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Abstract 
This paper reexamines the efficiency-based arguments for optimal health insurance, extending the 

classic analysis to consider both multiple treatment goods and multiple time periods. Using a 

utility-based framework, we reconfirm the conventional tradeoff between risk aversion and moral 

hazard for insuring treatment goods. Multiple goods and multiple time periods raise issues of 

complementarity and of correlated losses that affect the choice of optimal insurance.  Substitutes 

and positively correlated demands over goods or time are shown to reduce optimal cost shares on 

treatment. In a multiperiod model, savings complicate the optimal insurance rules but positively 

serially correlated errors generally imply improved coverage is desirable. Further, the presence of 

positively correlated uncompensated costs provide a further rationale for reducing cost sharing on 

the covered services.  Using insurance claims data we examine the empirical relevance of the 

contemporaneous correlations across goods, and correlations over time using three broad 

aggregates of health treatment spending: inpatient, outpatient, and pharmaceuticals. Our model 

provides a rationale for covering pharmaceuticals more fully than is implied by static models, 

because it is relatively highly correlated over time, especially with high deductibles.  
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1. Introduction 
One of the major themes in health economics since the field began has been the behavior of 

patients and providers in the presence of health insurance or sickness funds that cover part or all of 

the cost of health care. The central economic motivation for such arrangements is that risk-averse 

individuals can reduce their financial risk by pooling the risks through insurance that effectively 

shifts funds from the (ex post) well individual paying premiums to the (ex post) sick individual 

receiving reimbursement for health care services. A theoretical and empirical concern has been the 

adverse effects of moral hazard that arise from the incentives in such health plans when the 

marginal cost of an insured service to the consumer/patient at the point of service is less than the 

social costs of producing it. To the extent that patients respond to lower out-of-pocket prices of 

health care, health insurance will increase the amount and quality of the care purchased, generating 

an excess burden from the increased use. The empirical support for the law of demand applying to 

health care is substantial from the literature on observational studies, natural experiments, and the 

RAND Health Insurance Experiment (Newhouse, 1981; Newhouse et al., 1993; Zweifel and 

Manning, 2000).  

Much of the economic literature on optimal health insurance focuses on “the fundamental 

tradeoff of risk spreading and appropriate incentives” (Cutler and Zeckhauser, 2000, p. 576).  

Specifically, it examines either the dead weight losses from moral hazard, the tradeoff between 

moral hazard and the gains from insuring against financial risk, or the differential coverage of 

multiple goods with varying degrees of risk. Much of this work employs a one-period model with 

uncertainty about health states or uncertainty about levels of health care expenditure [Arrow, 1963, 

1965; Besley, 1988; Cutler and Zeckhauser, 2000; Pauly, 1968, 1974; Spence and Zeckhauser, 

1971; Zeckhauser, 1970]. A number of authors have derived the optimal insurance structures based 

on these theories. Several have employed variants of the tradeoff between the risk premium (as 

reflected by the Arrow-Pratt approximation) and the deadweight loss from moral hazard (as 

reflected in Harberger loss or related measures) or the compensating variation (Manning and 

Marquis, 1996). See Feldstein (1973), Feldstein and Freedman (1977), Buchanan and Keeler 

(1991), Manning and Marquis (1996), Newhouse et al. (1993), Feldman and Manning (1997) for 

other theoretical and empirically-based examinations of optimal insurance.  

Our primary interest in this paper has to do with ex ante choices about optimal insurance 

for health in markets where there are two or more health care goods – either two or more 

contemporaneous health care goods or health care goods in two or more periods. To keep the 
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model tractible, we  do not consider preventive care in this analysis.3 Our analysis of multiple 

health care treatment goods reconfirms the findings of Goldman and Philipson (2007) on the 

importance of complementarity and substitutability of health care services, but adds new insights 

to the literature by examining the importance of the correlation structure of errors among health 

care goods and over time.  We also examine how savings and serially correlated health shocks 

affect the optimal insurance calculations.  

The important insight here is that, all other things being equal, health care goods which are 

positively correlated should be more generously insured than those that are negatively correlated 

or uncorrelated. This holds both for contemporaneously correlated health care treatment goods and 

serially positively correlated shocks over time: health care treatment goods that have more positive 

correlations should have more generous coverage.4 The basic logic is that if the demand for two 

goods or over two periods are uncertain, then their ex ante variance is larger if they are positively 

correlated than if there is no correlation or a negative one.5  Risk averse individuals will prefer 

more generous insurance (lower coinsurance rates) to reduce their financial risk than if they 

ignored the correlation or treated them as independent.  One very specific case of this is when 

some aspects of a health event are covered or compensated whereas others are not; for example 

consider time costs of care.  In that case, the positive correlation between the uncompensated and 

covered loss leads to a reduction in the optimal coinsurance rate.  Thus, uncompensated health 

losses provide a new rationale for reducing cost sharing for health care treatment goods because of 

the positive correlation in uncompensated care and insured care for those health events.  Anoher 

case of continuing interest is the treatment of acute versus chronic care.   Our findings would 

                                                 
3  Optimal coverage with prevention is examined in Ellis and Manning (2007), which also explores 
the role of uncompensated losses in a static model with one treatment good. We also do not deal 
with the types of complementarity that arise in the health capital or the rational addiction models.  
4  This finding runs counter to the common experience that inpatient coverage is more generous 
than that for most other health services.  The more generous coverage of inpatient care is 
motivated by the high variance of inpatient care as well as by the fact that inpatient care is less 
responsive to cost sharing than other services (Newhouse et al., 1993).  

The new insight of our analysis is that once spending on various types of services are 
subject to moderate stop-losses, then the higher serial correlation of drug and outpatient spending 
make them more risky than inpatient spending, and hence deserving of more generous coverage.   
5 As we will show below, the details are more complicated because the optimal coinsurance also 
depends on the variability in demand, own and cross price effects, and (in the cases of multiple 
periods) the discount rate.  
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indicate that chronic care should have better coverage than acute, all other things equal, because 

such care is positively serially correlated.  

The criterion used in this paper is demand-side efficiency for calculating optimal cost 

sharing. Since optimal insurance is a topic of considerable interest to many researchers and 

policymakers - both economists and non-economists - much has already been written on this topic. 

We do not address other rationales for insurance coverage that can be found in the health 

economics and public health literatures. These other important rationales for insurance and 

subsidies that we do not address in this paper include: correcting for externalities, such as those 

that can occur with communicable diseases; altruism or public good arguments for insurance 

coverage; corrections of informational problems (i.e. uninsured consumers make the wrong 

decisions); distributional concerns that may underlie some forms of social insurance (such as goals 

of elimination of poverty, or achieving social solidarity); or insurance so as to foster more 

complete coordination among health care providers. This last topic, which can be seen as a variant 

of the informational problems argument, is part of a new and still growing literature on disease 

management and drug and other therapy management (Duggan, 2005; Lichtenberg, 2001; and 

Newhouse, 2006). Without denying the relevance of these other arguments for insurance, we 

reexamine the efficiency-based arguments for insurance, and derive new results which refine our 

understanding of the value of generous insurance coverage from the consumer’s point of view.     

 

2. Literature and theory review 
There is a substantial literature on the overall tradeoff between the welfare losses from 

moral hazard and the welfare gains from insuring against the riskiness of health care expenditures, 

starting with the seminal work by Arrow(1963, 1971, and 1976) and Zeckhauser (1970); see Cutler 

and Zeckhauser (2000) for a detailed review of this literature. Much of this work has been based 

on either a one-period model or a two-period model where the consumer selects the coinsurance 

before knowing his or her realized state of health. Health care expenditures are chosen conditional 

on the state of the world that occurs. The common conclusion of this literature is that one should 

select the optimal coverage in a plan with a constant copayment or coinsurance rate such that the 

marginal gains from risk reduction from a change in the coinsurance (copayment) rate just equal 

the marginal costs of increasing moral hazard. Blomqvist (1997) extends the theory to nonlinear 

insurance schedules. 
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  The consensus of much of this literature is that insurance does not simply create dead- 

weight losses because of moral hazard. When the value of avoiding or reducing an individual’s 

risk is included, optimal levels of cost sharing involve neither fully insured (zero out-of-pocket 

cost), nor being uninsured. Depending on the formal model approach and the data employed, 

optimal coinsurance rates range from the 50-60 percent range (Feldstein and Friedman, 1977; 

Manning and Marquis, 1996) down to values that are in the mid 20 percent range or lower, 

possibly with a deductible and/or stop-loss (Blomqvist, 1997; Buchanan et al., 1991; Feldman and 

Dowd, 1991; Feldman and Manning, 1997; Newhouse et al., 2003). 

Besley (1988) provides a multi-good extension to this literature. His model implies that 

goods and services that are more uncertain (variable) or less price elastic (with respect to out-of-

pocket costs) should have more generous coverage – lower coinsurance rates or copayments. Our 

results for treatment are not inconsistent with his findings, but the results are much more complex 

once we also consider both complementarity and of the correlation among health care goods and 

overtime.  

The paper in the literature that is closest to ours is a recent paper by Goldman and 

Philipson (2007).  They model the case with multiple goods (or technologies) in which the health 

care treatment goods are substitutes or complements.  In the case where the goods are substitutes, 

the insured good should have a lower level of cost sharing than otherwise under traditional rules, 

because lowering the cost sharing increases the use of those other goods.  For complements, the 

cost sharing should be higher.  This clearly has implications for the design of coverage of health 

care services where drug compliance (a form of secondary prevention) is concerned; see their 

discussion of several recent studies in this area. We return to the contrast with our findings below 

when we discuss the importance of considering covariances in conjunction with complementarity, 

not just complementarity by itself.  

 

3. Model assumptions 
We examine a series of models that involve two health goods within one period and one 

health good over two time periods. The individual’s utility function is defined over health state (or 

health status) and the consumption of other goods (Y) and health services (X).  In the one period 

model, consumers have income (I) and face prices and  
iX YP P , where the i in 

iXP  indicates the ith  

healthcare good. In the underlying behavioral model, there is a health production function that 
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transforms health care X into health status. For simplicity, we ignore the possibility of death; death 

could be included in an expanded set of health states. To simplify the discussion, we also assume 

that there are no health care expenditures if the consumer or patient is healthy, but expected health 

care expenditures are positive when sick.6 We assume that the moments of health care shocks do 

not depend on the level of cost sharing or income, considering only briefly the case where these 

variables might also affect the distribution of health shocks, not just consumer choices.  

