasizing functions (they have the
unfolded state as reference), but so are the
VdW(MJ) and VdW(MJ)12 functions, yet the latter
pair is quite dissimilar.

Discussion

In recent years there has been a plethora of studies
reporting empirical energy functions and their per-
formance under particular circumstances (see In-
troduction for references). Here we have presented

Table 7. X-ray ranks for 498 K dynamics ensembles

Contact Contact VdW(MJ) VdW(MJ) VdW(HL) VdW(HL)
Protein (MJ) (HL) VdW(MJ) VdW(HL) Surface Histogram 12 4 12 4

1ctf 1 18 1 804 1 15 1 1 934 36
1hdd 61 12 8 911 1 218 216 1 938 23
1pgb 2 23 1 240 1 897 10 2 863 14
1r69 1 2 1 730 1 797 1 1 871 2
1ubq 1 1 1 623 1 880 14 1 807 45
4icb 1 10 1 415 1 159 17 1 894 1
8lyz 1 1 1 1001 1 1 1 1 1001 1

hQi 2.70 2.28 2.87 0.21 3.00 0.92 2.18 2.96 0.04 2.14

hZi ÿ3.69 ÿ3.18 ÿ3.80 0.85 ÿ3.70 0.53 ÿ2.39 ÿ4.19 1.91 ÿ2.63

Protein Shell Shell(top) Shellm Shell(top)m HF HF(sm) HF(stat) HF(stat)m

1ctf 58 84 118 40 27 1 167 74
1hdd 79 271 408 130 1 1 644 13
1pgb 361 658 207 212 2 5 2 2
1r69 40 87 37 18 1 1 55 2
1ubq 57 182 393 129 2 1 41 62
4icb 2 3 6 2 1 1 5 1
8lyz 1 1 1 1 1 1 47 30

hQi 1.58 1.30 1.29 1.61 2.71 2.90 1.00 2.02

hZi ÿ2.25 ÿ1.69 ÿ1.68 ÿ2.15 ÿ4.24 ÿ5.64 ÿ1.64 ÿ2.43
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the most comprehensive examination of different
energy function classes to date, using three comp-
lementary test sets. The most remarkable ®nding is
that energy functions designed for one purpose do
not necessarily work well for different purposes.
Functions that we found to be effective at discrimi-
nating X-ray structures from ensembles of plaus-
ible conformations (similar to the kinds of
conformations likely to be found in ab initio folding
simulations) are found here to be less than ideal
for picking out correct sequence-structure matches
in ungapped threading tests. We also ®nd that
some functions that are effective for the ungapped
threading problem, the HF function for instance,
are considerably less effective at ®nding X-ray
structures in the ensembles of plausible confor-
mations. The same inconsistency is found for iden-
tifying correct structures from the dynamics
ensembles. The VdW(HL) function, which is
reasonably good at identifying X-ray structures
from the ensembles of plausible conformations, is
actually counter-selective for ®nding X-ray struc-
tures from the dynamics ensembles.

The lesson to be learned from this ®ckle behavior
is that the whole business of energy function de-
sign is extremely sensitive to the targeted problem
domain. Different problems require different func-
tion characteristics.

What makes functions work (or not work)?

Although it useful to know which kinds of func-
tions work well in different problem domains, it
would be much more informative if one could also
know why. To do this at least partially we ®rst ask
the question, what are the common characteristics
of functions that do well for each of the test sets?

