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Structure-based maximal affinity model 
predicts small-molecule druggability
Alan C Cheng1–3, Ryan G Coleman1, Kathleen T Smyth2, Qing Cao1, Patricia Soulard2, Daniel R Caffrey1,
Anna C Salzberg1 & Enoch S Huang1

Lead generation is a major hurdle in small-molecule drug 
discovery, with an estimated 60% of projects failing from 
lack of lead matter or difficulty in optimizing leads for drug-
like properties. It would be valuable to identify these less-
druggable targets before incurring substantial expenditure and 
effort. Here we show that a model-based approach using basic 
biophysical principles yields good prediction of druggability 
based solely on the crystal structure of the target binding site. 
We quantitatively estimate the maximal affinity achievable by 
a drug-like molecule, and we show that these calculated values 
correlate with drug discovery outcomes. We experimentally test 
two predictions using high-throughput screening of a diverse 
compound collection. The collective results highlight the utility 
of our approach as well as strategies for tackling difficult targets.

An estimated 60% of small molecule drug discovery projects fail in hit-
to-lead because the biological target is found to be not ‘druggable’1. This 
is a combined attrition due to lack of lead matter from screening and 
difficulty in optimizing lead matter to yield reasonable drug leads. By 
some estimates, only 10% of genes in the human genome are druggable, 
and only 5% are both druggable and relevant to disease2. These numbers 
are for ‘druggability’ defined as the likelihood of modulating a target by 
oral small-molecule drugs. Although other delivery approaches, such as 
injection or inhalation, have demonstrated success against targets that are 
considered difficult for orally bioavailable drugs, most industry efforts 
continue to focus on oral delivery owing to ease of dose administration 
and the potential to treat disease by modulating intracellular and cen-
tral nervous system targets. High-throughput screening of new targets is 
costly; thus the ability to assess targets for their probability of success in 
advance of experimental screening can help reduce the high failure rate 
and cost of drug discovery.

The most common approach to estimating druggability is to classify 
targets by whether they belong to gene families known to be druggable, 
such as G protein–coupled receptors or kinases2. However, gene families 
not known to be druggable have yielded novel targets through genomics 

efforts, and not all members of a given gene family are equally druggable3. 
Here we show that a binding-free-energy model combined with recently 
discovered parameters for drug-like properties allows us to predict well 
the druggability of pharmaceutical targets based solely on binding-site 
structure. Conceptually, our model estimates the maximal achievable 
affinity for a binding pocket from a hit-to-lead optimization effort, given 
the constraint that the lead must have certain drug-like properties con-
sistent with passive oral bioavailability.

The presence of a cleft or pocket on a biological target is, in general, 
necessary but not sufficient for modulation by drug-like small mol-
ecules. Although protein-protein interactions are generally considered 
undruggable, the recent case of the MDM2/p53 interaction inhibitors4 
indicates that this is not always the case. We thus ventured to build a 
model for the druggability of a binding site based solely on the binding 
site’s physiochemical properties. We started with two principles. The first 
is that orally bioavailable drugs have distinct physiochemical property 
ranges. Recent work has shown that passively absorbed oral drugs tend 
to fall within fixed ranges of size (≤500 Da) and polar surface area (≤140 
Å2)5–7. In addition, such drugs rarely have more than one formal charge 
because only neutral molecules passively diffuse across membranes8. The
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Figure 1  Ligand molecular weight correlates with protein-binding pocket 
surface area. A 500-Da ligand corresponds to about 300 Å2 on the protein 
surface. Data measured from a diverse set of 305 protein-ligand co-crystal 
structures from CCDC/Astex31. The correlation is r2 = 0.77. SASA, solvent-
accessible surface area.
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second is that the target binding site has a maximal achievable noncovalent
binding affinity9 for drug-like compounds, and that this affinity can be 
calculated based on our current understanding of the molecular driving 
forces for binding.

