
Automated Selection of Synthetic Biology Parts for Genetic
Regulatory Networks
Fusun Yaman,*,† Swapnil Bhatia,‡ Aaron Adler,† Douglas Densmore,‡,§ and Jacob Beal†

†Raytheon BBN Technologies, 10 Moulton St., Cambridge, Massachusetts, United States

Departments of ‡Electrical and Computer Engineering and §Bioinformatics, Boston University, Boston, Massachusetts, United States

*S Supporting Information

ABSTRACT: Raising the level of abstraction for synthetic biology design requires
solving several challenging problems, including mapping abstract designs to DNA
sequences. In this paper we present the first formalism and algorithms to address this
problem. The key steps of this transformation are feature matching, signal matching,
and part matching. Feature matching ensures that the mapping satisfies the regulatory
relationships in the abstract design. Signal matching ensures that the expression levels
of functional units are compatible. Finally, part matching finds a DNA part sequence
that can implement the design. Our software tool MatchMaker implements these
three steps.

KEYWORDS: abstract genetic regulatory network, feature matching, signal matching, part matching, MatchMaker

Over the past decade, biologists have begun to establish
engineering control over the genetic machinery of

cells.1,2 These synthetic biologists have identified, created,
and isolated many DNA sequences that can be used as building
blocks for novel cellular programs. These programs are then
introduced into living cells and executed. Synthetic biology
holds the potential for revolutionary advances in many
applications, including medicine,3 environmental remediation,4

and biosensing.5 As the desired systems become more complex,
design automation for synthetic biology systems becomes an
important enabling technology. Encoding design expertise in
software will make engineering very complex systems tractable,
increase the accessibility of synthetic biology to new
practitioners, enable design reuse, allow for design sharing,
introduce formal analysis methods, and increase system
reliability by reducing the number of undetected design errors.
In this paper, we present a design automation flow captured in
a software application called MatchMaker. This process assigns
appropriate DNA parts to instantiate an abstract genetic
regulatory network, thus proposing a final set of DNA
sequences that will implement the desired behavior in cells.
These parts are selected not only on the basis of their
functional classification but also on the basis of characterized
behavior in order to ensure the correct performance of the
overall system.
There are a number of natural mechanisms that can be

manipulated in a cell to achieve a designed/desired behavior.
Our work focuses on transcriptional logic systems, in which the
computation is realized by the operation of a transcriptionally
controlled network. The state-of-the-art techniques in synthetic
biology for designing these networks require practitioners to
design organisms at the DNA level, i.e., genetic regulatory
networks (GRNs) as in Figure 1 (bottom). This low-level,
manual process becomes unmanageable as the size of design

grows. This is analogous to writing a high-level computer
program using only the primitive instructions that can be
directly executed by the computer processor (e.g., assembly
language), which becomes difficult quickly as the size of the
program grows. In addition, these specifications provide only
one single instance as opposed to capturing a larger class of
designs that have the potential to exhibit the desired behavior.
Designs are limited to a single organism and a specific cellular
context. An alternative approach would use a high-level
language and compiler (e.g., Proto BioCompiler6) to enable
designers to produce more sophisticated programs more
quickly and with less effort. These concepts can be applied to
synthetic biology, radically increasing the complexity of the
designed systems. Tools to support complex designs have been
developed including Tinkercell7,8 and Device Editor9 to
visualize designs, Eugene10 to specify design constraints and
rules, GenoCAD11 for static verification of the designs, and
GEC12,13 for simulation-driven search instantiations. However,
none of these tools adequately address the specification to
DNA design transformation challenge.
Computer science techniques have proven useful in other

biological applications, for example, DNA-based compilation14

and signal processing.15 Alterovitz et al. outline some of the key
problems facing synthetic biology including computational
problems.16 For example, they point out the need for improved
algorithms for analyzing synthetic biology networks and
statistical methods for analyzing the noisy data that biological
systems produce. Andrianantoandro et al. use the same
comparison to computer engineering that we use in this

