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ABSTRACT The ab initio folding problem
can be divided into two sequential tasks of
approximately equal computational complex-
ity: the generation of native-like backbone folds
and the positioning of side chains upon these
backbones. The prediction of side-chain confor-
mation in this context is challenging, because
at best only the near-native global fold of the
protein is known. To test the effect of displace-
ments in the protein backbones on side-chain
prediction for folds generated ab initio, sets of
near-native backbones (I 4 Å Ca RMS error)
for four small proteins were generated by two
methods. The steric environment surrounding
each residue was probed by placing the side
chains in the native conformation on each of
these decoys, followed by torsion-space optimi-
zation to remove steric clashes on a rigid back-
bone. We observe that on average 40% of the x1
angles were displaced by 40° or more, effec-
tively setting the limits in accuracy for side-
chain modeling under these conditions. Three
different algorithms were subsequently used
for prediction of side-chain conformation. The
average prediction accuracy for the three meth-
ods was remarkably similar: 49% to 51% of the
x1 angles were predicted correctly overall (33%
to 36% of the x112 angles). Interestingly, when
the inter-side-chain interactions were disre-
garded, the mean accuracy increased.Aconsen-
sus approach is described, in which side-chain
conformations are defined based on the most
frequently predicted x angles for a given
method upon each set of near-native back-
bones. We find that consensus modeling, which
de facto includes backbone flexibility, im-
proves side-chain prediction: x1 accuracy im-
proved to 51–54% (36–42% of x112). Implica-
tions of a consensus method for ab initio
protein structure prediction are discussed. Pro-
teins 33:204–217, 1998. r 1998 Wiley-Liss, Inc.
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INTRODUCTION

The ab initio protein folding problem, when solved
in its entirety, considers as input only the sequence
information, and provides as output an all-atom
model of the protein. Because an average-sized pro-
tein comprises thousands of atoms, the conforma-
tional space one must search to find its native
conformation is astronomically large, making this
task computationally impossible.1 As one approach
to circumvent this problem, investigators have di-
vided the protein folding problem into two separate
and more tractable tasks of roughly equal complex-
ity,2 namely defining the backbone conformation and
positioning the side chains on this backbone. A
stepwise solution is desirable since the combinato-
rial complexity of the entire problem is merely
additive for the two steps, rather than multiplica-
tive. For the first problem, i.e. definition of the
overall fold of the protein, so-called ab initio folding
methods normally start with a random or extended
chain conformation and search for a native-like
backbone trace. The search space associated with
the backbone is reduced by constraining atoms to a
lattice3–8 or through discretization in torsion
space.9–19 Furthermore, the degrees of freedom asso-
ciated with a side chain are often neglected by
defining a ‘‘center of interaction’’ positioned at the Ca
atom or at a virtual centroid location.20 When side
chains are used explicitly in the folding simulation,
they mainly serve to drive residue-specific or chemi-
cal group specific energy functions, in contrast to the
all-atom force fields used in molecular simula-
tion.21,22,23 Side-chains aid ab initio folding methods
by enforcing excluded volume constraints on the
backbone, but their final conformations are not
considered explicitly, and only the accuracy of the
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backbone with respect to that of the target structure
is measured. Homology modeling is another ap-
proach to the problem of generating the backbone of
a protein. It entails that a related structure be
available as a starting point for the all-atom model-
ing of the target. In that case, the backbone of the
homologue defines the fold of the unknown protein,
with possible gaps that are usually filled using a
library of fragments.24,25 Upon completion of this
first task in the folding problem, one now has a
backbone upon which the side chains may seek an
energetically favorable (ideally the native) combina-
tion of conformations. This modeling of side-chain
conformations corresponds to the second task in the
folding problem. If the generated backbone is suffi-
ciently close to the native structure, then side-chain
placement algorithms (recently reviewed in Refer-
ences 2 and 26) will presumably position the side-
chain atoms accurately. These search procedures are
often made more efficient by the use of side-chain
rotamer libraries.27,28,29

Current progress in ab initio folding algorithms
has allowed the generation of near native folds.
Levitt and co-workers30,31 describe a discrete-state
model restricted to four points in Ramachandran
space that can reproduce the native backbone to 2–4
Å root-mean-square (RMS) accuracy, even if these
near-native structures cannot be identified with the
exclusion of all the non-native folds.31,32 Others have
used simplified energy functions to drive the folding
of a polypeptide chain through torsion space in the
hopes of yielding near-native structures. Most at-
tempts have enforced native secondary struc-
tures.11,15,17 Accuracy within 4 Å of the native struc-
ture were achieved by Mumenthaler and Braun,15

who managed to fold helices into clusters of native-
like tertiary arrangements in 8 out of 10 test cases.
Likewise, Sun et al.17 reported similarly impressive
results in four out of ten simulations. Recently,
Simons et al.,19 using a method that assembles
fragments in the database, were able to fold small
proteins to 3–4 Å RMS error without prior knowl-
edge of the secondary structure, though complete
convergence towards a native-like fold was not
achieved.

How accurate must the backbones be in order for
side-chain packing methods to be effective? Chung
and Subbiah33,34 systematically explored the relation-
ship between backbone accuracy and the effective-
ness of a side-chain prediction algorithm.35,36 Specifi-
cally, they noted that when the backbone of a
homologous protein departs 2 Å RMS from the
experimentally-determined structure, the accuracy
of their algorithm approached that of a random
prediction. These baseline expectations are 22% for
x1 angles and 29% for x2 angles, using the criterion
that a given side-chain dihedral angle be predicted
within 40° of its corresponding native angle34 In a
later study, Tuffery et al.37 explored the same relation-

ship between side-chain prediction accuracy using
their method28,38 upon near-native backbones gener-
ated by Monte Carlo perturbation of the experimen-
tally-determined structure. For the buried residues,
they report ,70% accuracy in x1 prediction and
,65% in the x2 prediction, even when the mean
backbone RMS deviation is 2 Å. The extent to which
the different methods of generating these near-
native backbones affects the prediction accuracy is
unclear. Nevertheless, the outer limit of these stud-
ies (2 Å RMS from the native structure) is still
outside the reach of even the best ab initio methods.2