We model the variation in maximal achievable binding energy for an 
optimized drug-like molecule as largely due to desolvation:

where ∆Gdesolvation terms represent release of water upon binding from 
the target binding site and part of the ligand. Other binding-energy com-
ponents include van der Waals and electrostatic interaction energies, and 
changes in translational, rotational and vibrational entropies, which we 
treat simply as a constant contribution, ∆Gconstant , to the maximal affin-
ity predicted for a passively absorbed oral drug (MAPPOD). This is a rea-
sonable approximation because we are considering binding of drug-like 
molecules similar in size (~500 Da) and number of charges (rarely more 
than one formal charge).

A simple model for desolvation is ∆Gdesolvation = –γ • A (ref. 10), where 
γ is related to solvent surface tension, and A is the relevant solvent-acces-
sible surface area (SASA). It has been argued that polar surfaces make 
little contribution to the hydrophobic effect11. Equation (1) can then 
be written:

For small ligands, a constant γ constant = 24 cal/mol/Å2 is well accepted10. 
For larger surfaces, a γ dependent on the curvature of the surface, r, is 
thought to be more appropriate12–14. This curvature-dependent model 
for hydrophobic desolvation has been applied to convex surfaces such 
as alkanes12, and here we apply it to concave surfaces found in ligand-
binding pockets. The γ (∞) term in the model represents the hydrophobic 
desolvation of a flat surface12,15. The model does not have an explicit 
polar desolvation term, but we implicitly use the argument that elec-
trostatic interaction and desolvation energies for a charged group act 
in opposition, and the combination of the two generally provides only 
an insubstantial contribution16 to drug-like maximal affinity. Because 
∆GMAPPOD becomes more favorable with increasing ligand size, normal-
ization for molecular size is necessary for comparisons. We found an 

approximately linear correlation between ligand molecular weight and 
binding-site surface area, which allows us to normalize the total SASA of 
the protein pocket, , to a drug-like size, , representing 
a compound of ~500 Da in molecular weight (see Fig. 1 for details):

where the constant, C, includes the ligand desolvation component under 
the approximation that  in equation (2) is a constant. In this work, 
we convert ∆GMAPPOD 

values to Kd values more commonly used in drug 
discovery by using the equation, , where R is the gas con-
stant and the temperature, T, is 298 K.

To implement the theory, we used computational geometry meth-
ods17,18 to represent the binding site and accurately calculate the neces-
sary quantities of curvature and surface area from three-dimensional 
crystal structures. The model requires a structure of the bound-pocket 
conformation, but the observed ligand is not usually the maximal affinity 
ligand. In fact the ligands used in this study include bound peptides and 
substrate mimetics.

The parameters γ (∞) and C remain undefined. To determine a value 
for γ (∞), we initially set C to zero and looked for differentiation on a set 
of eight crystal structures (listed in Methods) representing targets that 
range in experimental druggability. We empirically found that values 
of  γ (∞)= 45 cal/mol/Å2 and C = 0 largely discriminate druggable from 
undruggable targets. We note that the model itself is physically derived, 
and that the γ (∞) value we find is nearly identical to an experimentally 
measured value15, whereas the value of zero for C can be explained but 
requires further investigation (see comments in Supplementary Methods 
online).

We next applied the method to 63 structures representing 27 phar-
maceutical targets (listed in Supplementary Table 1 online), including 
23 targets with marketed drugs and four ‘undruggable’ targets that have 
been pursued extensively by multiple pharmaceutical companies with 
little success. We refer to the four targets as ‘undruggable’, although we 
recognize that it is always possible that a drug-like small molecule may 
eventually be discovered. We found that all ‘undruggable’ targets in our 
data set have calculated druggability scores of Kd > 100 nM, but the 
ones for druggable targets span a wide range, from 0.005 to 2,000 nM. 
Although druggable targets tend to have more favorable MAPPOD values, 
this discrimination did not appear at first to be useful for making deci-
sions on target prosecution. However, further study of the five druggable 
targets scoring in the ‘undruggable’ target range found that the known 
drugs for these targets are highly polar and not passively absorbed, and 
instead require administration as prodrugs or the use of active trans-
porter mechanisms.