Special Issue: Bio-Design Automation

Received: April 15, 2012
Published: July 6, 2012

Research Article

pubs.acs.org/synthbio

© 2012 American Chemical Society 332 dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344

pubs.acs.org/synthbio

paper.17 They point out that the biological world is not yet as
neat and easy to draw boundaries in as the computer world.
In our design framework, a top-down design approach will let

practitioners design organisms using higher level descriptions
(as in Figure 1 (top)). These descriptions will be mapped to a
composition of primitive motifs, producing an abstract genetic
regulatory network (AGRN), one that defines relationships
between parts but leaves the actual identities of those parts
unspecified (Figure 1 (middle)). To realize this network, one
must solve the part selection problem: mapping abstract
features to a collection of particular standardized biological
parts that preserve the relationships between features
prescribed by the network. Prior work has demonstrated the
design of abstract GRNs from high-level programs6 and
automated assembly of DNA sequences from standardized
biological parts such as BioBricks.18,19 However, a critical gap
exists in the actual selection of particular biological parts to
implement the design.
The prior work that comes closest to addressing this gap is

GEC.12,13 GEC, however, does not actually contain any
mapping from parts to expected composite behavior. This
means that it cannot predict which parts are good to select but
must search blindly and exhaustively through the space of
possible designs, testing each combination with a costly
chemical simulation. Moreover, this means that GEC depends
critically on the availability of detailed chemical reaction models
with precisely quantified rate constants, and at present these are
generally impractical to obtain for synthetic biology systems.
GEC also does not address issues of assembly.
In this paper we demonstrate that transforming high-level

organism descriptions to DNA sequences involves solving
several constraint satisfaction and optimization problems. Our
research builds on top of the Proto BioCompiler,6,20 which
compiles an organism-level behavior description into a network
of abstract biological parts (AGRNs). (The AGRN input could
also be produced by other tools or by hand.) This paper focuses
on transforming this abstract network into a concrete set of
DNA parts (which ultimately encode a DNA sequence). The
key steps in this transformation are (1) Feature Matching:
finding compatible features (functional DNA elements) that
have the same regulatory relationship as defined in the AGRN,
(2) Signal Matching: choosing a specific set of parts within the
family of required features such that the chemical concentration
levels produced are compatible with each other to ensure

robust system performance, and (3) Part Matching: finding
standard composable parts that when put together result in the
required function with the desired performance.
Explicitly stated, this paper’s contributions are

1. The def inition of three distinct transformations from a
AGRN to a set of standard biological parts (feature
matching, signal matching, and part matching).

2. The formalization of these transformations as known
computer science and artificial intelligence algorithms.

3. A sof tware application that can perform these trans-
formations (MatchMaker).

■ RESULTS
In a prototypical transcriptional network, the relationship
between a regulating protein and the promoter preceding a
gene defines if/when the gene can be transcribed and then
translated. A regulating protein can repress or activate a
promoter. Repressors disable the ability of a promoter to
initiate transcription. Activators enhance/enable a promoter’s
ability to initiate transcription. A promoter can be regulated by
multiple proteins, allowing it to implement more complex
logical relationships (e.g., NAND, NOR). Promoter regulation
can also be used for non-Boolean computation, though in this
paper we restrict ourselves to Boolean relations only.
Throughout this paper we will call a DNA sequence that can
perform a biological function, such as a promoter or a protein, a
feature. (This terminology is borrowed from the Clotho21 data
model.) A GRN is a transcriptional network in which every
network element is associated with a feature (Figure 1
(bottom)). In an AGRN all network elements are only partially
specified (Figure 1 (middle)). For example, instead of a specific
promoter feature, an element might be associated with a
generic repressible promoter. Essentially, an AGRN corresponds
to a collection of GRNs, since for each unspecified element a
number of features are potential candidates. Our goal in this
paper is to pick a near-optimal instance of these GRNs and
determine an automated method to turn the selected GRN into
a DNA sequence so that it can be implemented in a cell.
In this paper, we present the MatchMaker software

application, which accepts a description of an AGRN and
returns a sequence of standard DNA parts that can be
assembled into the desired DNA sequence. MatchMaker has
three steps, as depicted in Figure 2:

