
by Douglas Densmore
Graduate Student Researcher
University of California, Berkeley
densmore@eecs.berkeley.edu

Alberto Sangiovanni-Vincentelli
Professor
University of California, Berkeley
alberto@eecs.berkeley.edu

Adam Donlin
Research Engineer
Xilinx Research Labs
adam.donlin@xilinx.com

Platform-based design (PBD) is an elec-
tronic system-level (ESL) design methodol-
ogy forged in the inferno of ASIC design
complexity: it tackles shrinking design time
pressures, the growing complexity of appli-
cations, nanometer-era design effects, and
heterogeneity between chip and system
components. Individually, the challenges
are formidable. Combined, they are almost
insurmountable: the methods ASIC
designers use to address one challenge are
often at odds with the methods that solve
another. Programmable platforms can uti-
lize PBD and be a welcome new home to
refugees fleeing ASIC design complexity.

In this article, we’ll show you how to
effectively combine the benefits of FPGAs
with lessons learned from ASIC design.
You will see how the unique properties of
programmable platforms leverage innova-
tive techniques to make PBD a powerful

FPGA design methodology. We will
demonstrate how programmable platforms
and PBD allow designers to build complex
systems not just faster, but also of a higher
quality than non-programmable solutions
using traditional design techniques.

Platform-Based Design
At its core, PBD (Figure 1) attempts to:

• Maximize the level of design re-use
available to system architects and chip
designers

• Enable design verification, analysis,
and synthesis at all levels of abstraction

• Provide the basis for design chain
integration

• Make architectural exploration,
including implementation platform
selection, a fast and rigorous process

The basic tenets of the methodology are:

1. Orthogonalization of concerns.
Function (what the system does),
architecture (how it does it), commu-
nication, and computation are mod-
eled independently with a unified
mathematical framework.

2. Design formalization. Incorporate a
mathematical framework with map-
ping of functional components to
architectural elements. This process
can be made (partially) automatic by
providing common semantics between

two consecutive layers of abstraction,
similar to what was achieved when
logic synthesis was introduced in the
traditional design flow.

3. Successive refinement. The design
progresses through a refinement
process that links the levels of abstrac-
tion defined with the help of the
design formalization.

The structure of the platform-based
design methodology is illustrated in Figure 1.
However, these techniques are severely limit-
ed if, during the development of systems
with PBD, the results of simulation to pre-
dict performance before system creation are
inaccurate. Thus, a critical element of PBD
is the characterization of architectural com-
ponents in terms of physical quantities
such as time, power, and size. The choice to
map functional components to architectur-
al elements is guided by constraints and
cost functions expressed in terms of these
quantities. To evaluate the quantities for
the entire design in terms of the quantities
associated with the components, you
would use simulation.

Architectural components at high lev-
els of abstraction are characterized in
terms of these quantities (time, power,
and size), also through estimation or
abstraction. If the abstraction or estima-
tion is inaccurate, the results of simula-
tion to predict performance before system
creation are inaccurate.

First Quarter 2006 Xcell Journal 29

Leveraging Programmability in
Electronic System-Level Designs
Leveraging Programmability in
Electronic System-Level Designs
You gain productivity and accuracy with platform-based design and programmable platforms.You gain productivity and accuracy with platform-based design and programmable platforms.

Designers require performance models
that are abstract and modular while still
having a close correlation (accuracy) to
actual devices. In addition, these models
need to be convenient to use and efficient
to simulate. Although this is certainly pos-
sible for all design styles and is one of the
essential values of the methodology, it is
easier to carry out if the implementation
platform has fewer degrees of freedom.

Programmable platform FPGAs such as
the Xilinx® Virtex™-4 device are excellent
substrates for PBD: they are easily reconfig-
urable using the FPGA fabric and contain

the basic building blocks. Each of these
implementations is characterized by a dif-
ferent performance model.