For identifying X-ray structures from the ensem-
bles of plausible conformations, the two best func-
tions are VdW(MJ)12 and VdW(HL)4, both of
which are distance-dependent and have two inter-
acting centers (corresponding to the Ca and side-
chain). Provisionally we can say that those two
characteristics are important. However, some other
distance-dependent functions, VdW(MJ)4 and
HF(sm) for example, are poor performers. What,
then, is there that distinguishes the VdW(MJ)12
and VdW(HL)4 functions? In our previous study
(Park & Levitt, 1996) we found that combining the
VdW(MJ) and VdW(HL) functions gave a com-
bined function which performed extremely well
(essentially as well as either the VdW(MJ)12 or
VdW(HL)4 functions of this study). Our conclusion
then was that the VdW(MJ) function overempha-
sized and the VdW(HL) function underemphasized
purely hydrophobic interactions. The balance
between the hydrophobic and residue-speci®c
components was critical for function performance.
We think that something similar happens when

Figure 5. Projection of the corre-
lations of energy function perform-
ance onto two dimensions. The
broken curve represents a hypothe-
tical dividing line between func-
tions that emphasize hydro-
phobicity and those that do not.
The scale of this plot is the same
for both axes but are in all other
ways arbitrary.
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the functional forms of the VdW functions
change. Using the A/r12-B/r6 functional form for
the VdW(MJ)12 function causes interactions at
longer distances to be de-emphasized. Using the
A/r4-B/r2 functional form for the VdW(HL)4 func-
tion causes interactions at longer distances to have
relatively greater weight. Since the number of
interactions between residues increases at long dis-
tances, one expects that those interactions will be,
on average, less residue-pair speci®c. Each speci®c
interaction at long range will have a smaller frac-
tional contribution to make to the total energy. A
concrete example may make this reasoning clearer.
Consider two on/off contact functions, the ®rst of
which counts residues as contacting if they are
within 6 AÊ of each other, the second if they are
within 10 AÊ . The average number of residues in
contact with any particular residue will be �2.8
for the ®rst function, the average number of
neighboring residues within 6 AÊ in our database.
For the 10 AÊ cutoff function the average number
of contacts for any particular residue is �14.9.
One can see that the residue speci®city of inter-
actions will be lower for the 10 AÊ cutoff since the
fractional contribution of any speci®c contact is
only 1/14.9 compared to 1/2.8 for the 6 AÊ cutoff.
Functions that weigh distant interactions more
heavily, like the VdW(HL)4 function, will there-
fore reward general hydrophobic burial more
strongly and speci®c residue-residue interactions
more weakly. Conversely, functions that count
distant interactions less, like the VdW(MJ)12 func-
tion, will weigh residue-speci®c interactions more
strongly and general hydrophobic burial more
weakly. Some further weight is lent to this hy-
pothesis by the observation (in Figure 5) that the
VdW(HL)4 and VdW(MJ)12 functions are most
similar in their performance pro®le of all
VdW(MJ) and VdW(HL) pairs.

In the case of identifying native-like tertiary folds
from the ensembles of plausible conformations,
different factors are important. Here the value of
distance dependence and Ca backbone dependence
are not really evident. The VdW(HL)4 function is
still a good performer (third best of all), but the
VdW(MJ)12 function falls back and is just an
average discriminator. The best functions are the
Shell(top) and Shell(top)m functions, the latter dis-
tance-dependent and the former not. Overall, it ap-
pears that additional complexity does help
somewhat, as the Shell function was the weakest
of the Shell-type functions. However, the Histo-
gram function, which has far more parameters
than even the most complex Shell function, under-
performed even the simplest Shell function, sup-
porting our hypothesis that additional complexity
does not necessarily improve performance.

The fact that Ca interactions do not seem as im-
portant for near-native discrimination, compared
to X-ray structure identi®cation, may re¯ect the
ability of the VdW style functions to identify subtle
structural features found in X-ray structures but
not in native-like folds, since the latter will always

have signi®cant regions of local geometry atypical
of real proteins. b-Strands, in particular, are not
represented well by the four-state models used to
generate the ensembles of plausible conformations
(Park & Levitt, 1995). The diminished importance
of distance dependence may be attributable to the
same causes. The relative insigni®cance of the bal-
ance between hydrophobicity and residue-speci-
®city in native-like identi®cation is more dif®cult
to understand. Perhaps native-like structures are
simply too far from the correct structures for such
effects to be seen.