Not surprisingly, side-chain prediction was not
explicitly attempted in any of the ab initio studies
described above. It would therefore be useful to
evaluate side-chain prediction accuracy upon the
near-native folds generated by ab initio methods.
There are many reasons to be pessimistic that the
prediction would be any better than random. Ab
initio backbones present a stiff challenge for side-
chain modeling techniques beyond their relatively
high RMS deviation from the ideal structure. Con-
sider two backbones at 2 Å RMS from the native fold,
one generated ab initio and the other taken from a
homologue. The backbone from the homologue will
have a certain fraction of the residues identical to
that of the target structure;39 accordingly, the local
steric environment surrounding each side-chain to
be modeled will also be similar to that in the target.
Ab initio folds, on the other hand, do not have the
benefit of ‘‘sequence memory’’ to mold native-like
steric environments, since the excluded volume sur-
rounding each side chain is often implicit.19,30 More-
over, backbone subtleties that better accommodate
native side-chain packing are removed by idealized
secondary structures and/or restricted backbone tor-
sion angles. Buried residues are normally predicted
correctly at a higher rate than the surface2 when the
backbone is ideal; this is a result of the more
restrictive steric environment surrounding each resi-
due in the core as compared to the surface, where
residues are more labile. This tendency is also seen
in homology modeling experiments.33,34 It is unclear
whether ab initio backbones, because of the limita-
tions described above, will afford the same kind of
benefit to core prediction.

Here we take as starting structures the nearest-
native structures (, 4 Å RMS deviation) of four
small proteins gathered from two different ab initio
protocols.19,30 First, we assess the theoretical limits
of side-chain prediction methods in general by explic-
itly probing the steric environment surrounding the
side chains as constrained by fixed near-native back-
bone scaffolds. This is accomplished by first building
side chains in their native conformation upon each
near-native backbone, followed by energy minimiza-
tion of the side chains in torsion space. The deviation
from the starting conformation indicates how permis-
sive the steric environments of the ab initio folds are.
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Next, side chains were positioned using three inde-
pendent, established methods. The first is SCWRL,
which minimizes the steric clash of backbone-
dependent rotamers.40 The second is SCMF, which
uses self-consistent mean-field theory to position
rotamers according to a van der Waals (Vdw) poten-
tial.41 The third algorithm, SegMod,25 pastes in
side-chain conformers directly from a structural
database in random order. Each approach is de-
scribed in more detail in Materials and Methods.

The average prediction accuracy for each method
towards each backbone set is evaluated and com-
pared against the expectation that one would be
correct by random prediction, defined in two ways.
The first, which we designate the ‘‘random chi’’
method, is the measure suggested by Chung and
Subbiah.34 A value between 2180° and 180° is ran-
domly chosen for each x angle in an unbiased and
independent fashion. If one allows a tolerance of
640°, the accuracy of this method would be 22% for
x1 and 0.22 3 0.29 5 6% for x112. The random
expectation for x2 (29%) is somewhat higher than
that of x1 because the distal parts of some side
chains are symmetric about x2. However, the exami-
nation of rotamer libraries shows a tendency of x
angles to assume standard values and the inter-
dependence of the various x values. Hence, we
suggest a second measure of random prediction,
which we call the ‘‘random rotamer’’ method. Assum-
ing that the rotamer approximation is sufficient for
all side chains to be predicted, the unbiased choice of
a x1 value from the three standard angles of g1, g2,
and t 27 produces a baseline expectation of 33% for x1
for 17 residues. For Pro, there are essentially only
two possibilities for x1. This results in a weighted
average of 34% over all x1 angles, assuming a
uniform distribution of the amino acids in a se-
quence. For x112, the random expectation is equal
to 1/n, where n is the number of rotamers with at
least two discrete x angles. The weighted average
over the Ponder and Richards library27 yields a
random prediction accuracy of 22% for x112.

Recent data from Tuffery et al.37 suggest that
when side-chain prediction is performed upon a
collection of near-native backbone conformations,
increased prediction accuracy results from taking
the most frequently predicted rotamer at each resi-
due position. Similarly, Shenkin et al.42 demon-
strated that consensus side-chain predictions on a
single fixed backbone also improves accuracy. We
discuss the implications of taking a consensus-based
prediction on side-chain prediction in the context of
ab initio folding.

MATERIALS AND METHODS
Generation of Near-Native Folds

Two ab initio folding protocols were used to gener-
ate full polypeptide backbones. The method by Park
and Levitt30,31 builds all backbones using only four

discrete points in Ramachandran space. The native
secondary structure is idealized and held fixed while
designated loop residues are permitted to explore all
four f,c possibilities in a combinatorial fashion. The
approach by Simons et al.19 starts with an extended
polypeptide chain and uses Monte Carlo torsion
moves with simulated annealing to generate com-
pact folds. The energy function is a Bayesian scoring
function. The move set for each residue is restricted
to those in a library of fragments of unrelated
protein structures with similar local sequences.19,48

For each protein, 500 low-energy, compact folds were
generated. For the purposes of side-chain prediction,
only structures with RMS deviation in the Ca posi-
tions of # 4 Å were saved. Models of 434 repressor
(1r69) and ubiquitin (1ubq) were built by the method
of Park and Levitt30,31 and models of Protein A
(1fc2:C) and the homeodomain protein (1hdd:C) by
the method of Simons et al.19 Full backbones were
constructed from the Park and Levitt folds (which
only had Ca atoms) by custom software developed in
the David Baker lab at the University of Washing-
ton.

Side-chain atoms were not present in the construc-
tion of any model save the Cb atom for the structures
generated by Simons et al.19 Thus these ab initio
backbones have no knowledge of the explicit volumes
or shapes of the side chains.