Functional Modeling
The architectural space in Figure 2 contains
functional models of FPGA blocks that you
can combine to form a programmable sys-
tem. The key requirement of the models is
abstraction to increase designer productivi-
ty; however, they must still remain efficient
in their ability to yield a good design.

There are three aspects of programmable
platforms that facilitate this task as com-
pared to other design styles (such as ASICs):

1. Programmable platforms allow one
device to represent many possible
architectural topologies. Therefore,
one model set for a device allows
many potential designs tailored to var-
ious levels of concurrency and appli-
cation specificity.

2. Programmable platforms are naturally
partitioned into functional or IP-
based blocks. This is the case with the
Xilinx implementation of the IBM
CoreConnect system in EDK. You
can create models at this granularity
with a transaction-level set of models.

3. Programmable models are a collection
of configured elements. This configura-
tion can be explicitly captured by the
models and provided directly to the
tool flow. In the case of Xilinx FPGAs,
this could be the microprocessor hard-
ware specification (MHS) file.

Figure 2 shows an example of the entire
flow. Notice that these three techniques
increase efficiency by facilitating library
creation, transaction-level modeling, and
design synthesis, all while maintaining the
required abstraction level.

Performance Models
Accurate programmable platform perform-
ance models are easier to obtain than other
implementation styles such as ASICs
because the physical characteristics of the
implementation fabric are known at design
time. Figure 3 illustrates a flow based on a
pre-characterization process.

powerful high-performance pre-designed
processors whose performance can be accu-
rately predicted before simulation.

Programmable Platform Modeling
In our approach, a platform is a collec-
tion of IPs that you can use to imple-
ment your designs. Each IP has to be
given a functional model (what it can
do) and a performance model (the cost
of doing it). In the Virtex-4 platform, a
functional model of an element corre-
sponds to a number of different imple-
mentations regarding actual selection of

30 Xcell Journal First Quarter 2006

Platform-Based Design Methodology

Top-Down
Refinement

Bottom-Up
Exportation

Functionality

Cost

Platform
Mapping

Platform
Design-Space

Export

Application Space

Architectural Space

Application Instance

Platform Instance

System

Platform
 (HW and SW)

Describes the functionality
of the design. Restricts
functionality as necessary
to make design less
abstract so it can
physically be realized.

A common semantic domain
in which the application and
architectural space meet.
Here mapping trade-offs can
be explored and potential
performance estimations
examined.

Provides various architectural
targets for implementation.
These targets should allow
performance exportation up to
the platform for estimation.

Programmable Platform Modeling Methodology

Micro
Blaze

Micro
Blaze

Micro
Blaze

MHS File

PBD Environment

FSL

FSL

Block
RAM

Ethernet
MAC

PowerPC Processor
Local Bus

PowerPC

Processor
Local Bus

IP/Functional
Block
Library Case N

Case 1

Design 1

Design N

Ethernet
MAC

MHS
Extraction

Tool

Characterization
Database in

Figure 3

1. Create a library of
programmable components. 2. Select components to create

an architecture instance.

3B. Extract
performance data
automatically for
PBD environment.

3A. Extract structure
automatically to
produce file for
synthesis toolflow.

Platform
Design-Space

Export

Architectural Space
Platform Instance

Platform
 (HW and SW)

Figure 1 – Platform-based design

Figure 2 – Programmable platform modeling

• Permutations of various architecture
topologies are created in the first
stages. These permutations result from
an initial “seed” topology tailored to
your specific needs.

• Permutation generation is followed by
actual synthesis, place and route of
these designs for the device being char-
acterized. You use the exact tool flow
that the device will eventually use for
programming. This is not easily avail-
able in an ASIC flow.

• The data from synthesis, place and
route is captured in a database structure
that can be used by a tool supporting
PBD during simulation. Instead of

relying on static estimations, simulation
can annotate transactions directly with
costs that have been realized on an
actual system corresponding to the sim-
ulation. This database is independent of
the actual system, thus yielding a great
deal of modularity. You can reuse the
database for other designs or add to it
on an independent, individual basis.
And because the models are created to
have a very specific topology, you can
use the topology information to index
the database during simulation.