Following much of the literature (for example, Cutler and Zeckhauser, 2000), we examine 

only health insurance plans with a constant coinsurance rate 0 ≤ c ≤ 1 for both treatment. We 

assume premiums, π, are competitively determined and depend on the copayment rates and the 

demand structure, but do not vary across individuals. The units of medical care have been 

normalized so that the market price is 1, which we also assume to be the marginal cost and hence 

the efficient price. The insurance policy is a pure coinsurance plan. It has no deductible, stop-loss, 

or limit on the maximum expenditure or level(s) of covered services. 

We first study the optimal insurance coverage for health care treatment when there are two 

health care treatment goods. After developing a general analytical model (with mathematical 

results in the Appendix), we examine a series of special cases where we do comparative statics. A 

key attraction of our specification is that we are able to solve for the optimal cost share as a closed 

form solution, and to recreate the results from the basic model that involves one health care 

treatment good. We also derive new results involving uncompensated health care losses, correlated 

health care shocks, and cross price elasticities of demand with multiple goods.  

Our second set of analytical results is for a two-period model in which health care shocks 

in one period persist over time due to chronic conditions. In a multi-period context, if a consumer’s 

savings react to healthcare shocks, then this changes both the cost of risk as well the optimal cost 

sharing rates. Positively serially correlated shocks imply that healthcare should be more 

generously covered (lower cost sharing) than when shocks are independent or negatively 

correlated across periods. 
                                                 
6  This assumption can be relaxed to allow for positive expected health care expenditures in the 
healthy state. In this case, the expected expenditures on health care would be greater than zero for 
both the sick and the well states, but the expenditures by the well would be less than those for the 
sick.  We would also need to assume that the demand curve for the well state does not cross that 
for the sick state in the range of observed out-of-pocket payments.  The two demand curves could 
be parallel or the demand when sick could be less elastic with respect to out-of-pocket payments. 
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The concluding section of the paper discusses a few empirical results that have a bearing 

on our analytical findings. We briefly discuss empirical estimates of the variance of three broad 

sets of services, and the magnitudes of contemporaneous and intertemporal correlations that shed 

light on the empirical relevance of our findings.  

4. Basic model  
The sequence of steps of that we use in our full model are the following.  

1. The insurer chooses the premium π, coinsurance rates Xc  for health care treatment (X).  
2. Nature decides on the consumer’s state of illness as random health shocks θ affecting the 

demand for a vector of health care goods X. 
3. The consumer chooses quantities X and Y to maximize utility in Period 1.  
4. If a two-period model, repeat steps 2 and 3 for Period 2.   

 
The demand for medical care services has been shown by many empirical studies to be 

very income inelastic for generously insured consumers. For simplicity, we assume that X is 

perfectly income inelastic. Hence, 0X I∂ ∂ = . While this income elasticity assumption is strong 

and unrealistic, it buys us a great deal of simplicity that enables many closed form solutions for 

cases with multiple health treatment goods. We make a strong assumption on the income 

elasticities, but make weaker assumptions about other parameters below. We avoid concern about 

corner solutions by further assuming that income is always sufficient to pay for at least some of all 

other goods Y after paying for X . 

Utility in every period is separable in health status and the utility of consumption. A 

corollary of this is that health care shocks do not have any effect on the marginal utility of income, 

other than through their effect on medical expenditures. Health shocks affect spending on medical 

care and hence the marginal utility of income, but do not directly affect this marginal utility of 

income. This is a common theoretical assumption and is also assumed in many empirical studies. 

 

4.a. One period model 

Assume there are two classes of goods, one or more medical treatment goods X, one 

composite other good Y. The marginal benefit function of medical service iX is assumed to be a 

linear demand curve that has a constant slope iB  as a function of the price regardless of the 

realization of the random health shock q. For simplicity, we normalize the marginal costs of all 

goods to be one, and express the prices in terms of the share of this marginal cost paid by the 
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consumer. Because 1YP = and 1,
iXP =   

iXc then becomes the consumer price of the ith health care 

good iX . 

There are two possible broad states of the world facing the consumer: healthy and sick.  

Income available for spending on the one non-health good Y is I π− , where I is the consumer’s 

income, and π is the insurance premium. After these normalizations, the indirect utility for a one-

period model is simply  

( ) ( )( , , )    V I P V I V Jθ π= − ≡                 (1) 

where J is the quantity of good Y that can be purchased after paying the insurance premium π. 

Expressions for the premium π are derived below. 

 The demand curve for each medical service is linear in price the consumer’s health care 

price Xc , and hence   

 -  XX A Bc=                       (2) 

where A and B are positive constants. The quadratic indirect utility function consistent with this 

demand function is shown in the Appendix. Stochastic health treatment demand is introduced by 

letting ,XA μ θ= +  where θ ~ F(θ), with E(θ) = 0.  We assume that the variance of θ  is a constant, 

and specifically does not depend on the out-of-pocket price or income. This corresponds to the 

horizontal intercept of the demand curves having a mean of Xμ  when the out-of-pocket price is 

zero. 

 We allow health shocks to directly cause losses in consumer utility independent of the level 

of medical care. These losses may be of two types. One type of loss, we denote XL is equivalent to 

lowering a person’s effective income. Medical conditions (such as mental illness or injuries) may 

reduce a person’s productivity on the job or ability to obtain work. While some injuries or 

disabilities may be eligible for imperfect compensation through insurance programs such as 

disability insurance, many are not. A second type of loss is those that directly affect utility 

independent of a person’s income, which we denote ( )Lθ θ . In order to introduce risk aversion, we 

apply a monotonically increasing concave function VS(...) to the indirect utility function consistent 

with the demand function in Equation (2). Using this notation, we write the one period indirect 

utility function with two treatment good as  
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( )
( )

1 1 2 2
1 1 1

1 2

2 2 2 1 1 2 2

2 2
1 2

1
1 2

2 12

( ) ( )
( )

2 2( ,  , ) ( ) ( )
( ) ( )( )

X X X X
X X XS

X

X X X X X X X

B c L B c L
J c L

V I C V L L
c L G c L c L

θ θ
μ θ

θ θ θ
μ θ

⎡ ⎤+ +
+ + − + +⎢ ⎥

= − −⎢ ⎥
⎢ ⎥− + + − + +⎣ ⎦

,
where
J I π= −

           (3) 

Using the linear demand equation for X, the insurer’s break-even condition for the 

insurance premium is  

1 1 1 1 2 2

2 2 2 2 1 1

1 12

2 12

(1 ) ( ) ( )
(1 )

(1 ) ( ) ( )

X X X X X X

X X X X X X

c B c L G c L

c B c L G c L

μ
π δ

μ

⎧ ⎫⎡ ⎤− − + + +⎪ ⎣ ⎦ ⎪= + ⎨ ⎬
⎡ ⎤+ − − + + +⎪ ⎪⎣ ⎦⎩ ⎭

             (4) 

where  δ  is the administrative loading factor such that insurance costs proportion δ more than 

actuarially fair insurance. In a two-period model, we assume that the same premium is charged in 

both periods.  

 While we have used the somewhat restrictive assumptions of linear demand, additive 

errors, and zero income effects, this specification has two attractive features. The error terms only 

interact with cost shares in a simple multiplicative form. This facilitates introducing multiple 

goods and multiple periods. The linear specification also allows us to consider cross price 

elasticities in a natural way.  

4.a.1 Optimal coinsurance rate on health care treatment.  

We now turn to the social planner’s problem of choosing the optimal coinsurance rates 

when there are two health care treatment goods (X1 and X2), and a composite all-other-goods 

commodity, Y. We develop the model using a general specification, and then derive various cases 

of interest as special cases. As before, we focus on the case of a system of linear, income inelastic 

demand curves expressing them in terms of the consumer’s cost share, 
iXc , normalize marginal 

costs to be one, and let the consumer’s prices be the shares of marginal costs paid by the consumer, 

1Xc  and 
2Xc .  

 This yields the following two demand equations.   

1 2

2 1

1 1 1 12

2 2 2 12

- / /

- / /
X Y X Y

X Y X Y

X A B P P G P P

X A B P P G P P

= +

= +
          (5) 
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Using Roy’s identity and ignoring corner solutions, it is straightforward to derive the risk 

neutral indirect utility function V consistent with these linear demand functions. We introduce two 

types of uncompensated health losses, 
iXL (per unit uncompensated costs of treatment iX ) and 

( )
i iLθ θ  (health shocks that directly affect consumer utility). We then apply a concave function to 

the utility arguments (except for ( )
i iLθ θ ) in order to introduce risk aversion. This yields the utility 

function (3) above for the sick health state. 

The optimal cost sharing rates 
iXc for health care treatment will maximize the expectation 

of Equation (3). Taking its partial derivative with respect to 
iXc and setting equal to zero yields an 

equation that characterizes the social optimum. Since this expression will not in general have a 

simple closed form solution, we take a Taylor series approximation of the partial derivative S
IV , 

evaluated around the nonstochastic arguments of the utility function. This solution can be written 

as  

[ ] [ ] ( ) ( )1 1 2 2

1
1 1 1 2 2

1

1 1 1 2 2 2 1 1 2 2 1 1

1 2

1 12 1

2 2
1 2 12

V0  
( ) ( )

,

( ) ( ) ( ) / 2 ( ) / 2 ( )(

S S
I II X X X X

X X X X X X
X

X X X X X X X X X X X X X

V J K V J K c L c L
E E
c B c L G c L

c

where
J I

K c L c L B c L B c L G c L c

θ
θ

θ θ

π μ θ

π

μ μ

⎧ ⎫⎡ ⎤⎡ ⎤− − − + + +⎣ ⎦⎣ ⎦⎪ ⎪∂ ⎪ ⎪= = ⎨ ⎬⎛ ⎞∂∂ ⎪ ⎪− − + + − + −⎜ ⎟⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

= −

= + + + − + − + + +

{ }
2 2

1 1 1 1 2 2 2 2 2 2 1 1

1 1 1 2 2
1

1 12 2 12

1 1 1 12 12 12

),

(1 ) (1 ) ( ) ( ) (1 ) ( ) ( ) ,

(1 ) 2 2

X

X X X X X X X X X X X X

X X X X X
X

L

c B c L G c L c B c L G c L

B B c B L G c G G L
c

π δ μ μ

π δ μ

+

⎡ ⎤ ⎡ ⎤= + − − + + + + − − + + +⎣ ⎦ ⎣ ⎦
∂ ⎡ ⎤= + − − + + + − −⎣ ⎦∂

 (6) 

Defining ( ) ( ) ( )2 22 2
1 1 2 2 12 1 2 , , ,

S
A II

S
I

VR E E E
V

σ θ σ θ σ θ θ−≡ ≡ ≡ ≡ , and using E(q1)=0, we show in 

the Appendix that this result can be rearranged to solve for the optimal insurance rates 1c  in the 

full specification shown above.  