Figure 1. (Top) High-level design describing organism-level behavior that can be compiled to abstract genetic regulatory networks (AGRNs).
(Middle) Design at the AGRN level; none of the parts are assigned to DNA sequences. (Bottom) Design at the GRN level, fully specified and
suitable for assembly.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344333

• The first step (feature matching) assigns features to
AGRN elements such that the repression/activation
relationships are satisfied. This step assumes that feature
databases containing qualitative repression/activation
relationships exist. The assignment problem is then
converted into a classical subgraph isomorphism problem
and solved using a heuristic search.

• Signal matching is the problem of finding the best
assignment with respect to chemical signal compatibility.
In this step, the expression levels of the biological devices
in the AGRN are examined and their compatibility is

verified. The information needed for this verification is
assumed to be coming from characterization databases.
Characterization data quantitatively define the relation-
ship between expression levels and the levels of the
regulating proteins.

• The first two steps will produce feature assignments that
are compatible both at the functional and signal levels.
Features are abstract sequence annotations describing a
specific function and may differ from sequences of
partsthe basic elements of DNA that will actually be
composed.21 Thus, to derive an assembly plan, features

Figure 2. Three-step solution to transforming an AGRN to a GRN. (1) Feature Matching: Selecting features that implement the functional
requirements outlined in the AGRN. As shown, this requires examining both a feature database and also a bipartite graph representation of the
AGRN. A heuristic search is used to determine a feature assignment. (2) Signal Matching: By using a characterization database, it can be determined
whether the composition of the features from Step 1 will result in a system with the desired performance. (3) Part Matching: Assigning parts to the
features selected. There may be a number of potential part assignments; heuristics such as part count can be used to select a final solution.

Figure 3. Visualization of the feature database (left) and the graphical representation of the AGRN to be designed (right). The dotted arrows
illustrate potential assignments of features to the AGRN. This results ultimately in a subgraph isomorphism problem, which is NP-Complete. We
solve this problem using a heuristic search.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344334

must be mapped to specific parts, and parts to specific
samples containing those parts. The goal of the last
Matchmaker step, part matching, is to solve the problem
of finding a short part sequence that implements the
AGRN. The parts are later mapped to specific samples by
assembly tools downstream of MatchMaker.

We have implemented the MatchMaker design approach and
also integrated it with the Clotho21 framework as an App.
Clotho databases for features, characterization, and part
information are populated using hand generated data (as this
system grows so will the quality, type, and source of data in
these databases).
MatchMaker expects an input AGRN in the form of an

SBOL22 compatible XML description that can be produced
automatically by tools such as Proto BioCompiler. The output
of MatchMaker, which is a sequence of parts, is translated into
native Clotho data structures. The MatchMaker output can
then be used by other Apps, e.g., for automated assembly.
The MatchMaker software and source code are freely

available. They are distributed with the “GPL with Linking
Exception” license, which roughly means anybody can use the
tool as a library without the GPL license affecting their own
program. If, however, the source of MatchMaker is edited or
modified, then the edits to MatchMaker should be contributed
as open source. Currently MatchMaker is distributed via email
(requests to the contact author) with limited documentation.
Soon it will be available as a web-service on the Web site
https://synbiotools.bbn.com/.
Feature Matching. The feature matching problem involves

finding a set of features in a feature database with relationships
among them mirroring those required by the AGRN.
MatchMaker uses the feature matching algorithm, described
in Methods, and a parts database (Figure 3) to convert an
AGRN to a GRN. Feature matching involves finding a strict
subgraph that is isomorphic to a given graph. The classical
subgraph isomorphism problem is NP-Complete. There are no
known algorithms for solving NP-Complete problems23 in
polynomial time, but many NP-complete problems can be