Optimization of Native Side-Chain
Conformations on Non Native Backbones

The native side-chain conformations were built
upon each ab initio backbone using custom software
developed in the Ponder lab. The side chains were
constructed using the x angles from the experimen-
tally-determined structures and the standard bond
lengths and angles used by the TINKER software
package (http://dasher.wustl.edu/tinker/). Energy
minimization was performed in torsion space via the
OPTIROT module of the TINKER software package
to a gradient of 0.1 (kcal/mole/radian) using the
CHARMM22 force field21 (and A. McKerell, personal
communication). OPTIROT employs the variable
metric optimization described by Davidon.49 Param-
eters involving charge interactions were neglected in
the minimization, and a distance cutoff of 12.0 Å was
enforced. All backbone torsion angles were fixed
during the minimization. Since the two methods for
generating the ab initio backbones did not account
for side-chain volume exclusion, building side chains
may result in severe clashes that can only be re-
moved by energy minimization with a severe displace-
ment cost. The importance of the minimizer itself on
defining these displacements was tested by perform-
ing a second round of minimization, in which ‘‘soft’’
VdW potentials were used: the Lennard-Jones term
was truncated at 10 kcal/mol. ‘‘Soft’’ VdW potentials
are common in side-chain prediction methods (see
below).
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Prediction of Side-Chain Conformation

A battery of different methods were applied to the
four sets of backbones in order to predict side-chain
conformations. Prediction algorithms vary in how
they discretize side-chain conformations, how they
model potential energy, and how they combine these
two considerations in a search strategy. Two of the
three restrict side-chain conformations to a rotamer
library.40,41 Of these two, the method of Bower et al.40

is the only one that uses a backbone-dependent
rotamer library. The third method borrows side-
chain conformations directly from a database.25 The
search strategies include combinatorial repacking40

and self-consistent mean-field theory.41 The method
by Levitt25 randomly selects residues to model and
uses a Boltzmann-weighted probability to choose the
side-chain conformation in the context of the back-
bone and the side chains already positioned. All
methods use truncated van der Waals energy to
soften the steric penalty associated with the imper-
fect modeling of the target side-chain conformation.
However, whereas two of the three use Lennard-
Jones potentials to model van der Waals forces, one
chooses a simpler functional form to model steric
energy.40 None of the energy functions model electro-
static interactions, hydrogen bonds, or interactions
with solvent. All three methods assume a fixed
backbone at the time of side-chain placement. The
method of Levitt,25 which utilizes energy refinement
of an average of ten independent initial structures,
permits restrained backbone motion in the final
modeling step.

For the homeodomain protein, Arg 18 was changed
to an alanine since this side-chain conformation was
not determined by X-ray crystallography (protein
data bank (PDB)53 entry 1hdd).

Evaluation of Side-Chain Accuracy

A predicted x angle was considered correct if it was
within 640° of its experimentally-determined value.
Some side chains have two identical symmetry-
related conformations about the x2 angle (Phe, Tyr,
Asp); only the lower of the two possible x2 values was
considered in the evaluation.

Consensus Modeling of Side-Chain
Conformation

For each set of model structures, x1 and x2 dihe-
dral angles were computed. Each x1 angle was
counted as g1, g2, or t, whichever was closest. Those
side chains that had the consensus x1 value were
then collected to determine the consensus x2 angle.
For Leu, Ile, Met, Glu, Gln, Lys, and Arg, the
procedure for x1 was repeated for x2. For residues
with sp2 hybridization at the gamma atom, a differ-
ent counting system was applied. For Trp, Asn, and
His, the consensus x2 angles were 0°, 90°, 180°, and
290°, based on values suggested by the litera-

ture.27,50,51 For Asp, Phe, and Tyr the consensus
values were 0° and 90° because of symmetry consid-
erations.

Designation of Buried and Exposed Residues

Computation of solvent accessibility for each side
chain was performed by the software NACCESS.52

Buried side chains were those that had relative
solvent exposure of 20% or less in the native struc-
ture only.

Assessing Prediction Variability: Computation
of Shannon Entropy

To evaluate the effect of prediction variability on
consensus modeling, the Shannon entropy was calcu-
lated for all residues with x angles.42 For a given x
angle of a given residue, the entropy of prediction S
is computed as:

S 5 2o
j

fj ln fj

where fj is the frequency of occurrence of a standard
x angle j.

RESULTS AND DISCUSSION
Generation of Native-Like Backbones

Details for structure generation protocols are dis-
cussed in Materials and Methods. Three of the four
are alpha-helical proteins; their PDB identifiers are
enclosed in parentheses: 434 repressor (1r69, 97
structures), the homeodomain protein (1hdd:C, 32
structures), and Protein A (1fc2:C, 177 structures).
The fourth is ubiquitin, which has both alpha helices
and beta strands (1ubq, 19 structures). Table I lists
the method of generation, the radius of gyration (RG)
and the mean RMS error for each of the four
proteins.

Torsion-Space Minimization of Native Side
Chains on Fixed Backbones

In general, side-chain prediction methods rely
heavily upon the resolution of steric clash for their
prediction of side-chain conformations, and this prin-
ciple is true for the three methods evaluated in this
study. It is therefore useful to probe explicitly the
steric environment created by the fixed backbone
template and evaluate its fitness for native side-
chain conformations. After energy minimization in
torsion space using the standard CHARM22 force
field without electrostatics, we observe the frequency
with which x angles depart from their ‘‘native’’
conformation by more than 640°. Thus an estimate
of the collective steric tolerance of the ab initio
backbone is obtained. Table I lists the average
fraction of x1 angles and x112 angles that remained
in their native conformations after resolution of
steric clashes.
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Overall, 60% of the side chains remained within
40° of their native x1, and 43% preserved their x112
dihedral angles. The corresponding values for the
buried residues (see Materials and Methods) was
somewhat lower (56% and 37%, respectively). The
minimized side chains did not settle into standard
conformations. x dihedral angles cluster around
three preferred conformations, g1, g2, and t, and
any move from one of these conformation to another
would result in a change of x values by 120°;
however, the distribution of angular displacement
for all residues did not show a peak at 120° (Fig. 1).
In comparison, steric minimization of side chains
upon native backbones did not result in a large
departure from the starting native side-chain confor-
mations (Table II). After energy minimization of the
side chains upon native scaffolds, 94% of the x1
values remained within 40° of the native starting
conformations, and 81% of the native x112 dihedral
angles were preserved. The homeodomain protein
(1hdd:C) exhibited somewhat higher displacements
from the native side-chain conformations. For the
buried residues, one sees a higher conservation in
the side-chain dihedral angles (95% and 93% for x1
and x112, respectively).