( ) ( )
1 1 1 2 2

1 1 1 2 1 1 2 2

1 1 1 12 12 12

2
1 12 1 12

(1 ) 2 2

( ) 0

X X X X X

A
X X X X X X X X

B B c B L G c G G L

B c L G c R c L c L

δ μ

μ σ σ

⎡ ⎤+ − − + + + − −⎣ ⎦
⎡ ⎤+ − + + + + + + =⎣ ⎦

   (7) 
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using the relationship for 
1Xcπ∂ ∂ in Equation  (6).   We can solve for the optimal coinsurance rate 

1Xc if simplify (see Equation A7).  An alternative way to interpret these first order condition is to 

recognize that the elements in Equation 8 consists of two terms of interest.  The first term is: 

 1 1 1 2 2

1 1 1 2

1 1 1 12 12 12

1 12

(1 ) 2 2

( )
X X X X X

X X X X

B B c B L G c G G L

B c L G c

δ μ

μ

⎡ ⎤− + − − + + + − −⎣ ⎦
− + + −

 

or more simply ( ) ( )1 2 21 121 1X X XB c G c L− + − + if δ= 0, that is if there is no loading fee, insurance 

is actuarially fair.  This term corresponds to the marginal costs of moral hazard from having a 

coinsurance rate less than one.  The first element ( )11 1 XB c− corresponds to the term for the own 

price effect and the associated moral hazard from paying a price 
1Xc  less than the marginal cost of 

care (which is normalized to one here).  This element is zero if either demand is perfectly inelastic 

1( 0 )B = with respect to its own price or if the coinsurance rate is one.  The second element 

( )2 212 1 X XG c L+ − +  corresponds to the cross-effect from a complement or substitute.  It is zero if 

the other good is neither a complement nor a substitute, its coinsurance rate is one, and the 

uncompensated loss 
2XL is zero.   

 The second term of interest corresponds to the marginal losses (negative benefits) of 

increasing the cost sharing and therefore reducing the protection against financial risk that occurs 

if the coinsurance rate is less than one: 

 ( ) ( )1 1 2 2
2
1 12

A
X X X XR c L c Lσ σ⎡ ⎤+ + +⎣ ⎦  

There are no marginal gains from risk sharing if there is no variance in demand, no correlated 

second good, and no uncompensated loss for either health care good. 

 At the optimal coinsurance rate 
iXc , the marginal cost gains (reductions from reducing 

moral hazard) must just equal the marginal losses from reducing risk protection.   

 In this general case, the presence of an uncompensated loss on a complement or substitute 

shifts the marginal cost of moral hazard, reducing it if the two goods are complements 12 0G < and 

increasing it if they are substitutes 12 0G > .  The effect of uncompensated losses and on positively 

correlated demands increases the potential gains from risk protection, while uncompensated losses 

for a specific good increases the potential gains from risk protection for that good. The underlying 
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logic is that a weighted sum of positively correlated outcomes has greater variance (and hence 

risk) than the case where they are negatively correlated or uncorrelated.  

 We now continue to interpret the single period first order condition Equation(7) in a series 

of special cases below. 

4.a.2 One health care good, base case.  
 In the case of a single good in a single period with no uncompensated costs, and no loading 

fee, these two terms (for moral hazard and risk bearing) simplify to the well known result from the 

literature on the second best optimal insurance for constant coinsurance rate plans: 

 ( )1 1
2

1 11 0A
X XB c R cσ− − + =  

where 1B ≥ 0, and the first term (the marginal costs due to moral hazard) are increasing in the price 

response 1B .  The gains from risk pooling are increasing in the variance in health care demand.    

Solving for the optimal coinsurance rate yields Equation 9, where the optimal coinsurance rate 
1Xc  

is increasing in the price response 1B  and decreasing in the underlying variance 2
1σ  in demand.  

1
* 1

2
1 1

X A
Bc

B R σ
=

+
                (8) 

 

If the demand is perfectly inelastic ( 1 0B = ), then the optimal coinsurance rate is zero.  If there is 

no variance or the consumer is risk neutral ( 0 )AR = , then the coinsurance rate should be 1.  The 

optimal coinsurance rate falls between 0 and 1, inclusive, 
1

*0 1Xc≤ ≤ .  

4.a.3 One health care good, with insurance loading  
Starting with this base case, we next relax the assumption of no insurance loading factors. 

The new expression for the optimal coinsurance rate becomes 

1
1

1 1*
2

1 1 12
X

X A

B B
c

B B R
δ δμ

δ σ
+ +

=
+ +

              (9) 

As long as the insurance loading factor δ is not prohibitively large, then 
1

*0 1Xc< < , and 

1
*

0.Xc
δ

∂
>

∂
 Moreover, the mean expected level of spending (with a marginal out-of-pocket price of 
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zero), 
1Xμ , enters in the numerator such that as costs go up, it is desirable to increase the cost 

share to reduce the inefficiency due to the insurance loading factor ( δ  > 0 ).  

4.a.4  Adding uncompensated health-related losses 
Incorporating uncompensated health loss also affects optimal cost sharing for covered 

treatment goods, increasing the coverage (decreasing the cost-sharing 
1Xc ) desired that we found 

in our analysis of prevention versus treatment (Ellis and Manning, 2007).  

 Using our general model, we assume for simplicity that there is one good, and that δ = 0 so 

that there is no insurance loading factor. But we now allow 
1

0XL > .  This uncompensated loss 

might reflect lost worker productivity (e.g., sick days without pay), the value of time spent 

receiving treatment, or uncompensated health care spending (e.g., over-the-counter medicine or 

home care).  In this case, the first order condition simplifies to:  

 ( ) ( )1 1 1
2

1 11 0A
X X XB c R c Lσ− − + + =  

The first term is the same as the moral hazard term for the case with no uncompensated loss in 

Section 4.a.1.  The presence of the extra uncompensated loss 
1XL does not change the marginal 

loss from moral hazard because the demand curve is linear.  The loss 
1XL  does increase the losses 

from risk bearing from 
1

2
1

A
XR cσ  to ( )1 1

2
1

A
X XR c Lσ + .  This shift in the demand for risk protection 

without any offsetting shift in the marginal costs of moral hazard leads to an unambiguous shift to 

a lower optimal coinsurance rate in Equation 11: 

           1
1

2
1 1* 1

2 2
1 1 1 1

A
X

X A A

B R L Bc
B R B R

σ
σ σ

−
= <

+ +
              (10) 

 
 The optimal coinsurance rate 

1Xc  is increasing in the price response 1B  and decreasing in 

the underlying variance 2
1σ  in demand but decreasing in the size of the uncompensated loss

1XL .   

The denominator in Equation (10) is the same as that in Equation (9).  The only difference is the 

shift in the numerator, which is unambiguously to lower the optimal coinsurance rate because of 

the increased variance in the costs.  

Uncompensated health-related losses that affect the marginal utility of income reduce the 

optimal coinsurance rate in a straightforward way, by increasing the desirability of transferring 

more income into less healthy states. If insurance against these losses is incomplete, reducing cost 
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sharing for treatment expenses is a second best solution, and cost sharing rates should be kept low. 

Note that only uncompensated losses of type 1,
1
,XL which influence the marginal utility of income, 

affect optimal treatment cost sharing. This is in contrast with optimal cost sharing on preventive 

care, which is also influenced by uncompensated losses that directly affect utility but not income, 

1 1( )Lθ θ . 

 If there are uncompensated losses, it is possible for *
Xc to be negative or to reach a corner 

solution where * 0Xc =  for either large XL  or small 1.B  Equation (10) provides an efficiency-

based rationale for why full insurance can be second best optimal: the absence of complete 

insurance markets to transfer income into particular ill health states of the world means that 

coinsurance rates are set at or closer to zero than they would have been if the alternative insurance 

markets were complete and consumers were able to insure against all health care losses. There are 

many health services and conditions which have substantial uncompensated health care related 

losses. This is particularly true in developing countries where disability and unemployment 

insurance is rare and productivity losses from ill health are often large. Wagstaff (2007) provides 

recent documentation of the large magnitudes of income losses from illness in Vietnam. Thus 

incomplete insurance markets provide a rationale for more generous insurance coverage of health 

care treatment, even when welfare losses due to moral hazard and insurance loading may be 

important.7 

4.a.5  Multiple health care treatment goods  
An important motivation for the modeling two rather than one health care treatment good 

was to be able to examine the role of cross price elasticities and correlated health demands. For 

ease of exposition, we now assume no uncompensated health losses and no insurance loading 

factor, 0.δ = , but explore the general case for demand parameters of the two goods.  In contrast to 

the situation with two goods in a one period model but no uncompensated losses, there are now 

shifts in both the marginal costs from the dead weight loss of c < 1, and from shifts in the risk 

                                                 
7 Although it does not follow in the case of our approximation with a constant absolute risk 
aversion utility function, for some utility functions even uncorrelated financial risks that do not 
affect health may affect optimal cost sharing. For instance, if an individual faces an uncertain 
income or price of food, then it may be optimal to offer more generous health treatment insurance 
to reduce overall financial risk.  We do not explore this issue further here. 
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bearing.  If 
1 2

0X XL Lδ = = = , then the relevant first order term (Equation A7) for the first health 

care good simplifies to:  

 ( ) ( )1 2 1 2
2

1 12 1 121 1 0A
X X X XB c G c R c cσ σ⎡ ⎤ ⎡ ⎤− − + − + + =⎣ ⎦⎣ ⎦    (11) 

with a similar one the second health care good  in Equation A.8.  The first term in the first square 

bracket is the marginal cost of moral hazard for the first good, while the second term indicates the 

shift in that cost if the two goods are complements or substitutes.  The second square bracket is the 

gain from risk protection which is increasing in the own variance and if the other good is 

positively correlated.   Thus the two major components shift in the presence of a second health 

care good.  If the second good is a complement, then the costs of moral hazard are reduced,  If the 

second good is positively correlated with the first, then there are greater gains from reducing risk 

by reducing the coinsurance rates.  