When we turn to the ungapped threading test we
®nd that the balance between distance dependence
and hydrophobicity does not appear to be the de-
termining factor. It is true that most of the VdW
functions are better than the contact functions, and
that the VdW(MJ)12 and VdW(HL)4 functions are
the best of the VdW class, showing that these fac-
tors do seem to help. However, among the very
best performers are the Shell and Shell(top) func-
tions, neither of which are distance-dependent. The
use of Ca centers in energy calculations seems to
be counter-productive. Among the top performers,
only the VdW(HL)4 function uses them. This ob-
servation is consistent with our explanation of the
value of Ca centers for X-ray structure identi®-
cation from the ensembles of plausible confor-
mations. When segments of the sequence by
chance are mounted upon their native secondary
structure, many models are locally very similar to
the correct structure, and using Ca atoms as an in-
dicator for a native-like backbone is probably un-
necessary. Furthermore, the superiority of the Shell
function (a contact function without Ca centers)
over the Contact(MJ) and Contact(HL) functions
suggests that Ca centers are detrimental to a func-
tion's performance in the ungapped threading test.
In summary, it appears that no function can simul-
taneously discriminate native structures from those
that are native-like in their overall fold (i.e. the
plausible ensemble set) and those that are native-
like in local conformations (i.e. the ungapped
threading set) because of the presence (or absence)
of Ca interacting centers.

Understanding what function characteristic is im-
portant for successful discrimination of correct
structures from the dynamics ensembles is much
more straightforward. For the most part those
functions that emphasize hydrophobic interactions
have the best discriminating power. The function
that is best at identifying the correct structure from
the 298 K ensemble is the Surface function, fol-
lowed fairly closely by HF(sm), VdW(MJ) and
VdW(MJ)4. Several functions are extremely good
discriminators for the 498 K ensembles. We still see
that the best functions, in general, are those that
have large hydrophobic components, such as the
VdW(MJ), Surface, VdW(MJ)4, HF and HF(sm)
functions. In the MD test, the HF(sm) improves
upon the HF because its distance-dependent nature
circumvents a problem associated with a ``hard
cutoff'' in de®ning contacts: many of the near-
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native conformations record favorable H-H con-
tacts that are absent in the native structures
(Huang et al., 1996). The weakest of all the func-
tions include the VdW(HL) and VdW(HL)12 func-
tions, which de-emphasize hydrophobicity the
most of all the functions.

Why, then, does a strong hydrophobic component
work so well for these dynamics ensembles? The
MD simulations that generated these structures
tended to expand the proteins relative to the start-
ing X-ray structures. For instance, the radius of
gyration for a 298 K structure increased by 2 to 3%,
on average (data not shown). It is remarkable that
simple functions such as the Surface and HF(sm)
functions can detect these relatively small errors in
the simulations.

Molecular expansion creates problems for other
functions, however. Distance-dependent knowl-
edge-based functions such as the Histogram func-
tion suffer from their use of statistics gathered
from proteins of all sizes. Because the MD test set
only comprises small proteins, the increase in inter-
residue distances associated with molecular expan-
sion enhanced the scores of the decoys. When our
parameter set for the Histogram, Shellm, and
Shell(top)m functions were recompiled using only
small proteins, the native fold rank scores im-
proved for these functions, though not to the level
of the hydrophobicity-emphasizing functions (data
not shown). This phenomenon underscores the im-
portance of proper compilation of parameter sets
when using knowledge-based energy functions
(Thomas & Dill, 1996).

Conclusions and future directions

This study has determined that functions that
work well in one problem domain do not necess-
arily work well in others. Beyond this main con-
clusion, a number of other principles have been
suggested. First, extraordinarily simple functions
often work better than more complex functions:
our results warn that investigators in structure pre-
diction should be wary of additional complexity in
their energy functions; it is often unnecessary and
sometimes acts as a positive hindrance. Second,
although the hydrophobic effect is certainly the lar-
gest force de®ning protein structure, it is not the
only one: pairwise interactions do make a differ-
ence. Third, it is dif®cult for a single energy func-
tion to be effective at recognizing native-like
features at both the local, secondary structure level
and the global, tertiary structure level.