solved quickly for most cases using heuristic methods. Our
problem has three differences from the subgraph isomorphism
problem: the subgraph must be strict, the graphs involved are
bipartite, and the isomorphism must preserve vertex types. In
the Supporting Information we prove that these differences do
not affect the complexity of the problem. However, techniques
exist to mitigate the difficult nature of the problem. For
example, in the feature matching problem, the database of
features may be relatively static as the rate of discovery of new
features may be slow. One solution would be to preprocess the
database for feature matching enabling polynomial time
solutions.24 In MatchMaker we address the difficulty of the
problem in a different way by using a time-limited heuristic
search.
We conducted an experiment to determine the complexity

characteristics of the feature matching problem. The details of
this experiment can be found in Methods. We found that only
15 of the 700 runs took longer than 30 s to find a solution
(Figure 4). Although 30 s can be unacceptably slow in many
application domains, in synthetic biology where assembly of the
physical parts takes on the order of days, this result is more
than acceptable. The data points in the graph are grouped by
the average degree of the nodes in the feature graph. The
feature graphs with degrees greater than 2 take the longest
computation time. Also note that solution time spikes when the
ratio of edges in AGRN to feature graph is between 0.25 and
0.35.

Signal Matching. We have formalized the definition of a
biological device (a collection of parts) with multiple inputs and
outputs. In our formalism, a device consists of a promoter, all of
its regulators, and its outputs (more precisely, a device with
multiple outputs is represented as multiple devices with single
outputs). We assume each such device has an underlying
transfer function that determines the expression level of the
outputs. For each device, we allow high/low values for all
inputs and outputs. In order to support small-molecule
reactions, we have defined composite inputs that have their
own high/low output and inducer levels defined. Note that this

Figure 4. This graph plots the solution time versus the edge ratio of the AGRN and feature database. All but 15 of the 700 problems are solved in
under 30 s. This shows that setting a time limit for the computation is an acceptable approach to this NP-Complete problem.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344335

https://synbiotools.bbn.com/

representation is agnostic of the underlying transfer function. It
solely requires a binary interpretation, i.e., when are the input/
outputs on or off as shown in Figure 5c of a transfer curve

(Figure 5b). Two devices, such that the output of one is an
input to the other, can be safely composed, i.e., the resulting
device will be digital, if devices have compatible signals. In our
context, signals are represented by the concentration of
molecules. We define that devices are signal compatible if
and only if the noisy output range of the connecting element
(for example Y in the cascade in Figure 5a) is contained in valid
input range as shown in Figure 5d. Note that if more than one
device is producing the same output molecule then a system-
wide computation of low/high values is required (see Signal
Matching in Methods for details).
Given a GRN with fully specified features, testing for signal

compatibility can be done in polynomial time (see Chart 4). If
robustness of the circuit is critical, MatchMaker can search
through all possible GRNs (within a time limit) and return the
most noise-tolerant network.
Part Matching. A GRN is a network, but our target is a set

of easily composable DNA sequences that has been linearized
into a single DNA molecule. Currently, our formalization
enforces strict precedence only on the promoter and the
gene(s) it controls. Thus, finding a total order on the elements
of any GRN can be achieved using a linear time algorithm (see
Chart 5).
Next we pick parts that when assembled produce the

sequence computed in the linearization stage. When dealing
with simple parts, i.e., parts that contain a single feature, part
selection can also be solved in linear time. However, availability
of composite parts leads to a set of possible solutions. Among
those solutions, MatchMaker prefers the ones that can be
implemented using fewer parts. The rationale behind this
preference is ease, time, and reliability of construction by

reducing the number of assembly steps and reagents required.
The part matching algorithm (see Chart 6) uses a greedy search
technique to find near optimal solutions, as finding the optimal
solution using deterministic algorithms can take exponential
time.