Example Designs Using this Approach
We have two example designs using our
approach: a motion JPEG encoder and an

H.264 video standard deblocking filter.
Both of these designs were first specified in
the Metropolis Design Environment from
the University of California, Berkeley.
(Metropolis is a design environment that
fully supports the PBD methodology.)

The Metropolis models were of Xilinx
Virtex-II Pro CoreConnect components.
Specifically, these designs were of
MicroBlaze™ and Fast Simplex Link (FSL)
networks. Figure 4 shows the designs and a
sample of the results we obtained. Key
insights include:

• The accuracy of simulation versus actu-
al implementation performance is very
high. In the cases shown, the worst case
is a mere 5% difference.

• Characterization allowed us to observe
the actual system clock speed and design
area values. This is important because
not only does clock speed combine with
the clock cycle requirements to form an
actual execution time, but it also demon-
strates the potentially detrimental effect
of increasing the size of the design. This
effect would be more difficult to obtain
quickly in ASIC-based design flows.

Conclusion
Platform-based design is an ideal method-
ology to convert system design ideas into
implementation realities, especially when
coupled with pre-characterized program-
mable platforms. High-level abstract and
modular models supported by the
methodology allow fast, accurate, and
efficient design space exploration and
early validation.

The link to implementation offered by a
pre-design fabric, as offered by the Xilinx
Virtex family, yields rapid design turns. You
can accurately predict the performance of
your designs during the early design phases,
further reducing the need to re-design.

We believe that the fast and efficient
mapping of systems into programmable
platforms offered by PBD can ease the
pain that today’s designers must endure to
carry out their tasks. For more informa-
tion about PBD and supporting tools, see
http://embedded.eecs.berkeley.edu/metropolis/
index.html.

First Quarter 2006 Xcell Journal 31

M M M

S S

Arb

S

Permute
Arch.

Template

Stage 1

Stage 2

Stage 3

B

MHS Template

System 0 System 1 System 2 System 3...

EDK + ISE
Tools

Build
Database

EDK + ISE
Tools

EDK + ISE
Tools

EDK + ISE
Tools

To SLD Tools

Timing
Reports

1. Create a
template with
the devices
desired.

2. Create
permutations of this
configuration. This
space can be pruned
to meet designer
needs.

3. Extract the relevant
performance information
from the tool reports and
synthesis process.

Metropolis (UC Berkeley) is
a potential PBD design
environment for this flow.

Xilinx devices lend
themselves nicely to
this flow.

4. Populate object for
the platform-based
design tool or flow
being used.

Characterization
Database

Characterization Flow

MJPEG Design

H.264 Deblocking
Filter Design

μBlaze -
Soft-processor cores

FSLs - FIFO-based
communication channels

Characterizer
Database -
Stores execution
time information

Sample Architecture Model

Preprocessing
DCT/

Quantization
Huffman
Encoding

Sample Functional Model

P Q

P Q

μBlaze

μBlaze

μBlaze
(src)

μBlaze

PID1 PID2

PID3

Sample
Functional
Model

Sample Architectural Model

16

16

16
N

N

Mapping
Correspondence

P - Get Filter Strength

Q - Edge Filter Loop Design H (in table)

Mapping
Correspondence

Design Simulation Implementation
Difference

%
H 43932 41845 4.99
L 50780 52491 3.26
M 58931 59145 0.36

Various Designs
(H is shown) Cycle Counts Correlation

between “real”
and simulation
results

Model Simulation Implementation Max MHz Area
3 145414 147036 56.7 7035
4 144432 143335 46.3 9278

Cycle Counts

Various Designs
(design 3 is shown on left)

Reported Max Frequency FPGA Slice
Count

Figure 3 – Programmable platform characterization

Figure 4 – Example methodology results