What are the practical implications for protein
structure prediction? When attempting fold recog-
nition (gapped threading), one should avoid the
use of Ca interaction centers in addition to a virtual
centroid coordinate. In the context of ab initio fold-
ing, where minimization of a target function pro-
duces a set of low-energy candidates, the data
from the plausible ensembles suggest that there are
several good choices, including the VdW(HL) and
the Shell-type functions. Even though none of the

functions can place all the near-native folds ahead
of all the non-native folds on the score-sorted list,
using one of the better functions as a ®lter will in-
crease the effective concentration of near-native
folds in the low-energy subset. Since some func-
tions (e.g. VdW(HL)4 and VdW(MJ)12) place the
native structure at an energy minimum with re-
spect to the entire ensemble, it is possible, in prin-
ciple, to couple these energy functions with a
suitable search strategy to attain the native fold
from the near-native folds in the subset obtained
from the initial screen. The results from the mol-
ecular dynamics simulations suggest that functions
that do not emphasize hydrophobicity should be
used with caution in the late stages of a folding
simulation since the ®nal structures may not be
suf®ciently compact. Data from the MD test also
highlighted another general principle: depending
on the context, one should take protein size into
account when compiling parameters for database-
derived distance-dependent functions.

Methods

Database and test sets

Parameters for the various energy functions examined in
this study were derived from the same database of well
resolved X-ray structures described in our previous
work (Park & Levitt, 1996). Ensembles of plausible sec-
ondary structure constrained protein conformations were
generated for eight small proteins (Park & Levitt, 1996).
Ungapped threading was performed on a set of 103 pro-
teins described in earlier work (Huang et al., 1995). Two
sets of 1000 conformations each for seven small proteins,
were generated by molecular dynamics simulation at
298 K and 498 K (Huang et al., 1996). The functions
examined in this study are summarized in Table 1 and
the test sets outlined in Table 2. All protein structures
and their identi®ers were taken from the Brookhaven
Protein Data Bank (PDB; Bernstein et al., 1977).

Energy functions

The Contact(MJ), Contact(HL), VdW(MJ), VdW(HL),
Surface and Histogram energy functions have been de-
scribed (Park & Levitt, 1996). The HF or hydrophobic ®t-
ness function has also been described in detail (Huang
et al., 1995).

A major part of this study has been an examination of
how changes in various energy functions effect discrimi-
nation for the different test sets. To that end, we intro-
duce four new energy functions which are variants of
the VdW energy functions, one which is a variant of the
HF function, two which are empirically derived hydro-
phobic ®tness functions, and four new contact potentials
whose parameters are calculated differently from the
previously described contact energy functions.

Contact(MJ), Contact(HL), VdW(MJ), VdW(HL) functions

The Contact(MJ) and Contact (HL) functions are on/off
potentials of mean force derived from the frequencies of
residue-residue contacts in a database of known protein
structures. The Contact(MJ) function is derived similarly
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to those by Miyazawa & Jernigan (1985, 1996). The open,
unfolded state is the reference for this potential. The
Contact(HL) potential is derived similarly to that by
Hinds & Levitt (1992, 1994). The compact, randomly
mixed state is the reference for this potential. Both the
Contact potentials treat proteins as being constructed
from 20 interacting centers, the 19 different side-chains
(all residues except glycine) and a Ca backbone center.
Both functions count contacts in the database of protein
structures as those pairs of residues which have constitu-
ent atoms within 4 AÊ of each other.

The VdW(MJ) and VdW(HL) functions take the discrete
interaction energies of the Contact(MJ) and Contact(HL)
functions and ®t them to a van der Waals-like functional
form (see below).