■ DISCUSSION AND FUTURE IMPROVEMENTS
MatchMaker is the first tool and algorithm for model-based
transformation of an AGRN into a GRN, as well as for finding
the actual part (simple or composite) sequence that can
implement the GRN. MatchMaker applies techniques from
artificial intelligence, such as constraint satisfaction and greedy
and heuristic search, to enable this transformation. This is also
the first time that the steps of this transformation (i.e., feature
matching, signal matching, and part matching) have been
formalized.
A next step in improving our current formulation is to

explicitly represent the AGRN semantics. This can be solved by
including truth table interactions in the BioCompiler output
(the AGRN) and the parts database. MatchMaker could then
guarantee that the intended behavior would be preserved.
Another improvement to MatchMaker would be additional

constraints on linearization and optimization. For example,
Eugene25 could provide a metric on preferred sequences that
could then be used to provide constraints for the search.
Our future work includes allowing the availability of

particular parts to affect the high-level design of the system.
This could include allowing customizations of the part
matching objective (instead of just selecting the shortest part
sequence). For example, multiple AGRNs might implement the
same high-level program, but only one of these AGRNs might
be implementable given the parts available in a particular lab.
MatchMaker requires a database of biological parts and their

characterization data. We tested MatchMaker with a database of
parts and characterization data containing composite and basic
parts for test circuits and verified the part assignments for
correctness. Our database implemented the Clotho data model
to model feature-feature and feature-part relationships and to
associate the low and high inflection points obtained from the
characterization data to parts and samples. We did not explore
whether other data models such as the MIT Registry of
Standard Biological Parts26 or the JBEI ICE registry27 may be
adapted to the needs of the algorithms. As currently defined,
neither the MIT Parts Registry nor the JBEI-ICE registry
models make a distinction between features and parts, and
model relationships among features; these are essential to
MatchMaker’s algorithms.
MatchMaker is developed as part of the TASBE project

(Beal, J. et al. DOI: 10.1021/sb300030d). The goal of the
TASBE project is to develop a tool-chain that will take a high-
level design and ultimately assemble the cells that contain the
DNA realizing the high-level design. TASBE and MatchMaker
have been validated on simple programs. The feature and parts
databases populated in that project are biologically sound.
However the signal database, which was populated from the
characterization experiments, was very small (only three
devices). Further validation of MatchMaker is needed with
larger signal databases generated from physical experiments as
outlined in the TASBE Characterization Technical Report.28

The MatchMaker implementation is SBOL compliant in the
sense that it accepts its input in the form of an SBOL file. The
current SBOL standards22 are not sufficiently rich to allow the
complete specification of an AGRN; for example, the current

Figure 5. In order to preserve digital behavior in a cascade like (a),
where X controls the production of Y and Y controls the production of
Z, it is necessary to perform signal matching. The transfer curves for
the circuit are illustrated in (b): increasing the presence of X decreases
the production of Y (left) and increasing the presence of Y increases
the presence of Z (right). The functions provide thresholds: X at or
below level a results in a value of Y at or above level d; X at or above
level b results in a value of Y at or below level c; Y at or below level e
results in a low level of Z; Y at or above level f results in a high level of
Z. Values between these levels mean the corresponding level is not at a
clearly high or low level, e.g., Y between e and f means uncertainty in
the level of Z. The digital logic representation of the X/Y transfer
curve is shown in (c). Biological circuits are inherently noisy; signal
matching must take into account the noisy signals as illustrated in (d).
Even with noise, Y is still interpreted as off because level c plus noise is
still less than level e. Likewise, level d minus noise is still greater than f,
preserving the on behavior for Y.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344336

standard does not explicitly define part type and regulation
information. Our implementation adds such meta-information
in the string attributes associated with an SBOL Component
and Annotation. Similarly, the characterization data required by
MatchMaker algorithms cannot be currently included or
associated with SBOL parts within the current SBOL
framework. We believe, however, that some of the planned
extensions to SBOL, such as the Performance and Measure-
ment extension, will allow for the inclusion of such information
in the future.