In fact, the major drugs for neuraminidase, inosine monophosphate 
dehydrogenase (IMPDH), angiotensin-converting enzyme 1 (ACE-1)
and the nucleotide site of HIV reverse transcriptase (HIV RT) are all 
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Figure 2  Calculated druggability for a set of 27 target binding sites. Known 
druggable protein targets are shown on the left vertical, whereas known 
difficult targets (prodrug and “undruggable”) are shown in the right verticals. 
Difficult and druggable target binding sites are effectively separated by the 
gray bar. The predicted druggability is the MAPpod score calculated from the 
protein-ligand binding site structure. HMG-CoA, 3-hydroxy-3-methylglutaryl-
CoA; EGFR, epidermal growth factor receptor kinase; CDK, cyclin-dependent 
kinase 2; PDE, phosphodiesterase; COX, cyclooxygenase; HIV RT, HIV 
reverse transcriptase; PBP2x, penicillin binding protein 2x; IMPDH, inosine 
monophosphate dehydrogenase; ACE-1, angiotensin-converting enzyme 1;
ICE1, interleukin-1β-converting enzyme 1;  PTP1b, phosphotyrosine 
phosphatase 1B.
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administered as prodrugs. In the case of penicillin-binding protein 
(PBP2x), the β-lactam drugs are covalent inhibitors, and most if not all 
are also administered as prodrugs or are substrates of peptide transport-
ers (see Supplementary Table 1 online for details). Most of the prodrugs 
for the five targets are ester versions of the acid compound, where the 
acid is required for chelating an active-site Zn2+ or Mg2+, and in effect the 
prodrug moiety is used to mask the acid for increased oral absorption19. 
In the case of the neuraminidase drug oseltamavir (Tamiflu), the prodrug 
hides a carboxylic acid that forms multiple salt-bridges to three different 
arginine guanidinium groups20, whereas with HIV RT nucleotide inhibi-
tors, the prodrugs are nucleoside mimetics that are phosphorylated in 
vivo. Although our method classifies these targets in the undruggable 
range because it does not account for strong charge interactions or metal 
chelation, the chemical functionalities required for such interactions are 
also not conducive to passive oral bioavailability. Prodrugs substantially 
complicate drug development and are avoided when possible, and it is 
difficult to design for the use of active transporters because transporter 
selectivity is not well understood8.

Thus, the five targets with marketed drugs predicted to have weaker 
than 100 nM MAPPOD affinities are in fact difficult targets with the cur-
rent state of the art. Further dividing the druggable set into those requir-
ing prodrug or active transport mechanisms and plotting the calculated 
maximal achievable drug-like affinities (MAPPOD values) of the 27 targets 
results in the plot in Figure 2. The gray horizontal bar indicates separa-
tion of the druggable and difficult druggability targets at 70–100 nM. 
Despite the simplicity of our biophysical model we are able to achieve 
surprisingly good discrimination. The one target incorrectly predicted 
here is thrombin, where the method classifies it in the druggable range 
but substantial effort has, to our knowledge, resulted in only prodrugs 
passing phase 2 clinical trials.

To estimate the error range of the calculations due to variation in bind-
ing mode and structural accuracy, we analyzed multiple cocrystal struc-
tures for 14 of the targets, selecting diverse cocrystallized ligands when 
possible (see Fig. 3a). The mean variation (maximum minus minimum 
values) in MAPPOD values is 0.9 kcal/mol, with a 99% statistical confi-
dence interval of ±0.5 kcal/mol calculated from a two-tailed t-test. This 
is equivalent to a tenfold or less variation in predicted Kd. Thus, analysis 

of multiple cocrystal structures suggests that the druggability calculations 
are reasonably robust to small variations such as side-chain conforma-
tion changes. Binding sites undergo conformational change to differing 
extents to achieve their bound conformations, and this variation is not 
explicitly captured here. The current method is meant to address only 
the specified binding site and does not take into account the possibility 
of substantial flexibility or inhibition at allosteric pockets, both of which 
are important considerations in drug design21–23.

The two variable properties in the model are curvature and hydro-
phobic surface area of the binding pocket. To determine how well each 
property discriminates between druggable and difficult, we generated 
histograms for each set of targets in Figure 3b. There is a clear trend 
toward higher fraction hydrophobic SASA and lower radius of curvature 
(binding site is more curved) for druggable targets, and there is greater 
overlap of the curvature distributions between the sets, suggesting that 
hydrophobicity by itself is a better discriminator. The combination of the 
two using the model, however, yields a substantially better discrimination 
than either property alone. Very recent data-mining studies using a large 
number of binding-site descriptors to discriminate small molecule-bind-
ing pockets from other pockets arrived at similar conclusions24,25.