Surface function

The Surface energy function is a crude estimate of the ex-
posed hydrophobic surface area that treats each residue
side-chain as a sphere whose volume is proportional to
its atomic volume. Ca centers are also treated as simple
spheres but are only used for determining the burial of
side-chains (Park & Levitt, 1996). The exposed surface
area of the side-chain is determined using the approxi-
mate method of Wodak & Janin (1980).

Histogram function

The Histogram energy function is a potential of mean
force which, instead of using a single interaction energy
for each residue pair type, assigns distinct energies to
different separations in space and sequence (Park &
Levitt, 1996; Sippl, 1990). This function's reference state
is essentially the compact, randomly mixed state (but see
Godzik et al.,1995).

VdW(MJ)12, VdW(MJ)4, VdW(HL)12 and
VdW(HL)4 functions

The VdW(MJ) and VdW(HL) functions are derived from
the Contact(MJ) and Contact(HL) functions. They have
the form:

E �
XN

i�1

XN

j�1�2

Aij

r8
ij

ÿ Bij

r4
ij

where N is the number of interacting centers in the pro-
tein, rij is the distance between interacting centers i and
j, and Aij and Bij are parameters which depend on the
types of centers i and j. The VdW(MJ)12 and
VdW(HL)12 functions are also derived from the Con-
tact(MJ) and Contact(HL) functions, respectively but
have the functional form:

E �
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The VdW(MJ)4 and VdW(HL)4 functions are similarly
derived with the functional form:

E �
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ij

The VdW(MJ)12 and VdW(HL)12 functions have a
sharper distance dependence than the original VdW
functions, whereas the VdW(MJ)4 and VdW(HL)4 func-
tions have a smoother distance dependence.

Shell and Shell(top) functions

All empirical energy potentials use one of two methods
for deciding whether a pair of residues (or parts of resi-
dues) is in contact in a database of X-ray structures; this
assignment is necessary for the statistical determination
of energy parameters. The one used for the Contact and
VdW functions regards a pair of residues as contacting if
any one atom from one residue is within 4 AÊ of any one
atom from the other residue. Hinds & Levitt (1992, 1994)
used this technique also, using a 4.5 AÊ cutoff to derive
their contact potential. For the VdW functions this meth-
odology has the distinct advantage of allowing a simple
method of estimating average contact distance between
residue types (Park & Levitt, 1996). The other, and more
common way, of determining residue contacts is by
using a strict distance cutoff between a pair of side-chain
centroids. In this study we generate four simple contact
functions using this method. The functional form for the
®rst of these potentials, which we designate the Shell en-
ergy function, is:

E �
XN

i�1

XN

j�1�2

eij�if rij < 7:0 �A�

where N is the number of residues in the protein, rij is
the distance between the side-chain centroids of residue i
and j, and the eij are contact energies derived using a 7 AÊ

cutoff to de®ne contacts in database proteins rather than
atom-atom inter-residue contacts. The eij parameters are
calculated as:

eij � ÿln�nij=nexpij�
where nij is the number of contacts closer than 7 AÊ be-
tween residues of types i and j found in the database,
and nexpij is the expected number of contacts between re-
sidues of types i and j. The expected number of contacts
of each type is calculated as:

nexpij �
X

p

Npc

XNp

k�1

X
�l51�\�l4Np�\��l<kÿ1�[�l>k�1��

1�if k is of type i and l is of type j�

�Np ÿ 2��Np ÿ 1�
where Npc is the total number of contacts found in pro-
tein p and Np is the number of residues in protein p. This
expression calculates the expected number and kind of
contacts, protein by protein, taking into account that
nearest neighbors are excluded from contact. For all the
Shell type functions the Ca backbone centers are not
used.