Building side chains on the ab initio backbones
resulted in severe clashes, which were removed by
energy minimization as described above, but at a
severe displacement cost. It is important to know,
however, what fraction of this displacement was due
to the potential energy function of the minimizer
itself. This was tested by modifying the van der
Waals component of the CHARMM force field to
mimic the energy functions employed by side-chain
prediction methods. The classic Lennard-Jones 6–12
potential was truncated at 10 kcal/mol and the
torsion-space optimization repeated. Table III shows
that when a softened potential was used, the side-
chains tended to stay closer to their original confor-
mations: an average of 77% of x1 angles and 62% of
x112 angle remained within 40°. We therefore con-
clude that the softer potential allows side-chain
prediction methods to place approximately-correct
rotamers in an environment that would otherwise be
inhospitable.

The results indicate that a protein scaffold gener-
ated without explicit side chains, that crudely mod-

els the correct number of interactions (Simons et
al.19) and are quantitatively (, 4 Å RMS error) and
qualitatively similar to the native structure,31 can-
not faithfully recreate the correct steric environ-
ments critical for side-chain prediction. Rather, plac-
ing side chains in their native conformations yields
extremely high steric energies, and they were often
driven from their starting conformations by more
than 40° by van der Waals repulsion in a typical
all-atom force field. The buried residues, which
typically are predicted with higher accuracy, appar-
ently face even a more demanding steric environ-
ment. Because the non-bonded terms in the force
field involve only van der Waals interactions, the
exposed side chains, which presumably face less

Fig. 1. Histogram of x1 angular displacement. Histogram of
absolute angular difference between the x1 angle of the native
structure and the predicted structures is plotted for 97 structures of
1r69 after torsion-space minimization. Electrostatic interactions
were not considered in the optimization.

TABLE I. Torsion-Space Optimization of Native Side-Chain Conformations UponAb Initio
Backbones, Based on the CHARMM VdW Potential†

Protein nStr 7RMS8 7RG8 7x18 7x1,28 B7x28 B7x1,28 Generation

1fc2:C 177 3.72 9.27 0.60 0.42 0.50 0.33 Simons et al.19

1hdd:C 32 3.51 11.33 0.63 0.48 0.71 0.48 Simons et al.
1r69 97 3.35 10.66 0.58 0.39 0.53 0.36 Park and Levitt31

1ubq 19 3.19 11.76 0.58 0.41 0.49 0.30 Park and Levitt
Average 0.60 0.43 0.56 0.37
†Columns marked with a ‘‘B’’ refer to prediction accuracy for buried residues, defined in Materials and Methods.
nStr 5 Number of structures; 7RMS8 5 average Ca RMS deviation (Å); 7RG8 5 average radius of gyration (Å).

TABLE II. Torsion-Space Side-Chain Optimization
Upon Native Backbones†

Protein 7x18 7x1,28 B7x18 B7x1,28

1fc2 1.00 0.83 1.00 1.00
1hdd:C 0.84 0.77 0.92 0.91
1r69 0.96 0.85 0.94 0.93
1ubq 0.94 0.80 0.94 0.86
Average 0.94 0.81 0.95 0.93
†Columns marked with a ‘‘B’’ refer to prediction accuracy for
buried residues, defined in Materials and Methods.
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steric stress, are less inclined to change conforma-
tion. The homeodomain protein (1hdd:C) has an
anomalously high deviation in its energy-minimized
side-chain positions. This result can be explained by
its relatively expanded structure: its amino-terminal
tail and carboxy-terminal helices have fewer than
expected tertiary contacts in the X-ray structure.
Consequently, its native radius of gyration of 11.3 Å
is greater than that of 434 repressor (1r69; 10.1 Å),
even though the latter protein has a longer sequence
(56 amino acids for 1hdd:C; 63 for 1r69).

The data presented above provide an upper limit
for expected side-chain prediction accuracies: on
average, a maximum of 78% of x1 can be correctly
predicted overall, if a ‘‘soft’’ Lennard-Jones function
is used to mimic VdW interactions. While this ideal-
ized upper-boundary does not strictly apply to side-
chain prediction protocols (see below), they do place
the prediction accuracy in its proper context.

Side-Chain Prediction on Ab Initio Backbones

Table IV and Figure 2 list the results for the three
side-chain prediction methods applied on our four
test proteins. Performance is evaluated in terms of
the percentage of x1 and x112 angles correctly
predicted within 40° of the native dihedral angles.
Buried side-chains (defined in Materials and Meth-
ods) are tabulated separately. Although the three
methods performed similarly in each test set, Seg-
Mod had the highest overall x1 accuracy (50%) and
SCWRL had the highest overall x112 accuracy
(36%). For buried residues, SegMod had the highest
overall prediction accuracy (54% and 44%, respec-
tively). The accuracy for the buried residues was
higher for SCWRL and SegMod, but was not necessar-
ily true on an individual basis (e.g. for 1r69). SCMF
performed less well in the core. The standard devia-
tions for each set of predictions are also listed in
Table IV. A typical standard deviation in the x1
prediction is 5% (6% for x112). For reference, the
results for self-modeling the four proteins by the
three algorithms is shown in Table V.