To address whether the calculated affinity values are quantitatively 
meaningful, we compared MAPPOD values for 11 targets with the affinities 
of the most potent known drug-like compounds (see Supplementary 
Table 2 online for details). The identified experimental maximal affin-
ity values are likely close to the true values given the substantial effort 
invested into small-molecule inhibitors for these targets. However, these 
values must be considered approximate due to the differences in assays 
used and the uncertainty over whether these are the true maximal affinity 
values. Nevertheless, Figure 3c suggests a reasonable linear correlation 
for the predicted and estimated experimental maximal-binding affini-
ties. There are two outliers, HMG-CoA reductase and cAbl kinase. In the 
case of cAbl kinase, selectivity was likely more important than affinity for 
Gleevec, and a more potent (IC50 < 1 nM) but less selective analog has 
recently entered clinical trials26. In the case of HMG-CoA reductase, the 
predictions are three log orders greater than the best known drug affinity 
of 0.1 nM. This is likely due to underestimation of the contribution of 
electrostatic interactions, as statins have a conserved glutaminyl group 
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Figure 3  MAPpod score comparisons.
(a) Variation in druggability predictions. Bars 
represent the median computed druggability of 
the target-binding sites. Range bars indicate 
the minimum and maximum predicted 
affinities (these are the full ranges, not the 
s.d.). Aldose reductase in the data set has a 
large variation in predictions, but the range 
does not affect its druggability classification. 
(b) Histograms of fraction hydrophobic SASA, 
pocket curvature and predicted druggability 
values for druggable and difficult (prodrug and 
‘undruggable’) targets. Thrombin, which is 
poorly predicted by this method, is identified 
in the right hand histograms for predicted 
druggability. Histograms generated using Matlab 
7.0.4 (Mathworks). (c) Correlation of predicted 
maximal achievable drug-like affinity with best-
known affinity. The y-axis represents predicted 
affinities from our study, and the x-axis 
represents the lowest known affinity for a drug-
like compound. Some error is expected because 
the data is composed of a mix of IC50s, Kds and 
Kis. Details of the data for lowest known affinity 
are available in Supplementary Table 2 online.
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that makes numerous hydrogen-bond and ion-pair interactions to the 
protein27. Statin compounds, however, are all highly polar, with the top 
selling statins (atorvastatin, rosuvastatin and simvastatin) having polar 
surface areas between 150 and 174 Å2, which is considerably higher than 
the drug-like range of <140 Å2. Some first generation statins are delivered 
as prodrugs, and the mechanism of statin drug action requires high first-
pass effect but does not require high bioavailability because the liver is the 
target organ28. Thus despite the exceptions and the approximate nature of 
this maximal affinity study, the good correlation is very encouraging.

To test our method in a forward prediction, we used high-through-
put screening (HTS) as a measure of druggability and compared this to 
MAPPOD druggability predictions for two novel targets. Fungal homo-
serine dehydrogenase (HSD) is a key enzyme in the essential aspartyl 
amino acid biosynthetic pathway of human fungal pathogens, and thus 
is a target for antifungal therapy. Hematopoietic prostaglandin D syn-
thase (H-PGDS), is responsible for the production of prostaglandin D2 
(PGD2), and thus is a key mediator of inflammatory responses. These 
targets represent particularly good test cases because no data were avail-
able on the druggability of the targets before the experiment, and both 
targets belong to gene families whose druggability is unknown.