The Shell(top) energy function is a variant of the Shell
function in which the expected number of contacts for
each residue pair type is calculated differently, namely
as:

nexpij �
X

p

Npc

XNp

k�1

fjlÿkj
X

�l51�\�l4Np�\��l<kÿ1�[�l>k�1��
1�if k � i and l � j�

�Np ÿ 2��Np ÿ 1�
where fjl-kj is the relative likelihood of contact between
two residues separated by l-k amino acids in sequence.
This relative likelihood is calculated from the database of
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known protein structures by:

f1 � nl

nexpl

where nl is the number of contacts between residues
separated by l amino acids in sequence over the en-
tire database, and nexpl is the number expected based on
assuming a random distribution of contacts, which is
calculated as:

nexpl �

XNp

j

XNp

k�j�2

1�if k ÿ j � l�

1
2 �Np ÿ 2��Np ÿ 1�

The contact energies calculated using this method are at
least partially corrected for the chain connectivity of
polypeptide. Thomas & Dill (1996) showed that not
taking chain connectivity into account results in sys-
tematic errors in energy parameters. The signi®cance of
these errors in discriminating correct from incorrect
structures is unknown; our current results show little to
distinguish the Shell and Shellm functions from the
Shell(top) and Shell(top)m.

Of course, the normalization scheme presented here is
not perfect. Ideally we would have liked to normalize
expected contact frequencies for contacts between resi-
due pairs of a given sequence separation using the un-
folded state as a reference. This is impossible since the
characteristics of this reference state are not known accu-
rately enough. For this function and the Shell(top)m
function described below, pseudo b-carbons located 3 AÊ

from the a-carbon were used, instead of side-chain cen-
troids. This choice makes the relative frequency of con-
tacts between residues separated by different distances
in sequence less noisy.

Shellm and Shell(top)m functions

The Shell and Shell(top) functions are not distance-
dependent. For them, a pair of residues are either
in contact or not. To address this possible de-
®ciency we have devised versions of the Shell and
Shell(top) energy functions which are, to some ex-
tent, distance-dependent. We designate them the
Shellm and Shell(top)m functions. The functional
form for both is:

E �
XN

i�1

XN

j�i�2

e6ij�if rij<6 A
� �

�
XN

i�1

XN

j�i�2

e7ij�if rij<7 A
� �

�
XN

i�1

XN

j�i�2

e8ij�if rij<8 A
� �

�
XN

i�1

XN

j�i�2

e9ij�if rij<9 A
� �

�
XN

i�1

XN

j�i�2

e10ij�if rij<10 A
� �

This is simply the sum of ®ve different Shell functions
using a different distance cutoff for each. The individual
edij parameters for the Shellm function are calculated

the same way as for the Shell function, and the edij

for the Shell(top)m function are calculated the same
as for the Shell(top) function. The overlapping nature
of the different contact energies which compose these
functions tends to give higher weight to contacts that
are near in space.

HF and HF(sm) functions

The hydrophobic ®tness (HF) score is an exceedingly fast
and simple energy function (Huang et al., 1995). Each
amino acid residue is reduced to a virtual side-chain cen-
troid 3.0 AÊ along the Ca-Cb vector and classi®ed as either
hydrophobic (H) or polar (P). The computation of the
HF score is as follows:

HF � ÿ

X
i

Bi

 ! X
i

�Hi ÿH�i �
 !

n2

where i is a hydrophobic (C, F, I, L, M, V, W) residue; Bi

is a burial term, evaluated as the number of residues
within 10 AÊ ; Hi is the number of contacts made with
non-polar side-chains (the seven hydrophobic residues
plus Y), i.e. the number of non-polar centroids within
7.3 AÊ ; n is the number of hydrophobic residues (exclud-
ing Y) in the sequence; and Ho

i is the number of hydro-
phobic contacts expected on a random basis.