In light of the data showing that side chains in
their native conformation must change position to
accommodate their placement upon non-native back-

bones, it would seem that algorithms designed to
place side chains in their native conformation when
the backbone is ideal should fail. This expectation is
consistent with the degradation of prediction accu-
racy for backbones within ,2 Å RMS from the ideal
documented by earlier studies.34,37 Neither study
attempted side-chain placement upon backbones be-
tween 3–4 Å RMS from the ideal, as they did not
utilize backbones gathered from ab initio folding
experiments. Our idealized test case, in which we
start with the correct side-chain conformation and
relieve steric clashes, would indicate a best-case
scenario of 71% in the x1 predictions and 59% in
x112, given a perfect search method in effectively
continuous torsion space (for the buried residues).
Finally, the self-modeling experiments for the same
four proteins indicate that the intrinsic accuracy of
the methods ranges from roughly 65 to 75% for x1
(60 to 65% for x112) for the buried residues. The
factors that affect the intrinsic accuracy include
imperfections in the scoring functions, limitation in
the discretization of side-chain conformations (e.g.
rotamers), limitation in the quality of the native
structure itself, and search strategies that are not
guaranteed to find the global energy minimum. In
light of these results, we were pleasantly surprised
that the results from the SegMod prediction resulted
in a mean accuracy of 54% for x1 and 44% for x112
(for buried residues).

Moreover, this accuracy appears to be general:
SCMF, SegMod, and SCWRL, three completely differ-
ent approaches, performed very similarly. All meth-
ods were well above the x1 prediction accuracy of the
‘‘random chi’’ model (22%) and that of the more
stringent ‘‘random rotamer’’ model (34%). For x112,
these results exceeded the ‘‘random chi’’ expectation
of 6% and the ‘‘random rotamer’’ expectation of 22%.

There are at least two reasons why these predic-
tion methods are well suited to the problem of
side-chain placement upon non-optimal backbones.
First, the methods do not use a molecular force field
akin to CHARMM. Detailed all-atom force fields are
appropriate for molecular dynamics simulation be-
cause they model the many types of inter-atomic
interactions accurately. A hallmark of these poten-
tials is inter-atomic repulsion modeled by a classic
Lennard-Jones 6–12 function, which increases with-
out limit as the inter-atomic distance approaches
zero. Side-chain repacking algorithms have softened
this repulsive term, thereby alleviating the problems
associated with a rotamer representation of side-
chain conformations and an unyielding backbone. In
the three methods we tested, similar measures have
been taken to make these repulsive terms more
forgiving. SCWRL specifies atomic radii that are
smaller than those found in standard force fields and
a simplified steric energy function that is truncated

TABLE III. Modified Torsion-Space Optimization of
Native Side-Chain Conformations UponAb Initio

Backbones:Application of a Soft Lennard
Jones Potential*

Protein 7x18 7x1128 B7x18 B7x1128

1fc2:C 0.78 0.63 0.70 0.62
1hdd:C 0.76 0.66 0.78 0.62
1r69 0.81 0.62 0.74 0.61
1ubq 0.72 0.55 0.63 0.52
Average 0.77 0.62 0.71 0.59

*Columns marked with a ‘‘B’’ refer to prediction accuracy for
buried residues, defined in Materials and Methods.
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such that it cannot exceed a certain value as two
atoms approach other.40 Similarly, SCMF and Seg-
Mod employ truncated Lennard-Jones potentials.25,41

In addition to tailoring the energy function to the
task of side-chain placement on a fixed backbone,
prediction methods typically discretize the space to
be searched by means of a rotamer library. SCWRL
chooses from a sophisticated backbone-dependent
library, whereas SCMF is based on a more conven-
tional extension of the Ponder and Richards27 li-
brary. SegMod selects conformers already existing in
its database of protein structures. In any case, side
chains are restricted to discrete states, and the final
structure is a low-energy combination (if not the
global minimum) of these rotamers. Since the ab
initio backbones have departed from the ideal struc-
ture such that 40% of the side chains must rotate 40°
in the x1 angle, a rotamer approximation may in fact
regularize the side-chain conformation in many in-
stances. In other words, if side-chain dihedral angles
were only permitted to assume idealized values (e.g.
g1, g-, and t in the x1 angle) during energy minimi-
zation, it is likely that a greater fraction of residues
would have remained in their most native-like rota-
mer conformations. Since the x1 angle has only three
ideal values, an energy function would merely need
to report that the x1 associated with the native
structure resulted in less steric clash than the other
two x1 possibilities, irrespective of whether it itself
clashes or not. Support for this hypothesis is seen in
comparing results of a rotamer-based method37 and
a non-rotamer method35,36 in the challenge of side-
chain prediction upon backbones at 2 Å RMS from
the native. For buried residues, the rotamer method
yielded ,70% accuracy for the x1 angle (,65% for
x112 angle). The other algorithm, which explores
torsion space in fine 10° increments, only predicted
,50% of the x1 angles correctly and ,30% of the

x112 angles correctly,34 though the search methods
and test sets were different in the two studies.

Our data, which showed ,55% accuracy for x1
prediction of buried residues using backbones 3–4 Å
RMS from the ideal, is consistent with the trends
reported by the earlier rotamer-based study.37 More-
over, it approaches the idealized 60% x1 accuracy of
our energy minimization probe while remaining well
over the random success rate. Taken all together, our
data suggest that a softened energy function in
conjunction with a discrete-state representation can
be effective even when the global energy minimum is
not guaranteed because of limitations in the search
strategy.

Modeling Side Chains on Non-Native
Backbones: Which Interactions Should Be
Considered?