 The final result in terms of the optimal coinsurance rate is ambiguous because it depends 

on whether the two goods are complements or substitutes and whether their demands are positively 

or negatively correlated.  The expressions for 1
*

12

Xc
σ
∂

∂
 and 1

*

12

Xc
G
∂

∂
cannot be signed for all possible 

values of Gij and σij, but this derivative can be unambiguously signed for the limiting case where 

Gij and σij approach zero. In this case,  the two partial derivatives 1
*

12

Xc
σ
∂

∂
and 1

*

12

Xc
G
∂

∂
 are both 

negative. So as the covariance of the errors between two services increases (becomes more 

positive), then the optimal coinsurance rate decreases. Also, when two health services become 

stronger gross substitutes in the sense that 
212 1 XG X c= ∂ ∂ is increased, then both services should 

have lower cost shares. This implies that goods that are complements ( 12 0G < ) should have higher 

cost sharing relative to the case in which cross price elasticities of demand for each service are 

zero.    

  An alternative way to see the interplay of complementarity and correlation is to consider 

the solutions to the two first order conditions jointly.  If we assume that  

1 2
0X XL Lδ = = = , then the optimal coinsurance rates must satisfy  

  
1 2 1 2

2
1 12 1 12(1 ) (1 ) 0A

X X X XB c G c R c cσ σ⎡ ⎤⎡ ⎤− − + − + + =⎣ ⎦ ⎣ ⎦  (12) 

 
2 1 2 1

2
2 12 2 12(1 ) (1 ) 0A

X X X XB c G c R c cσ σ⎡ ⎤⎡ ⎤− − + − + + =⎣ ⎦ ⎣ ⎦  (13) 
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We can rearrange these into 

 
1 2

1 12 12 12
2 2

1 1 1 1
   

A

X XA A
B G G Rc c

B R B R
σ

σ σ
− −

= +
+ +

   (14) 

 
2 1

2 12 12 12
2 2

2 2 2 2
   

A

X XA A
B G G Rc c

B R B R
σ

σ σ
− −

= +
+ +

   (15) 

 

 If the own-price effects are larger than the cross-price effects or if the two goods are 

complements, then both of the two intercepts are positive.   For both goods, the denominator of the 

intercepts are strictly positive if their demand is not perfectly inelastic, or if there is risk aversion 

and variance in health care demand.  Thus, the intercepts would be negative only if the two health 

care goods were substitutes and the cross price effect dominated the own price effect, which seems 

implausible.8  The slopes depend on 12 12
AG R σ− , that is, on whether the two goods are substitutes 

or complements and on whether their demands are positively or negatively correlated.  Figures 1a, 

1b and 1c present the three possible cases for 12G according to whether goods 1 and 2 are price 

neutral, substitutes or complements.   

 

Figure 1a corresponds to where 12 0G =  and the goods are neither complements or substitutes 

while Figure 1b corresponds to the case where 12 0G >  and the two medical goods are 

substitutes.  In both cases as the covariance 12σ becomes more positive, then Line 2 (equation 

(15)) pivots clockwise around the origin, while  Line 1 (equation (14)) rotates 

counterclockwise, ensuring that both coinsurance rates fall.   

 

Figure 1c corresponds to the case where 12 0G < , and the two medical goods are complements.  

The opposite comparative static occurs, with optimal coinsurance rates rising as the health care 

goods become more positively correlated.   

 

In general, the optimal coinsurance rate for each of the two health care goods depends on a 

complex interplay of own and cross-price effects, the degree of risk aversion, and the variances 

                                                 
8  The only plausible example that we could think of was the case where two goods were close 
substitutes in treating a condition where the demand for treatment was very inelastic.  
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and covariances in demand.  As we show in the Appendix, the optimal cost sharing rate *
1c  can be 

written as  

1

2
* 12 2 12 12 12 1 2 2

2 2 2
1 1 2 2 12 12

(   )( ) ( )( ) 
( )( ) ( )

A A

X A A A
G B R G G B R Bc

R B R B R G
σ σ

σ σ σ
− − − − +

=
+ + − −

         (16) 

 

It is straightforward to show that certain elements of the conventional results for insurance 

still apply, even if the overall level depends on complimentarity in demand or covariance 

information: 

1 1 1 1
* * * *

11 22 1 2
 < 0,  < 0,  > 0,  < 0,X X X Xc c c c

B Bσ σ
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
   

But the new insight is that introducing a positive covariance leads to lower coinsurance rates.  For 

the case of the first good, the comparative static is: 

1

12 12

*
2

2 2
12 1 1 2 20, 0

0
( )( )

A
X

A A
G

c R B
R B R B

σ
σ σ σ

= =

∂ −
= <

∂ + +
    (17) 

With a similar result for the second good. 
 

4.b. Multiple periods 
 Our framework can also address the case of multiple periods with correlated health care 

demands. We focus here on the case where there are only two periods, (indexed by 1 and 2), and 

one health treatment good in each period where Xi is health care demand in period i.9 We only 

allow one cost share, and hence
1 2X X Xc c c= = , and focus on the case where demand is the same in 

each period except for the health shocks iθ , - ( + )+ . 
ii X X iX A B c L θ=  We focus on the case where 

the parameters and price structure are constant over time: 1 2I I I= = ,
1 2X X XL L L= = , 

1 2π π π= = , and 2 2 2
1 2σ σ σ= = .  To allow for the possibility that the health care demands in the 

two periods are correlated, we assume that the second period health shock is 2 1 2θ ρθ ε= + , where 

1 1ρ− ≤ ≤  

                                                 
9 Later in the paper and in the Appendix, we allow for more time periods. 



 - 19 -

 In a dynamic model, we need to introduce savings, which we assume to be optimally 

chosen. In a two-period model, net saving is decided in period 1 after 1θ is known, and spent 

entirely in period 2. In general, the optimal level of savings will depend on the all of the 

parameters of the model. Of special interest is that savings will depend on the cost share cX and the 

first period health shock q1, * *
1 1 1 1( , ) with / 0.XS c Sθ θ∂ ∂ <  In the Appendix, we show that the 

objective function to be maximized through the choice of cX can be written as follows 

      

( )
( ){ }

( ) ( )( )

1 2

2 1

1 *
1 1 1 1

, 2 *
1 1 2 2

2 1 2
2

X X

 ( , ) ( ) ( )
*  

  (1 ) ( , ) ( ) ( )

where
 

( )( )
2

1 1 ( )   

  

X X X

X X X

X X
X X X

X X

V J K S c c L L
EV E

E V J K r S c c L L

J I

B c LK c L

c B c L

θ

θ θ

θθ θ

θ θ θ

ϕ θ θ θ

π
θ ρθ ε

μ

π δ μ

⎧ ⎫⎡ ⎤− − − + −⎣ ⎦⎪ ⎪= ⎨ ⎬
⎡ ⎤+ − + + − + −⎪ ⎪⎣ ⎦⎩ ⎭

= −
= +

+
= + −

= + − − +⎡ ⎤⎣ ⎦

(18) 

 Except for the savings function and the introduction of discounting, j, this formulation is 

very similar in structure to what was used above for the case with one period with multiple states of 

the world. The solution for the optimal choice of Xc is derived in the Appendix. We make the 

following three further assumptions in deriving our solution:  

• Savings is optimal so that for all q1, ( ) ( ){ }2 1
1 2... (1 )  ...I IV r E Vθ θϕ= +  where r is the interest 

rate. 

• The utility function can be approximated using a second order approximation with constant 

relative risk aversion.  

• Consumers can earn a return on savings (1+r) that is the inverse to their discount rateϕ so 

that (1 ) 1rϕ + = .  

            In the case of the quadratic utility function that we have used in our analysis, the optimal 

saving is approximated by *
1 1 1 1 1( , ) ( )X X XS c S s c Lθ θ= − + (shown in Appendix), where the expected 

(ex ante) savings are 1 2
(1 ) 1

1 (1 )A
rS

R r
ϕ

ϕ
+ −

=
⎡ ⎤+ +⎣ ⎦

 and the optimal savings (ex post) are reduced by the 
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proportion 1 2
1 (1 )
1 (1 )

rs
r

ϕ ρ
ϕ

− +
=

+ +
 multiplied by the out-of-pocket health payments and uncompensated 

costs in time period 1. The term 1s  is the marginal propensity to save.   In particular, if (1 ) 1rϕ + =  

(as assumed), *
1 1( , )XS cθ  is reduced to a simple functional form 1 1

1 ( )
2 X XS c L

r
ρ θ∗ −

= − +
+

.10     Under 

these assumptions, when 2n =   the optimal cost share   

 

2
1

*

2
1

11
1

11
1

A
X

X
A

B R L s
c

B R s

ρσ
ϕ
ρσ
ϕ

⎡ ⎤−
− −⎢ ⎥+⎣ ⎦=

⎡ ⎤−
+ −⎢ ⎥+⎣ ⎦

     (19) 

If we plug in the actual function forms, then  

2
2

*
2

2

(1 )1
(2 )(1 )
(1 )1

(2 )(1 )

A
X

X
A

B R L
r

c
B R

r

ρσ
ϕ

ρσ
ϕ

⎡ ⎤−
− −⎢ ⎥+ +⎣ ⎦=

⎡ ⎤−
+ −⎢ ⎥+ +⎣ ⎦

 

This result is very similar to equation (11) for the case of a single period, one health care good 

with an uncompensated loss.  Equation 15 differs only by the addition of a new savings-related 

term ( )
1

1
1

1
s

ρ
ϕ

−⎡ ⎤
Σ ≡ −⎢ ⎥+⎣ ⎦

 in the numerator and denominator. This S term is a function of the 

marginal propensity to save s1, the correlation coefficient between period 1 and period 2 health 

shocks, ρ, and the consumer discount rate j. Note that S is non-increasing in s1, and non-

decreasing in ρ and j, and that *
Xc  is decreasing in S.  

 As before, we interpret the optimal cost sharing result for a variety of special cases.   First, 

consider the case where the marginal propensity to save s1 = 0, so that savings does not respond to 

health shocks. While not optimal, this is true of most government and private pensions. In this 

case, S=1, and the one period model results remain correct even with two periods. The consumer 
                                                 
10 In the more general case of any 2n >  periods, where the autocorrelation terms are allowed to 

have an arbitrary pattern rather than a first order autocorrelation, we show in the Appendix that the 

optimal saving function still has a closed form 

1
1

1
* 1
1 1

1

1

(1 ) (1 )
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i
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i

r
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must absorb all health shocks fully in the first period, so there is no difference between the static 

and dynamic choices of * .Xc  

 Second, consider the case where the period 1 and period 2 shocks are perfectly correlated, 

so that ρ=1. Once again S=1 and the one period model results hold. Although savings is possible, 

there are none because the consumer knows exactly what the shock will be in period 2.  There is 

no diversification across periods in the burden of health shocks. In this limiting case, insurance 

should be the same as with no savings. 