In order to address some of the problems associated
with on/off type potentials, we have modi®ed the HF
function to be distance-dependent. This continuous (or
smooth) version of the HF score (designated HF(sm)) is a
sigmoidal function weighted by a burial term:
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where Bi is de®ned as above; i and j are hydrophobic
residues (C, F, I, L, M, V, W); rij is the inter-residue dis-
tance (in AÊ ); s is the midpoint of the sigmoidal inter-
action curve, set at 7 AÊ ; and n is a parameter that
modulates the steepness of the curve, set at 10. Unlike
Huang et al. (1996), the Cb positions for both these func-
tions were computed as a functions of Ca atoms and not
from the crystal structures. Minor differences in the data
of Tables 5 to 7 and those found in Huang et al. (1995,
1996) re¯ect this procedural change, done for consist-
ency with our other ensembles.

HF(stat) and HF(stat)m function

The HF(stat) energy function is a purely environmental
function. That is, it does not depend on residue-residue
interactions but only on the structural environment of in-
dividual residues. The form for this function is:

E �
X
i�1

e7i�n7i�

where the e7i are functions, speci®c for each amino acid
type, of n7i, the number of neighboring residues nearer
than 7 AÊ . The e7i parameters are derived from our data-
base of known protein structures as:

e7i�n� �
ÿ ln �no: of times that residue type i

has n neighbors nearer than 7 A
� �

For this function distances between residues are calcu-
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lated between pseudo b-carbon atoms located 3 AÊ from
the a-carbon positions.

The HF(stat)m function bears the same relationship to
the HF(stat) functions as the Shellm and Shell(top)m
functions. Its functional form is:

E �
XN

i�1

e6i�n6i�

�
XN

i�1

e7i�n7i�

�
XN

i�1

e8i�n8i�

�
XN

i�1

e9i�n9i�

�
XN

i�1

e10i�n10i�

Projection of energy function correlations to
two dimensions

Although there are certain obvious correlations among
the various energy functions we test in this paper, based
either on their de®nitions, distance dependence, refer-
ence state, or performance, it is still desirable to have an
objective method for determining how similar different
energy functions are to each other. To this end we devel-
oped a simple strategy based on correlations in perform-
ance for pairs of energy functions over the different test
sets.

We started by calculating the correlation coef®cients
between the average Q-scores (see below) for each
test set over all pairs of energy functions. For this
purpose we treated native-like identi®cation and X-
ray structure identi®cation from our ensembles of
plausible conformations as separate data points. We
did the same for the 298 K and 498 K dynamics gen-
erated ensembles. Therefore there were ®ve Q-scores
for each energy function. What this procedure gave
us was a matrix of correlation coef®cients which each
ranged from ÿ1 to 1. What was needed was a
matrix of pseudo distances between pairs of energy
functions. Since correlation coef®cients are in some
sense analogous to dot products we transformed the
matrix of coef®cients to pseudo distances by taking
the arccos of each of them. This yielded a matrix of
distances all between 0 and p. We then took this
matrix of pseudo distances and found the set of two-
dimensional coordinates that best ®ts them in a least-
squares sense. We used conjugate gradient minimiz-
ation on the objective function:

F �
XN

i�1

XN

j�i�1

�dij ÿ rij�2

where dij is the pseudo distance between energy
functions i and j, and rij is the distance between the
two-dimensional coordinates of functions i and j. Mini-
mizations were calculated from 200 sets of random start-
ing coordinates. This is similar to the method use by
Levitt (1983).

Measures of performance

We measure the quality of discrimination of energy func-
tions with Rank scores, Q-scores, and Z-scores, all of
which have been described (Park & Levitt, 1996; Huang
et al., 1995, 1996). The Rank score is simply the energy
rank of a target structure within a collection of other
structures. The Q-score is a normalization of the Rank
score which estimates the likelihood of obtaining a given
rank relative to chance, taking into account the number
of structures and the number of target structures within
the collection. A Q-score increase of one corresponds to a
tenfold improvement in discrimination. Placing a fold
randomly in a score-sorted list corresponds to an aver-
age Q-score of 0.3. Z-scores are the extent to which ener-
gies depart from the mean energy (in standard deviation
units) of a particular collection of structures. Thus, an
average Z-score of zero is expected by chance.
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