■ METHODS
In this presentation we focus on two kinds of biological features
(DNA sequences with a particular function): promoters and

protein coding sequences in a transcriptional network (we will
use proteins when the meaning is obvious). We will denote
these two sets with and , respectively. Later we discuss how
additional features can be handled in the model.
A genetic regulatory network (GRN) is a bipartite directed

graph with labeled edges and each node associated with a
feature from the set ∪ . To denote the feature associated
with a vertex v we will use the notation feature(v). A vertex is a
promoter (or protein) vertex iff feature(v) ∈ P (or feature(v) ∈

R). Furthermore in a GRN, the edges are always between a
promoter vertex and a protein vertex. The edges have one of
the following labels: produce, repress, or activate.
An abstract genetic regulatory network (AGRN) is similar to

a GRN with the main difference that nodes are associated with
a subset of or a subset of , so for an AGRN vertex v,
feature(v) is a set. It is important to note that a vertex in an
AGRN is associated with only one type of feature. An AGRN
vertex v is a promoter vertex if feature(ν) ⊆ . The protein
vertex definition is generalized the same way. Essentially, an
AGRN corresponds to a collection of GRNs.

Feature Matching. The quantitative relationships between
biological features are discovered by biologists experimentally.
We assume existence of feature databases containing such
relationships. In turning an AGRN into a GRN by mapping
each node to a feature we need to ensure that

• The edges in the GRN are supported by the feature
database. If the features we selected are not biologically
capable of interacting in the desired manner, the GRN is
not executable.

• The feature database does not imply additional relation-
ships between the features of the GRN nodes. If two
features are known to interact with each other, then
whether or not we intended them to, they will interact,
possibly disrupting the designed behavior. We first define
a feature database:

Definition 1. Let and be finite sets denoting promoters
and proteins respectively. A feature graph is a bipartite graph

with parts and , and edges labeled from
{repress,activate}. A feature database is a tuple =
⟨ , , , ⟩.
The left side of Figure 7 is a feature graph (edge labels − and

+ are short hand notations for repress and activate, respectively);
together with the set of proteins = {α1, ..., α5} and promoters
= {P1, ..., P5} they form a feature database.
When mapping the nodes of an AGRN to features we can

ignore the production edges (edges labeled as produce) in the
AGRN because they are unrelated to the two constraints above
since any promoter can produce any protein. A constraint
graph ⟨P ∪ R,E⟩, induced by an AGRN is the same graph as the
AGRN except the production edges are dropped. In this
notation, P is the set of all promoter nodes in AGRN, R is the
set of all protein nodes in the AGRN, and E is the set of all
edges. The right graph in Figure 7 is the constraint graph
induced by the AGRN in Figure 6. Note that for this example
feature(xi) is all promoters and feature(yi) is all proteins.
Next we will define a topological solution of an AGRN wrt a

feature database. Basically we are looking for a subset of vertices
in the feature database such that a subgraph of the feature

Figure 6. Two visualizations of a GRN. On the left is a DNA sequence
representation with rectangles as protein coding sequences (PCS) and
block arrows as promoters. The red lines from PCS to promoters
indicate repression. On the right is the same GRN in a graph
representation with labeled edges.

Figure 7. The AGRN (without the production edges) on the right is
isomorpic to the graph induced by the vertices α1,α5,P2,P5 from the
feature database on the left. The − and + edge labels indicate repress
and activate, respectively.

Figure 8. The concentration of Y is a function of W. The concentration of X is a function of Y. d1 = ⟨{W},P1,Y⟩ and d2 = ⟨{Y},P2,X⟩. d1 is signal
compatible with d2 because 2.7 > 2.52 and 1.5 < 2.1.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344337

Chart 1

Chart 2

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344338

database, containing only those vertices and edges between

them, is isomorphic to the AGRN.
Definition 2. Given a graph G, a strict subgraph of G is the

graph induced by any subset S of vertices of G and every edge

with both vertices in S.
In Figure 7, the strict subgraph induced by the vertices

{α1,α5,P2,P5} is highlighted with red.
Definition 3. Given a feature database = ⟨ , , , ⟩ and

an AGRN whose induced constraint graph is G = ⟨P ∪ R,E⟩, a

one-to-one function f:V → S ⊆ (∪) is a topological

solution of the AGRN wrt iff

1. For every vertex v of G, f(v) ∈ feature(v), i.e., every vertex
in the constraint graph is assigned to a feature from the
set the vertex is associated with, and

2 The strict subgraph of induced by S is isomorphic to
G, i.e., all edges in the AGRN are in and all edges in

between the vertices S are in G, and
3 For every edge {u,v} of G, {u,v} and {f(u),f(v)} have the

same label, i.e., the edges in both graphs represent same
type of relationships.