We calculated MAPPOD affinities for both targets using cocrystal 
structures available in the Protein Databank (PDB), and found scores of 
Kd = 240 nM for HSD (PDB ID: 1EBU) and Kd = 30 nM for H-PGDS 
(PDB ID: 1PD2), predicting that HSD would be a difficult target whereas 
H-PGDS would be druggable. To assess druggability experimentally, we 
performed two HTS experiments, both using the same 11,000 com-
pound ‘diversity’ collection designed to represent drug-like chemical 
space. We found 16 and 200 raw hits for HSD and H-PGDS, respectively. 
Moreover, the screens resulted in only two hits with IC50s under 5 µM for 
HSD, whereas they identified 33 hits under 5 µM for H-PGDS (Fig. 4). 
Considerable follow-up efforts at Pfizer did not result in finding of a 
drug-like lead for HSD, whereas we were able to identify 11 sub-µM leads 
for H-PGDS from a relatively small HTS. These results lend support to 
our a priori druggability predictions and suggest how the method can 
affect prioritization of targets for drug discovery efforts. A substantial 
follow-on effort is required to determine whether H-PGDS is truly drug-
gable based on the metric of successful advancement through clinical tri-
als, and the success of targets is additionally influenced by aspects such as 
efficacy, safety and commercial attractiveness, which we cannot account 
for in a physical model. The identification of multiple potent drug-like 
hits from the diversity screening set nonetheless supports the predictivity 
and practical utility of our model.

The druggability model we have developed is consistent with both 
quantitative studies and qualitative intuition that favorable drug bind-
ing is largely driven by the hydrophobic effect23, and we have shown 
that the model is useful in predicting the screening and lead-optimi-
zation outcome for targets with unknown experimental druggability. 

We specifically attempted to model nonpolar desolvation here, and this 
appears to be the major contribution to variation in maximal binding 
affinity. Implementing the model necessitated use of recently developed 
computational geometry algorithms as opposed to standard available 
software because of the need to represent the binding site in a precise and 
physically reasonable way. For instance, using standard available software 
to perform a simple additive summation of the surface areas of atoms 
in a binding site results in overestimation of binding surface areas by 
about 40%, largely from contributions from the ‘lip’ of the pocket, which 
contributes minimally to binding affinity (A.C.C., R.G.C., unpublished 
data). It is conceivable, however, that available descriptors for surface 
areas and curvature can be combined and weighted to yield similar 
results. In fact, Hajduk et al.25 recently used linear regression to fit NMR 
screening data (a reasonable measure of druggability) to commercially 
available structure-based descriptors of binding pockets. Although the 
regression equation contains a large number of terms, the dominant 
terms are exceptionally consistent with our findings, and include the 
pocket compactness (which correlates with curvature) and the nonpolar 
and total surface areas.

Drug discovery is extremely complex and difficult, and drug action is 
much more than binding affinity8. Nevertheless, the intrinsic biophysical 
maximal affinity modeled here appears to be a good estimate of the dif-
ficulty of drug discovery efforts, and has implications in target selection 
and setting of execution strategy. A priori druggability assessment can 
be used in combination with target validation and feasibility assessments 
in selecting targets. Marginally druggable targets may be planned for 
by, for instance, prioritizing structure-based drug design resources for 
guiding hit-to-lead campaigns or screening at higher compound con-
centrations. Our results also highlight strategies for difficult druggabil-
ity targets, including consideration of covalent adduct, metal chelation, 
prodrug, active transport and allosteric approaches. Although we have 
focused on protein targets, the method is general and may be applied to 
nucleic acid targets as well. Finally, we are likely capturing the free energy 
components that are less difficult to optimize23, and quantitative design 
methods for more difficult components such as electrostatics29 may allow 
for tighter-binding drugs beyond what we model here. Because our drug-
gability model is physics-based, we can look forward to systematically 
improving it as our understanding improves or new technologies and 
approaches are discovered.

METHODS
Binding site structures. Crystal structures were downloaded from the PDB, and 
inspected for completeness in the binding site. All structures are atomic resolution 
(<2.5 Å, 1QMF is 2.8 Å) and have a co-crystallized ligand (peptide, small molecule, 
or substrate). Ligand binding sites were further filled in using MOE SiteFinder 
alpha-spheres (version 2004.03; Chemical Computing Group). Binding sites were 
defined by atoms within 5.0 Å of the ligand or alpha spheres and trimmed at the 
edges to define a contiguous binding site surface of ~300 Å2 of surface area.