Positioning side chains on ab initio backbones that
did not include side-chain information upon construc-
tion is a challenging task. We have seen that the
native side-chain conformations do not fit in these
backbones since they induce large steric clashes.
Interestingly, removal of these clashes by energy
minimization resulted in greater angular displace-
ment for core residues than for exposed residues (see
Tables I and III). For ab initio side-chain prediction
on native backbones, core residues are usually better
predicted, a result of their making more contacts
with other side chains than exposed residues. The
situation is not as clear in the case of side-chain
prediction on non-native backbones: while both
SCWRL and SegMod perform better on core resi-
dues, SCMF performs poorly on the same residues
(see Table IV and Figure 2). To further investigate
these issues, side-chain prediction was performed
using only interactions between side chains and the
backbone for two different methods showing differ-

TABLE IV. Mean Side-Chain PredictionAccuracy for ThreeAlgorithms†

Protein Method x1 sd x112 sd B-x1 sd B-x 112 sd

1fc2:C SCWRL 0.51 0.06 0.31 0.06 0.55 0.15 0.55 0.19
SCMF 0.52 0.04 0.35 0.04 0.42 0.17 0.30 0.19
SegMod 0.49 0.06 0.29 0.06 0.53 0.13 0.56 0.20

1hdd:C SCWRL 0.53 0.05 0.40 0.04 0.61 0.10 0.41 0.09
SCMF 0.53 0.05 0.40 0.05 0.60 0.13 0.28 0.11
SegMod 0.53 0.06 0.39 0.05 0.65 0.11 0.40 0.09

1r69 SCWRL 0.49 0.06 0.38 0.10 0.42 0.09 0.29 0.14
SCMF 0.50 0.04 0.37 0.05 0.37 0.09 0.21 0.09
SegMod 0.49 0.06 0.37 0.07 0.48 0.09 0.43 0.10

1ubq SCWRL 0.44 0.04 0.34 0.05 0.45 0.09 0.36 0.09
SCMF 0.42 0.05 0.28 0.03 0.36 0.10 0.26 0.07
SegMod 0.49 0.04 0.27 0.06 0.49 0.08 0.38 0.13

Average SCWRL 0.49 0.05 0.36 0.06 0.51 0.11 0.40 0.13
SCMF 0.49 0.05 0.35 0.04 0.44 0.12 0.26 0.12
SegMod 0.50 0.06 0.33 0.06 0.54 0.10 0.44 0.13

†Standard deviations for each prediction set is indicated by ‘‘sd.’’ Columns marked with a ‘‘B’’ refer to prediction
accuracy for buried residues, defined in Materials and Methods.
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ent trends, SCMF and SCWRL. Results are shown in
Table VI and Figure 2.

The accuracy with respect to the native structure
was usually higher when the inter-side-chain inter-
actions were ignored rather than included. This
tendency is true for both exposed and buried resi-
dues for both methods. Hence SCWRL and SCMF
only differ in the extent to which non-native inter-
side-chain interactions displace side chains from
their conformations obtained from interactions with
the backbone only. The difference in the VdW poten-
tials used in both methods is a good explanation for
this discrepancy: while both methods flatten the

steric potential at 10 kcal/mol, the potential in
SCMF retains the sharpness characteristic of the
Lennard-Jones 6–12 function41 while SCWRL uses a
softer potential.40

Consensus Modeling of Side-Chain
Conformations

The key to consensus modeling is that ab initio
methods can generate many folds clustered near the
native fold but slightly different from each other.15

Thus, each individual fold models most of the back-
bone such that accurate side-chain placement can
occur, while other parts are less well-modeled. In a

Fig. 2. Side-chain prediction accuracy on native and non-
native backbones of four small proteins. Prediction of side-chain
conformation for 1fc2:C, 1hdd:C, 1r69, and 1ubq based on three
different methods: SCWRL (A),40 SCMF (B),41 and SegMod (C).25

Results are provided for both x1 and x112, for all residues and for
core residues only. A predicted torsion angle x is considered
accurate if it lies within 40° of its value in the native conformation. A
residue is considered buried if it has less than 20% relative
accessible surface area. For SCWRL and SCMF, the fraction of

side-chain torsion angles predicted correctly for five different
prediction schemes are shown: prediction on the native backbone,
the mean accuracy observed for a collection of decoy structures
when considering interactions with the backbone and other side
chains, the mean accuracy observed when considering only
backbone interactions, and the two consensus accuracies corre-
sponding to the alternative sets of interactions considered. Side-
chain prediction based on backbone interaction alone was not
available for the SegMod procedure.
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collection of near-native folds, it may be that the
errors in the predicted side-chain conformations are
distributed differently on each backbone. When this
happens, taking the consensus then masks the back-
bone-specific errors, thereby improving the overall
prediction. However, the consensus approach breaks
down if each individual backbone in the collection is
so dissimilar from the others, and from the ideal
structure, that each correctly predicted subset of
residues is different.

For each near-native set of backbones, the most
frequently predicted x1 angle is taken as the consen-
sus prediction. Likewise, the consensus x2 is the
most frequently predicted x2 angle in the set of side
chains with the consensus x1 angle. The accuracy of
each consensus prediction is shown in Table VII and
Figure 2.

Using SCWRL, the mean consensus accuracy over
all four proteins was 53% for x1 and 42% for x112,

slightly higher than the corresponding values for
both SegMod and SCMF. Consensus prediction failed
to maintain the average prediction accuracy for only
one protein (1fc2, for all three methods). For the
other three proteins, SCWRL and SegMod improved
upon the mean prediction accuracy by taking the
consensus. The consensus SCMF prediction did not
show consistent improvement relative to the mean.
Consensus modeling tended to perform better for the
buried residues. The consensus prediction by SCWRL
had the highest x1 accuracy (56%), though all three
methods were over 50%. The best x112 consensus
predictions was by SegMod at 51%.

Consensus modeling was similarly performed for
the models obtained by applying only the interac-
tions between side chains and the backbone. This
resulted in an improvement in the accuracy of the
prediction compared to the average over the set of
decoys, but this improvement was less than that of

Figure 2. (Continued.)