 Third, consider the case where health shocks are uncorrelated over time, so that ρ = 0. The 

discount rate j is a number close to one, and it is convenient to consider the case where it is 

exactly one so that there is no discounting. A plausible value for s1 in a two period model is that s1 

will be close to one half, so that half of the burden of a health shock is born in period 1 and half is 

deferred to period 2. Since the cost of risk goes up with the square of the deviation from certainty, 

the savings reduces riskiness in the first period to one-quarter of the one period value and hence 

the cost of first period risk (proportional to the variance) is reduced to one quarter of the one 

period model results. Since this burden is shared between two periods, the net reduction in risk is 

by one half of the variance. The reason that S only declines to 0.75 is that in a two period model 

there is no opportunity to reduce the burden of shocks in the second period. So while savings can 

reduce the burden of first period shocks to one quarter of their uncertainty cost, savings cannot 

reduce the burden of second period shocks. Capturing this would require more periods. Whether 
*
Xc  is higher or lower than implied by the one period model depends on how consumers choose 

their savings, which is a function of all of the parameters of the model.  

 Fourth, consider the more plausible case where 0< s1<1, 0<ρ<1, and 1ϕ ≈ , and 0.XL ≥  If 

we ignore the fact that 1s
∗ is influenced by all of the parameters of the model, then we can show 

that the first order effects of an increase in ρ  is to lower the optimal coinsurance rate *
Xc . 

Similarly, we can show that increasing the discount rate j should decrease optimal cost sharing.  

Finally, in the fully general case, the effects of each parameters on *
Xc is ambiguous in 

general since the optimal savings rule can change as the correlation coefficient and discount 

factors change. 
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4.c. Theoretical Summary 
 We have extended the theoretical literature on efficiency-based models of optimal 

insurance to address issues that arise from correlated sources of uncertainty, whether the source of 

the correlation is due to correlated demands across different health care goods at a point in time, 

correlated demands over time, or the correlated losses that arise from uncompensated losses that 

accompany the losses covered by the insurance plan.  By using a quadratic indirect utility function 

and, hence, a linear demand specification, with zero income effects on the demand for health care 

treatment, we have been able to derive closed form solutions for optimal cost sharing on health 

care treatment when there are multiple health care goods or where there are multiple time periods.   

 Table 1 summarizes the comparative statics findings in this paper for the various 

parameters considered for  health care treatment goods and multiple time periods. In some of the 

cases that we have considered, we could only sign the effects of a parameter on optimal cost shares 

for certain parameter values. These cases have the comparative static results in parentheses.   

 The parameters in the first four rows of Table 1 reaffirm conventional results found in the 

previous literature, while the terms at the bottom reflect our new results that extend the previous 

literature. It is well established that optimal cost sharing on health care treatment should be higher 

as demand becomes more elastic, consumers become less risk averse, or the variance of spending 

decreases. Our findings are consistent with the findings from Besley (1988) and others.   Our 

theoretical findings also are consistent with those of Goldman and Philipson (2007) on 

complements and substitutes – that all other things equal, cost sharing should be higher for 

complements than substitutes.   

 Our new finding is that positively correlated losses should lead to more generous coverage 

(lower cost-sharing) than uncorrelated or negatively correlated losses.  

 

5.  Empirical Relevance. 

In this section we examine the empirical magnitudes of two innovation of our model: the 

role of contemporaneous correlations across multiple goods and of autocorrelations over time. We 

use data from the MEDSTAT Marketscan data base from the 2000-2004 period on a population of 

non-elderly (age <65) enrollees in employment-based commercial plans.   We have restricted the 

sample to FFS, HMO, PPO and POS plans which covered outpatient pharmacy services, in 

addition to outpatient physician and inpatient services.  We included only those individuals who 
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were continuously enrolled for the full five year period, which yields a sample of   1,335,448 

individuals.  Besides it size, these data have two major advantages.  The first is that the enrollees 

are followed for several years, allowing us to study correlations by type of health care over time.  

Second, all of the enrollees had pharmacy coverage, thus allowing us to contrast pharmacy 

expenditure patterns with those of both inpatient and outpatient care.  

Although our analytical model has been developed for the simple case of pure coinsurance 

with no deductibles or stop-losses, we know that all optimal insurance programs are more complex 

than this, typically including an upper limit on the out of pocket payments by consumers for their 

health care (Arrow, 1964, 1971, 1976; Buchanan et al, 1991). Since the point of our analysis is to 

highlight the importance of correlations of the out of pocket risk facing consumers with multiple 

treatment goods and multiple periods, we examine these patterns in two ways: using actual  (i.e., 

unadjusted) spending and using spending top-coded at $2000 for each of three broad spending 

groups.11 The question we address from the perspective of our model is which is riskier from the  

consumers point of view – being exposed to the first $2000 of risk for drug spending, $2000 of 

risk for outpatient spending, or $2000 of spending for inpatient care?  

Table 2 summarizes key means, standard deviations and correlations from our five year 

sample, decomposed into three broad types of services – inpatient facility payments, all outpatient 

services, and pharmacy services.12 The top half displays for covered expenses for the level of 

services consistent with relatively generous commercial insurance, while the bottom half displays 

topcoded covered charges for a hypothetical simulation in which each of the three broad services 

are subject to a $2000 deductible. While having such a structure of deductibles would never be 

part of an optimal insurance program, separate deductibles on pharmacy, inpatient care, or other 

specific services is not unknown, and it is useful to understanding the risk implied by partially 

covering specific services. The threshold of $2000 was chosen because it corresponds to typical 

                                                 
11 Our linear approximation of demand, the assumption of a constant absolute risk aversion, and 
the assumption that consumers are never constrained to be able to purchase less than the optimal 
amount of medical care also make the most sense when financial losses are limited. By top-coding 
spending on each type of service at a fixed dollar amount, we make the closed form solutions and 
approximations of our model more reasonable.  
12 Some researchers may expect a higher proportion of spending to be on inpatient care. The 
MEDSTAT commercial claims do not include Medicaid or Medicare enrollees who have higher 
hospitalization rates, and overall finds 24% of all covered charges are for inpatient care in 2004. 
Our sampling frame of using only people with five consecutive years of insurance coverage has 
somewhat lower proportion of 22 percent of spending in inpatient services.  
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deductibles in many high deductible or consumer directed health care (CDHC) plans as well as the 

magnitudes involved in some pharmacy benefit plans. Note that in this simulation we have not 

included adjustments for the moral hazard response to the high deductibles. 

The first two columns in the top half of Table 2 reaffirms that when there is no insurance 

then inpatient spending, while not the largest expected cost, is by far the most risky in a one period 

framework. This is less compellingly true when one looks at variation over a five year period, as 

shown in the final column, which examines the standard deviation of the five year sum of each 

type of spending. The bottom half of Table 2 reveals that expected costs and their standard 

deviations are substantially different when consumers are fully insured for any costs about $2000 

for each of these three broad services. We see that spending below a deductible – topcoded 

spending – on inpatient services is substantially less risky than either outpatient or pharmacy 

spending. Using the one period standard deviation of each service, outpatient spending is the most 

risky service, while looking over a five year period, pharmacy spending has the highest standard 

deviation. Also of interest is that being at risk over five years for the first $2000 of pharmacy 

spending is almost as risky (std. dev. = $2952) as being at risk for the first $2000 of total spending 

on inpatient, outpatient and pharmacy costs (std. dev. =$3294). 

Table 2 also shows the autocorrelation coefficients for unadjusted and topcoded spending 

for each of the three services and total spending, which helps us better understand why inpatient 

spending is less risky over a multiyear period.  Autocorrelation coefficients for spending over time 

are consistently lowest for inpatient care, followed by outpatient care, and followed by pharmacy 

spending. This is even more strongly true using topcoded spending, as shown in the bottom half of 

the table.  The autocorrelations also reveal that spending is much slower to return to normal levels 

following a health shock than a simple autoregressive pattern would find. Chronic conditions 

obviously explain this pattern. The larger correlations for pharmacy than outpatient care would 

suggest a larger correction for pharmacy than outpatient over the one period result.   

Our theoretical model shows that contemporaneous correlations between multiple health 

service goods can be important. Table 3 presents the correlation matrix for spending on inpatient, 

outpatient, pharmacy and total spending calculated in three ways. The first correlation matrix for 

uses one year (2004) spending and reveals that inpatient spending is the most closely correlated 

with total spending, and that correlations among other services are relatively modest – the 

conventional view. The middle part of Table 3 reveals that if a longer time frame is used – here 

five years, then unadjusted spending on outpatient services becomes even more highly correlated 
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than inpatient spending with total health care costs. Pharmacy spending also grows in its 

correlation with other services. The final part of Table 3 uses the five year sum of the $2000 

topcoded spending on each of these three services. These calculations show that topcoded 

outpatient spending and pharmacy spending are similarly correlated with total spending (ρ=.885 

versus ρ=.806), hence implying similar increases in riskiness due to this correlation in our 

framework. We are not interpreting our findings as saying that pharmacy costs deserve equal 

coverage as inpatient or outpatient services, only suggesting that once longer time periods are 

considered (where correlations matter) and high deductibles are imposed, then the remaining risk 

that consumers face from pharmacy spending is much higher than is suggested by conventional 

one-period models that ignore contemporary and serial correlations when calculating welfare 

losses and choosing optimal insurance rates. 

It is interesting to also use the panel dimension of our data to explore how risks are 

changing over time. Figure 2 displays the per capita spending on the three large groupings – 

inpatient, outpatient, and pharmacy, both for unadjusted spending and topcoded spending, as 

explained above.  (Note that we use different vertical axis scales in the two figures.) The pattern 

over time reveals both that pharmacy spending is growing over time, and topcoded pharmacy 

spending is growing faster than any other category of spending. To the extent that services with 

larger means are more likely to generate larger losses from moral hazard, the differences would 

suggest greater coverage of inpatient care.  Whether this is a reasonable step toward a second best 

optimal coinsurance rate would depend on the relative own price elasticities of these three 

services.  To the extent that the evidence shows that inpatient services are less responsive to cost-

sharing, inpatient should have a lower coinsurance rate.  The evidence on the relative price 

elasticities of outpatient services and pharmacy is mixed.   