Fungal HSD H-PGDS

240 nM

16 

2

0

30 nM

200

33

11

MAPPODKD

Primary HTS hits

Compounds with IC50  ≤ 5 µM

Compounds with IC50  ≤ 1 µM

Figure 4  Predictions and screening results for two novel targets using 
a diverse set of 11,000 compounds. MAPpod affinity scores for fungal 
homoserine dehydrogenase (HSD) and hematopoietic prostaglandin D 
synthase (H-PGDS) calculated using available crystal structures (PDB IDs: 
1EBU and 1PD2, respectively). A set of compounds designed to be a diverse 
representation of known compound space were screened to find inhibitors 
of HSD and H-PGDS. High-throughput screening was performed at 20 µM 
compound concentration using duplicate measurements for each compound. 
Raw hits were selected based on hits meeting a 60% inhibition cutoff and 
significance of P ≤ 0.05. Assay details available in the Methods section. The 
binding site surface of each target is shown and is based on the available 
crystal structures. Analytic Connolly surfaces are generated using MOE 
(version 2004.03; Chemical Computing Group) and is colored green for 
hydrophobic, blue for polar and red for solvent exposed.
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Calculations. We use computational geometry algorithms previously 
described17,18 to computationally represent binding sites by non-alpha shape 
Delaunay tetrahedra defined by the binding-site atoms. Surface areas were then 
computed analytically. This approach allows representation of only the surface 
that would face a bound ligand. To calculate curvature, we used our previously 
reported approach of using geometric inversion to find the least-squares fit-
ted (LSF) sphere to the molecular surface, and taking the radius of the sphere 
as the radius of curvature17. Our curvature calculation is intuitive but admit-
tedly simple, and we are investigating whether localized curvatures improve 
the model. Further details on the computational methods can be found in the 
Supplementary Methods online. Conversion of ∆G’s to concentration units is 
performed using , where T = 298K. Statistical confidence inter-
val for MAPPOD values is calculated using free energy (∆G) values and assuming 
a two-tailed Student’s t distribution. The initial calibration set of eight struc-
tures consisted of 1IEP (cAbl kinase), 1KE6 (cyclin dependent kinase 2), 4COX 
(cyclooxygenase 2), 1HWK (HMG-CoA reductase), 1A4G (neuraminidase), 
1OYN (phosphodiesterase 4D), 1MEM (cathepsin K) and 1PTY (phosphoty-
rosine phosphatase-1B). We note that we are fitting two parameters to eight data 
points, and as such, the parameters are substantially overdetermined.

HSD and H-PGDS. MAPPOD analyses performed using PDB cocrystal structures 
for HSD (PDB ID: 1EBU) and H-PGDS (PDB ID: 1PD2), and the respective 
enzyme active sites. An 11,000-compound diversity screening set was screened 
against Candida albicans HSD using an assay that monitors the change in absor-
bance at 340 nm as a result of NADH to NAD conversion during the homoserine 
dehydrogenase reaction and using L-aspartate semialdehyde (ASA) as a sub-
strate31. The assay was performed with 1 mM ASA (Km = 1.05mM) and 800 µM 
NADH (Km = 140 µM) to identify ASA competitive inhibitors. The same 11,000 
compound set was screened against human H-PGDS using an assay that moni-
tors the conversion of prostaglandin H2 (PGH2) to PGD2 based on conversion 
of unreacted PGH2 to malondialdehyde (MDA). Recombinant human H-PGDS 
(10 ng) was incubated in the presence of 20 µM of the substrate, PGH2 (Km = 30 
µM), in 10 mM potassium phosphate (pH 7.2) and 2.5 mM glutathione (Km = 
300 µM) for 4 min on ice. The incubation was quenched, and unconverted PGH2 
was converted to MDA by incubation with 25 mM FeCl2 and 50 mM citrate for 
30 min. MDA was then reacted with 70 mM thiobarbituric acid to form a fluo-
rescent product (Ex = 530 nm, Em = 550 nm), allowing calculation of percent 
inhibition. For both assays, compounds were tested at 20 µM concentration and 
were considered ‘raw hits’ if they produced percent inhibition ≥60% in duplicate 
and had a hit significance of P ≤ 0.05 based on the distribution of non-hits. Raw 
hits were followed up with IC50 measurements using the same assays.

Note: Supplementary information is available on the Nature Biotechnology website.
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