212 E.S. HUANG ET AL.



the consensus modeling with all interactions consid-
ered. Even though the improvement was somewhat
less, the predictions themselves were comparable to
the best consensus predictions after taking into
account all interactions. Consensus SCMF results
from backbone-only predictions yielded 54% x1 accu-
racy (60% in the core) on average, both of which are
the highest of any method. This result is undoubt-
edly a function of the accurately positioned side
chains already present in the models prior to taking
a consensus.

Because modeling with only backbone interactions
involves placing each side chain independently of the
other side chains, the variability in a given side-
chain prediction is less than the corresponding case
when inter-side-chain interactions apply. The rela-
tionship between prediction variability and the poten-
tial benefit of taking a consensus is seen in the
limiting case where every protein predicts an identi-
cal set of side-chain conformations, precluding the

TABLE V. Side-Chain Placement Upon Native
Backbones†

Protein Method 7x18 7x1,28 7Bx18 7Bx1,28

1fc2:C SCWRL 0.67 0.44 0.83 0.80
SCMF 0.64 0.42 0.50 0.20
SegMod 0.56 0.31 0.67 0.60

1hdd:C SCWRL 0.59 0.43 0.67 0.55
SCMF 0.57 0.45 0.92 0.64
SegMod 0.59 0.48 0.67 0.64

1r69 SCWRL 0.69 0.51 0.61 0.43
SCMF 0.65 0.54 0.72 0.64
SegMod 0.61 0.54 0.67 0.71

1ubq SCWRL 0.69 0.52 0.83 0.79
SCMF 0.68 0.44 0.83 0.79
SegMod 0.62 0.41 0.61 0.50

Average SCWRL 0.66 0.48 0.74 0.64
SCMF 0.64 0.46 0.74 0.57
SegMod 0.60 0.44 0.66 0.61

†Columns marked with a ‘‘B’’ refer to prediction accuracy for
buried residues, defined in Materials and Methods.

Figure 2. (Continued.)
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possibility of improvement. In contrast, the addition
of inter-side-chain interactions forces an increase in
the sampling of side-chain conformations compatible
with a rough tertiary fold, thereby allowing the
consensus approach to improve upon the average
prediction. Table VIII lists the variability for all
predicted x1 and x2 angles in a set of folds. Each
value in the table is the average Shannon entropy for
a given x angle over all residues in that protein that
have the particular x angle associated with them.
Clearly, the backbone-only predictions are less vari-
able overall than the predictions involving full inter-
actions. Moreover, the somewhat lower variability
seen in both full and backbone-only interactions for
SCMF (Table VIII) explains why consensus modeling
does little to aid this particular prediction method.

In our test set of four proteins, three out of the four
consensus predictions were generally higher than
the corresponding average prediction accuracy. Only
the consensus modeling of Protein A (1fc2:C) failed to
improve upon the average accuracy with any consis-
tency. However, because of the high mean RMS error
of 1fc2 backbones (3.72 Å) this result is not surpris-
ing because of reasons discussed above. In fact, if one
only considers the nearest-native subset of the 177
backbones (i.e., those , 3.5 Å RMS), then the SCWRL
consensus prediction rises above the average predic-
tion accuracy for the subset (data not shown). The
overall consensus accuracy of SCWRL, a consistently
good performer, was 53% for all x1 angles and 42%
for x112. In the core, the accuracy increased to 56%
and 50%, respectively. While we were impressed that
consensus modeling can apparently position half of
the buried side chains correctly, we note that the
statistics are subject to large fluctuation due to small
numbers. For instance, although 1r69 and 1ubq had
18 buried residues with a x1, 1hdd:C had 12, and
1fc2:C only 6. The result is that prediction of buried
subset of residues is more variable than side chains
overall (Table IV).

Selecting a Model Protein Based on
Side-Chain Prediction

Besides the improvement in the average side-
chain prediction, consensus modeling also provides a
single set of side chains with which it is possible to
complete the all-atom model of the protein. Without
a consensus set, it would be difficult to justify a
single choice amongst the dozens of possible side-
chain conformations provided by side-chain model-
ing upon each backbone. The data in Table IV
indicate that for a given family of near-native ab
initio folds, the side-chain prediction can be quite
variable.

One could instead use the potential energy re-
ported by the side-chain prediction methods to select
a best model. However, we find that the potentials
used to position the side-chains do not correlate well
with the actual accuracy in side-chain prediction.
For example, Figure 3 shows that the final potential
energy reported by SCMF is essentially uncorrelated
with the actual x1 accuracy. Indeed, the lowest
energy model has a prediction accuracy (48%) below
the mean (52%). This result is typical of the poten-
tials used to position side chains on our backbone
sets.

One might alternatively consider an energy-based
approach for selecting a best candidate in a single

TABLE VI. Side-Chain Predictions on Non-Native
Backbones, Using Interactions Between Side

Chains and the Backbone Only†

Protein Method 7x18 7x1128 B7x18 B7x1128

1fc2:C SCWRL 0.53 0.37 0.62 0.64
SCMF 0.55 0.40 0.52 0.40

1hdd:C SCWRL 0.54 0.42 0.59 0.44
SCMF 0.56 0.41 0.68 0.25

1r69 SCWRL 0.49 0.44 0.46 0.40
SCMF 0.52 0.38 0.45 0.21

1ubq SCWRL 0.45 0.35 0.48 0.41
SCMF 0.44 0.26 0.39 0.26

Average SCWRL 0.50 0.40 0.54 0.47
SCMF 0.52 0.36 0.51 0.28

†Columns marked with a ‘‘B’’ refer to prediction accuracy for
buried residues, defined in Materials and Methods.