Figure 3 repeats the analysis over time of the standard deviation of the three services, both 

using unadjusted spending and topcoded spending.  Following on the earlier literature (especially, 

Besley, 1988), the larger the standard deviation (and variance), the lower the coinsurance rates 

should be, all other things equal.  Not surprisingly, inpatient care is the most variable of the three 

services, and pharmacy is the least when looking at unadjusted spending, while outpatient and 

pharmacy have the highest standard deviations when topcoded. Matching the dramatic growth in 

drug spending, the standard deviation of drug spending  - both unadjusted and using topcodeed 

spending – is growing the most rapidly. While the static results suggest higher coinsurance rates 

for pharmacy than for outpatient care, which would have higher coinsurance rates than inpatient 
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care, the topcoded models suggest that pharmacy spending is more risky than inpatient spending, 

and becoming increasingly so. 

 Needless to say, the MEDSTAT data do not have information on the range of 

uncompensated losses other than deductibles and copayments.  Thus we are unable to comment on 

the magnitude of the correction for correlated uncompensated losses. Moreover, in the absence of 

estimates of the underlying demand elasticities for these three services, or even more challenging 

the degree of complementarity among them, it is difficult to determine how large the shift in 

coinsurance rates would be under our rules would be from those based on Besley’s formulation or 

older approaches.  But the direction is clear.  By considering the correlated responses over time, 

pharmacy would have a lower coinsurance rate than would occur under a one-period models.  

Spending on inpatient services, which is less correlated than outpatient and pharmacy over time 

would receive the least adjustment.   

 

6.  Discussion 
 The new results that we find most interesting are those that (1) focus on the roles of 

uncompensated losses differentially over health care goods and time periods, and (2) those that 

address the role of correlations across goods and time.  As in our earlier work (Ellis and Manning, 

2007), uncompensated health losses that are related with insured services should influence the 

level of cost sharing for correlated health care goods. These losses provide a rationale for both 

reducing out-of-pocket costs for those goods which tend to have larger uncompensated losses such 

as time lost due to hospitalization and recovery, going for a physician visit, or copayments. The 

intuition is clear.  If consumers face uncertain income losses which are correlated with health care 

spending shocks on certain treatment goods, then over insuring those treatment goods is a second 

best response to reduce this combined risk from the compensated and uncompensated elements.  In 

the tradeoff of moral hazard against the risk premium, the key term in uncertainty in the demand 

for health goods in the single period, two-good model is ( ) ( )1 1 2 21 2X X X Xc L c Lθ θ⎡ ⎤+ + +⎣ ⎦
 where 

the θ’s are uncertain ex ante.  The risk premium depends on the variance of this whole expression, 

which in turn depends on the size of the uncompensated losses (the L’s)  compared to the out-of-

pocket copayments (the c’s).  If one of the losses is much larger than the other, holding the 
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variance in θ constant, then the corresponding c has to fall to reduce the overall variance and risk 

premium.  The term that gives rise to the moral hazard is the term:13   

 
1 1 1 2 2 2 1 1 2 2

1 1 2 2

2 2
1 2

12

1 1
2 2( ) ( ) ( ) ( )

( )( ),
X X X X X X X X X X

X X X X

c L c L B c L B c L

G c L c L

μ μ+ + + − + − +

+ + +  

which involves the sum of the copayments (the c’s) and the corresponding uncompensated losses 

(the L’s).  Thus the uncompensated losses increase both the benefits from risk reduction (the 

variance term from above) and the costs of insurance (the demand / moral hazard term.).  

 Our finding that optimal treatment cost shares should be lower for positively correlated 

treatment goods and goods with positive cross price effects reaffirm the findings of Besley (1988) 

on multiple goods as well as the intuition that positively correlated amounts have greater variance 

which need to be partially offset by lower cost sharing.14 The empirically significance of these 

results is difficult to assess, since relatively little research has focused on estimating these two 

parameters. They may nonetheless provide guidance on coverage for certain goods such as certain 

brand name drugs, specialty curative goods, or the coverage of serious chronic illnesses, which 

may have close or not close substitutes and complements. Our framework also provides a rationale 

for more generously covering services provided relatively more to family (e.g., maternity care) 

rather than individual contracts, on the grounds that these services are more positively correlated. 

 Finally, our multiperiod model shows the key role that savings decisions and correlated 

errors play in setting optimal cost sharing. We are not aware of any papers in the health economics 

literature that has emphasized this topic, although there is a sizeable literature on how large 

uncovered health losses can lead to dissaving and bankruptcy. While there is a literature on how 

consumers respond to health spending shocks, the implications for optimal health insurance design 

deserves reexamination. Expensive, chronic conditions, which exhibit strong positive serial 

correlations over time for certain health care services provide an economic rationale for more 

generous insurance coverage, because consumers cannot use intertemporal savings to reduce the 

burdens of such spending.  Thus in a world where chronic and acute care look to be otherwise 

                                                 
13 This is the term K from Appendix equation A.4, which is the deterministic part of the indirect 

utility function for the two health care goods.  
 
14 Besley (1988, 329-330) indicates that cross-elasticities and covariances jointly affect which 
good is more generously covered. 
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equivalent in terms of price responses and variability, the stronger correlation in health care over 

spending for the chronically ill would lead to better coverage than the standard one period model 

would suggest.  Since so much of pharmacy use exhibits the same property, this line of argument 

would also lead to better pharmacy coverage.  

 It is worth highlighting the limitations of our study. We develop all of our models using a 

very specific demand structure, in which demand is linear in its arguments, have errors that are 

additive and have constant variance, and the demand for treatment is perfectly income inelastic.15  

In doing so, we assume away most income effects or corner solutions, which are particularly 

relevant in any equity discussions of optimal health insurance. In our model, subsidizing health 

care does not affect relative incomes, although it does affect those with poor health. We recognize 

that these are relatively restrictive assumptions, although our models remain more general than 

many others that have used only consumer surplus or assumed only two health care states or one 

health care good. 

 We have also repeatedly used a linear approximation of the marginal utility of income 

which is consistent with approximating the utility function with a constant absolute risk aversion 

function. We are not especially troubled by this assumption because our results should hold as an 

approximation for any arbitrary function, as long as the absolute risk aversion parameter is not 

varying too much across states of the world.  Our uncompensated loss function and optimal 

savings function were also approximated using linear functions, although again, we believe that 

our results should hold as an approximation for more general nonlinear functions. 

The other restrictive assumption that we have made for tractability sake is that the variance 

in health care expenditure is a constant, conditional on the health state.  Specifically we have 

assumed that the variance and the other higher order moments in healthcare treatment do not 

depend on the level of cost sharing, that is 2 / 0icθσ∂ ∂ =  or other observable factors in the demand 

function.  An extension of the current work would allow for the common observation that the 

variability in health care expenditures is an increasing function of the mean or expected value of 

expenditures given the covariates in the model.16 

                                                 
15 The empirical literature finds that demand is income inelastic overall, especially in the absence 
of adverse selection on insurance coverage (Newhouse et al, 1993).  But demand for specific 
health treatment services may be more highly income elastic and yield different results.  
16 When the variance becomes an increasing function of the mean, we pick up an extra term in the 
cost-of-risk part of the first order condition that did not exist if demand for health care treatment 
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 Our models point to the importance of understanding the empirical significance of a 

number of demand and cost parameters. Of all of our parameters, the demand responsiveness of 

various health care treatment goods to cost sharing has been perhaps the most carefully studied. 

The Rand Health Insurance Experiment and others studies have established that spending on 

inpatient care is less responsive to cost sharing than spending on outpatient care, which is less 

responsive than spending on pharmaceuticals (“drugs”).  The evidence on demand responsiveness 

of preventive care is more ambiguous, but it appears to be at least as responsive to insurance 

coverage as outpatient treatment. Hence the ex ante moral hazard problem that we model seems to 

be very real, and insurance coverage of preventive care is justified due to the pecuniary externality 

of cost savings from reduced health premiums. 

 The variances and means of spending on different types of treatment goods are also well 

understood. Inpatient spending is much more variable than outpatient spending and drug spending, 

justifying greater coverage for inpatient care than other health services. These conclusions follow 

from the previous literature as well as our framework.  

 Less well studied are cross price effects, contemporaneous correlations, and serial 

correlations over time of specific treatment goods. Drug spending and outpatient spending have 

higher contemporaneous covariances with other types of spending than inpatient care does, 

suggesting they may deserve greater insurance coverage than would otherwise be the case. Cross 

elasticities of demand for drug and outpatient care are likely to be much higher than for inpatient 

care, justifying greater coverage. Some evidence on this is provided in Meyerhoefer and Zuvekas 

(2006) who demonstrate that cross price elasticities between non mental health drugs and spending 

on treatment for physical health are moderately large and statistically significant.  

                                                                                                                                                                
X(cX) had constant variance, conditional on health status. As we increase the coinsurance rate, we 
have the usual increase in the term related to the variance of out-of-pocket expenses.  But because 
increasing coinsurance also decreases the mean, it also decreases the variance. Thus, we have a 
partially offsetting term to include in the cost of risk. The magnitude of this reduction depends on 
how price responsive demand is.  As long as the demand for health care treatment is inelastic with 
respect to cost sharing, the qualitative pattern described earlier in this section prevails. See 
Feldman and Manning (1997) for such an extension to the basic model that we considered in Ellis 
and Manning (2007) and in this paper, except that it allowed for a constant coefficient of variation 
property for health care expenditures instead of a constant variance assumption. 
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 Relatively little work has explored the intertemporal correlations of specific treatment 

services. We do know that spending on drugs and outpatient care is much more higher correlated 

over time than spending on inpatient care. Jiang, Ellis and Kuo (2007) provide recent evidence on 

this issue in examining more than 30 different medical services defined by type of service, 

provider specialty and place of service. In our framework, high serial correlations justify greater 

insurance coverage than is implied using a one period model.  The evidence from the MEDSTAT 

Marketscan data suggest that these correlations are sizeable and important for both outpatient and 

for pharmacy, but stronger for pharmacy than outpatient.  We suspect that the cause of this 

difference is that so much of the use of pharmacy is related to the treatment and management of 

chronic illnesses.   

 Perhaps the area most in need of empirical work is to document the magnitude of 

uncompensated health losses that are correlated with health care spending. Significant 

uncompensated costs provide a rationale for zero or even negative cost shares on treatment goods 

and increased cost shares on prevention in the absence of perfect insurance markets. It would be 

interesting to know how large are the adjustments needed to the conventional model results. 
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Table 1.   Comparative Statics on Optimal Coinsurance Rate 

iXc∗   

 

 

Note: results in parentheses only hold for specific values of 

key parameters.  