A topological solution to AGRN in Figure 6 wrt to the
feature database in Figure 7 maps node y1 to α1, y2 to α5, x1 to
P2, and x2 to P5. A topological solution of an AGRN has a

Chart 3

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344339

corresponding GRN, which is unique and can be trivially
constructed.
Finally we define the feature matching problem as follows:

Find a topological solution of a given AGRN with respect to a
given feature database.
Extension To Handle Small Molecule Interactions and

Other Features. The notations and definitions for the feature
matching problem can trivially be extended for supporting
small molecule reactions. Essentially all we need to do is to
remove the bipartite graph requirement from both the feature
database and AGRN/GRN definitions. The edge relationships
between promoters and regulators will still be preserved;
however, the graphs will have a third layer of nodes, of type
small molecule, which will be connected to regulators with
induction/repression relationships. The feature matching
problem would still be an instance of the strict graph

isomorphism problem. The same would hold if the network
had other types of features such as terminators and/or
ribosomal binding sites (RBSs). Furthermore the complexity
of the problem would be unchanged. The same algorithm (see
Chart 3) for solving the feature matching problem would be
used for solving the extended version of the problem. The
current implementation of MatchMaker supports small
molecule interactions and terminators.

Experimental Setup. To investigate the characteristics of
the feature matching problem, we have run a set of experiments
using randomly generated feature graphs with 100 nodes with
the following control variables: average node degree (values
ranging from 1 to 4) and maximum node degree (which is
always 2 more than average node degree). Experiments with
randomly generated AGRNs with up to 60 nodes and the same
characteristics as the feature graph demonstrated that for

Chart 4

Chart 5

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344340

AGRNs with more than 15 edges, a solution is less likely and
the solution is found in under 1.5 s for all cases. Our second set
of experiments generates AGRNs from a graph induced by a
subset of feature graph vertices. This method produces solvable
AGRNs most of the time. We used the number of promoters
and proteins in the AGRN as the control variables in extracting
a subgraph of the feature database. The number of total nodes
in the AGRN ranges from 4 to 60. We terminated executions
after 50 s. Figure 4 demonstrates the solution time for 700
random runs, only 15 of which are above 30 s (on MacBook
Pro with a 2.8Ghz dual core processor and 8 GB memory).
Signal Matching. Just like a digital circuit is composed of

several devices, an AGRN is a composition of biological
devices. In a GRN there is a device per promoter node. The
inputs of the device are the protein nodes that are linked to the
promoter with repression and activation edges. The outputs of
the device are the protein nodes that are linked to the promoter
with production edges. Without losing any generalization we
will assume that each device has only one output. This is
because devices with multiple outputs can be modeled as
multiple one-output devices, which leads to a linear number of
extra devices and does not impact the scalability of the
approach. We will denote a device as d = ⟨ ,p,o⟩ where is set
of proteins that are inputs, p is a promoter, and o is the output
protein. In Figure 8, the GRN on the left has two devices: d1 =
⟨{W},P1,Y⟩ and d2 = ⟨{Y},P2,X⟩.
A device defines a function from the concentration of input

proteins to the concentration of output protein. The sigmoidal
curves on the right side of Figure 8 are examples of such
functions for devices d1 and d2 (single-input devices). The
characteristics of the curve (slope, height, etc.) come from the
biochemical properties of the features that make up the device.