TABLE VII. Consensus Predictions†

Protein Method 7x18 7x1128 B7x18 B7x1128

1fc2:C SCWRL 0.44 0.36 0.50 0.60
SCWRL-bb 0.44 0.36 0.50 0.60
SCMF 0.49 0.33 0.50 0.40
SCMF-bb 0.51 0.36 0.50 0.40
SegMod 0.46 0.28 0.50 0.60

1hdd:C SCWRL 0.59 0.41 0.75 0.45
SCWRL-bb 0.57 0.39 0.58 0.36
SCMF 0.53 0.36 0.75 0.27
SCMF-bb 0.57 0.36 0.83 0.27
SegMod 0.57 0.41 0.75 0.45

1r69 SCWRL 0.56 0.46 0.44 0.36
SCWRL-bb 0.54 0.46 0.44 0.36
SCMF 0.56 0.44 0.44 0.14
SCMF-bb 0.56 0.41 0.50 0.14
SegMod 0.56 0.44 0.50 0.57

1ubq SCWRL 0.54 0.46 0.56 0.57
SCWRL-bb 0.49 0.37 0.56 0.50
SCMF 0.44 0.33 0.44 0.29
SCMF-bb 0.51 0.37 0.56 0.43
SegMod 0.50 0.30 0.44 0.43

Average SCWRL 0.53 0.42 0.56 0.50
SCWRL-bb 0.51 0.40 0.52 0.46
SCMF 0.51 0.37 0.53 0.28
SCMF-bb 0.54 0.38 0.60 0.31
SegMod 0.52 0.36 0.55 0.51

†SCWRL-bb and SCMF-bb indicate that only interactions be-
tween side-chains and the backbone were taken into account
for SCWRL and SCMF methods, respectively. Columns marked
with a ‘‘B’’ refer to prediction accuracy for buried residues,
defined in Materials and Methods.
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modeling attempt. Assuming a best-case scenario of
finding the backbone in the set with the lowest RMS
deviation from the native structure, there is still no
guarantee that the backbone would produce the
model of highest accuracy. Given the exquisite sensi-
tivity of side-chain prediction methods to steric
clashes and limitations of the search heuristic, the
overall quality of a backbone with respect to side-
chain modeling is too subtle to be assessed by the
relatively crude metric of RMS deviation when the
structures lie between 3–4 Å from the ideal. The
weak relationship between Ca RMS error and x1
accuracy lends further support to our hypothesis

that soft potentials coupled with rotameric states
make the predictions as robust as possible. Figure 4
depicts the x1 accuracy of SCWRL as a function of
the Ca RMS deviation. Even though the average
prediction accuracy decreases slightly as the Ca RMS
error increases, the relationship is clearly not mono-
tonic and is of little predictive value, especially at
3–4 Å. Since structures with relatively high Ca RMS
deviation and/or high potential energies are often as
good as those with lower RMS deviation and/or low
potential energies, it is useful to include all the
information in the set. Taking a consensus predic-
tion is apparently a reasonable and stable method of
incorporating the information in aggregate.

Although consensus prediction allows selection of
side-chain conformations derived from different back-
bones, the method described here will still consider
one of the full backbones of the decoy set as a
candidate for the backbone of the final model built ab
initio. Ultimately, we would like to extend the consen-
sus protocol to pick up fragments of backbone from
different decoy structures, such as generation of a
hybrid backbone closer to the native backbone.

CONCLUSION

Predicting side-chain conformations to complete
an all-atom model in the context of ab initio folding is
a true challenge, the difficulties of which we have
enumerated above. We have shown that despite the
apparently high RMS deviation of the backbone
conformations, conventional homology modeling tech-
niques do serve to predict the correct x1 angle ,50%
of the time on average. In the core, essentially the
entire side chain is predicted more than 50% of the
time on average. If the structures cluster sufficiently
close to the ideal structure, this accuracy is assured
(if not enhanced) by consensus modeling. Certainly,
the final accuracy of a given model is inextricably
linked to the prowess of the ab initio folding method
used to generate the backbones. The structures
tested by this study are 3–4 Å RMS from the ideal

TABLE VIII. Prediction Variability Expressed as
Shannon Entropies†

Protein Method S(x1) S(x2)

1fc2:C SCWRL 0.48 0.17
SCWRL-bb 0.39 0.05
SCMF 0.29 0.14
SCMF-bb 0.23 0.06
SegMod 0.52 0.44

1hdd:C SCWRL 0.52 0.14
SCWRL-bb 0.50 0.04
SCMF 0.26 0.14
SCMF-bb 0.18 0.08
SegMod 0.56 0.38

1r69 SCWRL 0.61 0.35
SCWRL-bb 0.56 0.09
SCMF 0.48 0.36
SCMF-bb 0.38 0.19
SegMod 0.70 0.55

1ubq SCWRL 0.68 0.32
SCWRL-bb 0.58 0.09
SCMF 0.64 0.27
SCMF-bb 0.53 0.19
SegMod 0.69 0.53

†SCWRL-bb and SCMF-bb indicate that only interactions be-
tween side-chains and the backbone were considered for the
SCWRL and SCMF methods, respectively.

Fig. 3. Plot of potential energy versus x1 prediction accuracy.
The truncated Lennard-Jones 6–12 potential described by Koehl
and Delarue41 is plotted as a function of the prediction accuracy for
the 97 structures of 1r69.

Fig. 4. Plot of x1 accuracy versus Ca RMS error. The correla-
tion between x1 prediction accuracy and backbone quality is weak
for 1r69 backbones 3–4 Å RMS from the native structure.
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structure, but simplified energy functions cannot
reliably identify them as near-native. The emer-
gence of powerful all-atom knowledge-based poten-
tials of mean force may lead to more accurate fold
generation in the future.43–47 The desired goal is the
collection of several backbones tightly clustered about
the native structure. An accurate backbone set in-
creases the likelihood that the pool of possible side
chains is highly enriched with native conformers and
provides leverage to the consensus method by the
cancellation of individual errors. Efforts are cur-
rently underway to determine a suitable method to
build a single structure consistent with the informa-
tion in the multiple backbones and the consensus set
of side-chain conformations.
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