   

Effect of  on 
iXc∗

Own demand slope |Bi| + 

Risk aversion parameter RA - 

Variance of spending on own i σ1
2 - 

Insurance loading factor δ + 

Uncompensated losses affecting income L1 - 

Uncompensated losses affecting utility directly L2 0 

Variance of spending on other good j σ1
2 - 

Covariance of spending on i and j σij (-) 

Other good demand slope |Bj| - 

Cross price term for other good Gij (-) 

Correlation with next period error ρ (-) 
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Table 2         
Means, standard deviations, five year autocorrelation rates of inpatient, outpatient and pharmacy 
spending 
 

 

          

  2004 

 
2004  

Standard Autocorrelation with spending in year 

Standard 
deviation of 
5 year sum

   Mean deviation 2004 2003 2002 2001 2000 

Using unadjusted spending         

 2004 inpatient spending   $          871  $   8,116 1.000 0.111 0.082 0.062 0.055 $   16,288

 2004 outpatient spending  $      2,150  $   7,018 1.000 0.460 0.332 0.271 0.240 $   17,702

 2004 pharmacy spending   $          977  $   2,321 1.000 0.825 0.622 0.585 0.528 $     7,700

 2004 total spending  $      3,999  $12,856 1.000 0.418 0.304 0.248 0.223 $   31,875

                  
Using spending topcoded at $2000             

 2004 inpatient spending   $            94  $      421 1.000 0.132 0.115 0.102 0.090 $      1,089

 2004 outpatient spending  $          844  $      825 1.000 0.469 0.414 0.374 0.354 $      2,870

 2004 pharmacy spending   $          614  $      739 1.000 0.872 0.783 0.637 0.586 $      2,952

 2004 total  spending  $       1,108  $      826 1.000 0.651 0.590 0.525 0.494 $      3,294
 

 
Note:  Results are based on healthcare services for MEDSTAT Marketscan data age < 65, 

continuously enrolled cohort 2000-2005, N= 1,335,448. 
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Table 3   Correlations across spending on healthcare services 
 

3A 
2004 unadjusted spending 

 
 

Inpatient Outpatient Pharmacy Total 

Inpatient 
 

1.000 .278 0.129 0.807 

Outpatient 
 

 1.000 0.251 0.767 

Pharmacy 
 

  1.000 0.399 

Total 
 

   (symmetric)   1.000 

 
3B 
Five year sum of unadjusted spending 
 

 
 

Inpatient Outpatient Pharmacy Total 

Inpatient 
 

1.000 .395 0.215 0.782 

Outpatient 
 

 1.000 0.352 0.842 

Pharmacy 
 

  1.000 0.547 

Total 
 

   (symmetric)   1.000 
 

     
 

3C 
Five year sum of $2000 topcoded spending 
 

 
 

Inpatient Outpatient Pharmacy Total 

Inpatient 
 

1.000 .372 0.269 0.350 

Outpatient 
 

 1.000 0.603 0.885 

Pharmacy 
 

  1.000 0.806 

Total 
 

   (symmetric)   1.000 
 

     
 
 
Note:  Numbers shown in text are correlations among healthcare services for MEDSTAT 
Marketscan data, age < 65, continuously enrolled cohort.  N= 1,335,448
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Figure 1a Optimal coinsurance rates for 12 =0G   
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Figure 1b Optimal coinsurance rates for 12 < 0G   
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Figure 1c Optimal coinsurance rates for 12 > 0G   
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Notes for figures 1a-1c  
 

          1 2 2 1
1 12 12 12 2 12 12 12

2 2 2 2
1 1 1 1 2 2 2 2

(Line1)       (Line 2)
A A

X X X XA A A A
B G G R B G G Rc c c c

B R B R B R B R
σ σ

σ σ σ σ
− − − −

= + = +
+ + + +  

 
          Intercepts on axes for 

1Xc and 
2Xc do not shift because they do not depend on 12σ . 

1Xc  

Line 1 

Line 2 

12  σ ↑ ⇒
1Xc∗ & 

2Xc∗ ↓  
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Figure 2 
Mean Per Capita Spending on Health care Services, 2000-2004 

 
2a Unadjusted spending 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b Spending topcoded at $2000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  Sample is five-year continuously enrolled cohort, aged < 65, from 
MEDSTAT Marketscan data 2000-2004 (N=1,335,448). 
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Figure 3 
Std. Dev. of Per Capita Spending on Health care Services 

 
3a Unadjusted spending 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 

3b  Spending topcoded at $2000 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Sample is five-year continuously enrolled cohort, aged < 65, from MEDSTAT 
Marketscan data 2000-2004 (N=1,335,448)  

 
 

0

100

200

300

400

500

600

700

800

900

2000 2001 2002 2003 2004

St
d.

 d
ev

. o
f s

pe
nd

in
g 

pe
r p

er
so

n 
to

p 
co

de
d 

at
 $

20
00

Year

Inpatient
Outpatient
Pharmacy

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2000 2001 2002 2003 2004

St
d.

 d
ev

. o
f s

pe
nd

in
g 

pe
r p

er
so

n

Year

Inpatient
Outpatient
Pharmacy



 - 40 -

Appendix  

This appendix derives selected analytical results in the main paper. For convenience, Table A-1 
presents our notation. Equation numbers shown without an A suffix correspond to numbering in the 
main 

text.

 = { } = quantity of health care treatment of service 
 = quantity of all other consumption goods

  = consumers total income 
  = disposable income after premiums and prevention s

Table A-1 Notation
iX X i

Y
I
J pending

  = premium paid by consumer
,   = demand prices of   and 

cost share rates on treatment  (share paid by consumer)

  = { } = random shocks affecting health and demand for  
,

i

i

i

X Y i

X i

i i

X X

P P X Y

c X

X

π

θ θ
μ μ

=

 = mean of health care spending on  or  when care is free

 = slope of demand curves when written in the form  =  -  + 

cross price effect of  on  and also  on 

 = insurance

i i

j i

i

i i X i X i

ij X i X j

X X

B X B c

G c X c X

μ θ

δ

=

1
2

i

 loading factor
 = discount rate used by consumer
 = interest rate received on savings by consumer
 = savings in period 1

= variance of  and also variance of health care spending 
 = the consumer

i i

r
S

X
V

ϕ

σ θ
's utility function

 = absolute risk aversion constant= - /
= per unit uncompensated costs of treatment 

( ) = uncompensated health losses that reduce effective income from random shock 
i

i

A
II I

X i

i i

R V V
L X

Lθ θ θ

 

A-2. Optimal cost sharing rates for health care treatment  
Assume there is no preventive good, and that treatment goods X1 and X2 have linear demand 

curves of the form  

 

  

1 2

2 1

1 1 1 12

2 2 2 12

- / /

- / /
X Y X Y

X Y X Y

X A B P P G P P

X A B P P G P P

= +

= +
    (A.1) 

These demands are consistent with a risk neutral indirect utility function of 
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1 2 1 2 1 2
2 2

1 2S
1 2 122 2 2V  

2 2
X X X X X X

Y Y YY Y Y

B P B P P P P PI A A G
P P PP P P

= + + − − −                   (A.2) 

Using the normalizations
1 1 1 2 2 2

  1,    ,    ,   
iY X X X X X X i X iP P c L P c L A μ θ= = + = + = + , letting 

J I π= − , applying the concave transformation ( )SV … , this yields an indirect utility function that 

can be written as 

 

( )
( )

1 1 2 2
1 1 1

1 2

2 2 2 1 1 2 2

2 2
1 2

1S
1 2

2 12

( ) ( )
( )

2 2V  ( ) ( )
( ) ( )( )

X X X X
X X XS

X X X X X X X

B c L B c L
J c L

V L L
c L G c L c L

θ θ
μ θ

θ θ
μ θ

⎡ ⎤+ +
+ + − + +⎢ ⎥

= − −⎢ ⎥
⎢ ⎥− + + − + +⎣ ⎦

 (A.3) 

Taking partial derivatives with respect to 
1Xc yields 

 

1 1 2 2

1 1 1 1 2 2
1

1 1 1 2 2 2 1 1 2 2 1 1 2 2

1 2
S

1 12 1

2 2
1 2 12

1 1
2 2

( ) ( )
V0  

( ) ( )

,

( ) ( ) ( ) ( ) ( )( ),

S
I X X X X

X X X X X X
X

X X X X X X X X X X X X X X

V J K c L c L

E
c B c L G c L

c

where
J I

K c L c L B c L B c L G c L c L

θ

θ θ

π μ θ

π

μ μ

⎧ ⎫⎡ ⎤− − + − +⎣ ⎦⎪ ⎪∂ ⎪ ⎪= = ⎛ ⎞⎨ ⎬∂∂ × − − + + − + −⎜ ⎟⎪ ⎪⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

= −

= + + + − + − + + + +

1 1 1 1 2 2

2 2 2 2 1 1

1 1 1 2 2
1

1 12

2 12

1 1 1 12 12 12

(1 ) ( ) ( )
(1 ) ,

(1 ) ( ) ( )

(1 ) 2 2

X X X X X X

X X X X X X

X X X X X
X

c B c L G c L

c B c L G c L

B B c B L G c G G L
c

μ
π δ

μ

π δ μ

⎧ ⎫⎡ ⎤− − + + +⎪ ⎣ ⎦ ⎪= + ⎨ ⎬
⎡ ⎤+ − − + + +⎪ ⎪⎣ ⎦⎩ ⎭

∂ ⎡ ⎤= + − − + + + − −⎣ ⎦∂
 (A.4) 

Taking a first order approximation of S
IV around J-K, we can write 
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[ ] [ ] ( ) ( )

[ ]

[ ] ( ) ( )

1 1 2 2

1
1 1 1 2 2

1

1 1 1 2 2
1

1 1 2 2

1 2
S

1 12 1

1 12 1

1 2

V  
( ) ( )

( ) ( )

S S
I II X X X X

X X X X X X
X

S
I X X X X X

X

S
II X X X X

V J K V J K c L c L

E
c B c L G c L

c

V J K B c L G c L
c

E V J K c L c L

θ

θ

θ θ

π μ θ

π μ θ

θ θ

⎧ ⎫⎡ ⎤⎡ ⎤− − − + + +⎣ ⎦⎣ ⎦⎪ ⎪∂ ⎪ ⎪≈ ⎨ ⎬⎛ ⎞∂∂ ⎪ ⎪− − + + − + −⎜ ⎟⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

⎡ ⎤∂
− − − + + − + −⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎡ ⎤= − − + + +⎣ ⎦

1 1 1 2 2
1

1 12 1( ) ( )X X X X X
X

B c L G c L
c
π μ θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪

⎡ ⎤⎪ ⎪∂
× − − + + − + −⎢ ⎥⎪ ⎪∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (A.5) 

Defining ( ) ( ) ( )1 2

2 22 2
1 1 2 2 12 1 2 , , ,

S
A II

S
I

VR E E E
V θ θ θσ θ σ θ σ θ θ−≡ ≡ ≡ ≡ , using ( ) 0iEθ θ = ,  the first 

order conditions for the maximum, once divided through by the (nonstochastic) ( )S
IV J K−  can be 

approximated as follows.  

 

 

[ ]

1 1 1 2 2
1

1 1 2 2 1 1 1 2 2
1

1 1 1 2 2
1

1 12 1

1 2 1 12 1

1 12 1
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Finally replacing
1Xc

π∂
∂

 and rearranging slightly, we get an expression that is linear in 

1Xc and . 
2Xc . By symmetry, we get the corresponding expression for 

2Xc , which is also presented 

below.  
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In the main text we examine a number of special cases. 

A-2.1 One good, no uncompensated losses, no insurance loading costs 
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A-2.2 One good, no uncompensated losses, positive insurance loading costs 
If

2 1 2
2

2 12 2 12 0X X XB G L Lμ σ σ= = = = = = = , and 0δ > , then the FOC 

Error! Reference source not found. simplifies to  
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A-2.3 One good, no insurance loading factor, uncompensated losses 
If 

2
2

2 12 2 12 0X B Gμ σ σ δ= = = = = = , but 
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0XL > , then the FOC 

Error! Reference source not found. simplifies to  
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A-2-4 Two goods, no insurance loading factor, no uncompensated losses, general demand 
structure  

If 
1 2

0X XL Lδ = = = , then equations Error! Reference source not found. and 

Error! Reference source not found. can be solved for 
iXc as  
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It is straightforward to show from Error! Reference source not found. that  
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The expressions for 1
*

12

Xc
σ
∂
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 and 1

*
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G
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∂
 cannot be signed for all possible values of ijG and ijσ , however 

these derivatives can be unambiguously signed for the limiting case where ijG  and ijσ approach 

zero. In this limiting case the two partial derivatives become 
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Hence in this limiting case 1
*

12

Xc
σ
∂

∂
and 1

*

12

Xc
G
∂

∂
are both negative. This means that for sufficiently small 

ijG  and ijσ , as the covariance of the errors between two services increases (becomes more positive), 

then the optimal coinsurance rate decreases. Also, when two health services become stronger gross 

substitutes in the sense that 
2

1
12

X

XG P
∂= ∂  is increased, then both services should have lower cost 

shares, while goods that are complements should have higher cost sharing relative to the case in 

which cross price elasticities of demand for each service is zero. 

  

A-3. Two period model 
It is well known that there are close parallels between models with multiple states of the world and 

models with multiple periods. One key difference is that there is the possibility of correlated 

outcomes in different periods, either because health shocks are serially correlated or because the 

two periods are linked by savings. We examine here a two-period model with one health care 

treatment good in each period, allowing both savings and correlated errors. The demand structure 

is assumed to be the same in both periods, and hence so are premiums. We use the direct utility 

function which is the dual to the indirect utility function used thus far. We also focus on the case 

where δ = 0, 1 2I I I= = and 
1 2X X XL L L= = , hence 1 2π π π= = . We also assume constant 

variances over time 2 2 2
1 2σ σ σ= = and (1 ) 1rϕ + = . 
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where 
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As long as income is sufficient to always buy the optimal amount of iX , then the same 

amount of iX  will be purchased as in the one period case.  
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Hence we can use:
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                                                                               (A.18) 

Savings will equilibrate the expected marginal utility of income in period 2 with the 

marginal utility in period 1. Hence we have  
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Let the optimal savings function be *
1 1 XS ( , c )θ  (derived below) and write the problem using indirect 

utility as 
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Except for the savings function, this formulation is very similar in structure to that used for multiple 

states of the world. Differentiating with regard to Xc yields  
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By the envelope theorem, the terms involving 
*
1 1( , )X

X

S c
c
θ∂
∂

in the above expression will cancel out 

due to the assumption of optimal savings. Hence we can rewrite this as: 
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Except for the fact that two different pieces of the utility function are used, and the appearance of 
the Savings function as an argument of the 1

IV  this is identical to the earlier specification. Taking a 

first order Taylor series approximation of the 1
IV  and 2

IV  functions, we can use the familiar 
expansions 
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If consumers use the same discount rate as that is implied by their real interest rate on savings, then 

(1 ) 1rϕ + = and the top expression in brackets will be zero. With this assumption we can further 

simplify 
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As a reminder, 2X X X
X
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This expression cannot be simplified further without explicit savings function form *
1 1( , )XS cθ . As 

is showed later, optimal savings rule can be approximated by the following linear function   
*
1 1 1 1 1( , ) ( )X X XS c S s c Lθ θ= − +      (A.26) 
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This implies that there is an average savings level 1S but that savings is reduced by proportion s1 for 

all losses (compensated or uncompensated). Since 1S will be uncorrelated with ( )1 2θ θ− , it will drop 

out once expectations are taken and we can write 
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Rearranging yields the following condition for optimal cost sharing with multiple periods, 
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If we plug in function form of 1
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Now we turn to deriving optimal saving function. As our model set up, saving is determined 

after health shock is revealed in the 1st period. As long as income is sufficient, the optimal amount 

of iX will be purchased in both periods and will not be affected by the optimal saving decision, 
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however saving does affect the amount of iY . Due to this feature, we solve our optimal saving 

function after taking optimal choices of iX  as given. This approach brings us the same solution for 

the optimal saving function as is in the real decision process involving choosing 

1 1 1 ,  and X Y S simultaneously in the first period. 
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where
 

 
consumers discount factor

( )( )
2

1 ( )

X XS

X X

X X
X X X

X X

Max EV V J K S c L L

E V J K r S c L L

J I

B c LK c L

c B c L

θ

θ θ

θ θ

ϕ θ θ

π
θ ρθ ε
ϕ

μ

π μ

⎡ ⎤= − − − + −⎣ ⎦

⎡ ⎤+ − + + − + −⎣ ⎦

= −
= +
=

+
= + −

= − − +

 

The optimal saving function 1S∗  satisfies 

( ) ( )2 11 1 | 1 2( ) (1 ) (1 ) ( ) 0I X X I X XV J K S c L r E V J K r S c Lθ θθ ϕ θ∗ ∗⎡ ⎤− − − − + + + − + + − + =⎣ ⎦  

Taking a first order Taylor series approximation of IV  function at J K− ,  

( ) ( )
( )

( )2 11 1 |
1 2

( ) (1 )
(1 ) ( )

I
I X X II

X X II

V J K
V J K S c L V J K r E

r S c L V J Kθ θθ ϕ
θ

∗
∗

⎧ ⎫−⎪ ⎪⎡ ⎤− − + + − = + ⎨ ⎬⎣ ⎦ ⎡ ⎤+ + − + −⎪ ⎪⎣ ⎦⎩ ⎭

( ) ( ) ( ) ( )

( ) 2 1

2
1 1 1

| 2

( ) (1 ) (1 )

( )(1 ) ( )

I X X II I II

X X II

V J K S c L V J K r V J K r S V J K

c L r V J K Eθ θ

θ ϕ ϕ

ϕ θ

∗ ∗⎡ ⎤− − + + − = + − + + −⎣ ⎦

− + + −
 

As is assumed 2 1 2θ ρθ ε= + , 
2 1| 2 1( )Eθ θ θ ρθ= , we obtain 

( ) ( ) ( ) ( )

( )

2
1 1 1

1

( ) (1 ) (1 )

(1 )( )

I X X II I II

X X II

V J K S c L V J K r V J K r S V J K

r c L V J K

θ ϕ ϕ

ϕ ρθ

∗ ∗⎡ ⎤− − + + − = + − + + −⎣ ⎦

− + + −
 

2
1 1 1 11 ( ) (1 ) (1 ) ( )(1 )A A A

X X X XS c L R r r S R c L r Rθ ϕ ϕ ϕ ρθ∗ ∗⎡ ⎤+ + + = + − + + + +⎣ ⎦  

Rearranging the above equation, we solve the optimal saving function as following 

1 122
(1 ) 1 1 (1 ) ( )

1 (1 )1 (1 ) X XA
r rS c L

rR r
ϕ ϕ ρ θ

ϕϕ
∗ + − − +
= − +

⎡ ⎤ + ++ +⎣ ⎦
, which implies that  
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1 1 22
(1 ) 1 1 (1 ),  

1 (1 )1 (1 )A
r rS s

rR r
ϕ ϕ ρ

ϕϕ
+ − − +

= =
⎡ ⎤ + ++ +⎣ ⎦

 

Given our assumption (1 ) 1rϕ + = , 1S∗ can be simplified further as 

1 1
1 ( )
2 X XS c L

r
ρ θ∗ −

= − +
+

 and 1 1
10,  
2

S s
r
ρ−

= =
+

 

A-4 Optimal saving for model with multiple periods 2T ≥  
 
Now we allow more general cases. We assume that ( ) , for any  

t t i i tE tθ θ ρ θ+ = , without making 

any restrictions on the stochastic process for tθ . 
 
As is shown in B-1(available upon request), if we have three periods, 

( ) ( )* 1 2
1 12

(1 ) 1 1
1 (1 ) (1 ) X

r
S P

r r
ρ ρ

θ
+ − + −

= −
+ + + +

. 

( ) ( ) ( )2
1 2 3*

1 12 3
(1 ) 1 (1 ) 1 1

1 (1 ) (1 ) (1 ) X
r r

S P
r r r

ρ ρ ρ
θ

+ − + + − + −
= −

+ + + + + +
 for T=4.  

 
  

And ( ) ( ) ( ) ( )3 2
1 2 3 4*

1 12 3 4
(1 ) 1 (1 ) 1 (1 ) 1 1

1 (1 ) (1 ) (1 ) (1 ) X
r r r

S P
r r r r

ρ ρ ρ ρ
θ

+ − + + − + + − + −
= −

+ + + + + + + +
 when T=5 (same with 

the number of years of data we have). 
.    

 
From the pattern of optimal saving for multiple period models, it is easy to see that the optimal 

saving result for any  2T ≥  as

1
1

1
* 1
1 1

1

1

(1 ) (1 )

(1 )

T
t

T t
t

XT
t

t

r
S P

r

ρ
θ

−
−

− +
=

−

=

+ −
= −

+

∑

∑
. 

 
 