The direction (increasing vs decreasing) is a function of
repression/activation relationships.
Adapting digital logic, we will assume the existence of two

values per input and output of the device: high and low signal
threshold. Any output o of the device higher (lower) then higho
(lowo) will be considered as boolean true (false). Any output
value between lowo and higho has an ill-defined truth value.
Similar arguments hold for the device inputs. In Figure 8,
looking at the curve for d1, the low value for the output Y is 1.5
and the high value is 2.7. The high and low values per input are
the specifications of a device. We denote the specification of a
device d = ⟨ ,p,o⟩ as Sd = ⟨h,l⟩ where h (similarly l) is a
function from ∪ {o} to reals for the high (similarly low)
signal threshold.
Note that this representation does not associate a semantics

with the device. That is, the relationship between the inputs
and outputs is not explicitly given as in a truth table. This lack
of semantics is also mirrored in the AGRN representation. For
the feature matching problem the lack of semantics can be
circumvented by allowing a more complex type hierarchy on
the promoter nodes. These design decisions are heavily
influenced by the BioCompiler AGRN representation which
also lacks semantics. Our future work on automated part
matching will focus on explicit semantic representations for
AGRNs.
When can we connect two devices such that they perform

digital computation? Consider the devices d1 and d2 from
Figure 8. d1’s output Y is an input to d2. d2 is compatible with d1
if both interpret the truth values of Y in a similar way, that is, if
d1’s output value is a boolean true according to the
specifications of d1, then the same value should be interpreted
as true according to d2’s specifications.

Chart 6

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344341

Definition 4. Let d and d′ be two devices with the
specifications ⟨h,l⟩ and ⟨h′,l′⟩ respectively. If the output o of d is
an input of d′, then d is signal compatible with d′ iff h(o) >
h′(o) and l(o) < l′(o). Suppose n is the upper limit of noise on
expression level, then d is n-signal compatible with d′ iff h(o)
− n > h′(o) and l(o) + n < l′(o).
Note that if the output of first device is not an input to the

second, by definition the devices are compatible. Revisiting the
devices from Figure 8, d1 is signal compatible with d2 because
2.7 > 2.52 and 1.5 > 2.1. If the level of noise on expression level
is known, then the compatibility interval can be conservatively
tightened (as in the definition of n-signal compatibility) to
accommodate output below the expected high level or output
above the expected low level.
If we make the assumption: “For every protein o there is a

unique device do in G with output o”, then simply ensuring
pairwise signal compatibility would guarantee the signal
compatibility of a circuit. However, for many of the circuits
this assumption is too limiting. When there is more than one
device producing the same protein the effective output ranges
of all devices are impacted. Due to the lack of semantics
associated with each device, we have to make an assumption
about interpreting the circuits containing devices with non-
unique outputs. In this work we make the assumption that if
the input of a device D is produced by multiple devices, then D
operates with the “or” semantics. This means that if any of the
producers output a high signal, D will recognize the high signal.
Also when all producers have low outputs, D will interpret the
total input value as low signal. Once again this assumption is a
consequence of the motifs supported by the BioCompiler,
which prefers the “or” semantics.
Definition 5. For any X that is an output of any device in a

GRN G the effective parameters of X wrt G are defined as

• LG(X) = Σdld(X), i.e., effective low signal,
• HG(X) = min(highd(X)), i.e., effective high signal,

where d = ⟨ ,p,X⟩ is a device in G with specification Sd =
⟨hd,ld⟩. For an arbitrary level of of noise n we generalize the
effective parameters as

• LG,n(X) = Σd(ld(X) + n), i.e., effective low signal,
• HG,n(X) = min(highd(X)) − n, i.e., effective high signal.

The computation of effective parameters can be done in
polynomial number of steps. Next we are going to define the
signal compatibility of a device with respect to a GRN, which
will build on the effective parameters definition.
Definition 6. Let G be a GRN and d = ⟨ ,p,o⟩ be a device

with the specification ⟨h,l⟩ and i ∈ be an input of d. If there is
a device in G whose output is i then d is signal compatible
with G iff HG(i) > h(i) and LG(i) < l(i). Suppose n is the upper
limit of noise on expression level, then d is n-signal compatible
with G iff HG,n(i) > h(i) and LG,n(i) < l(i).
Definition 7. A GRN G is a quantitative solution to a

AGRN A iff

• G corresponds to a topological solution of A wrt a feature
database.

• Every device in G is signal compatible with G

Finally some quantitative solutions of the AGRN are more
fragile than the others. For example, some may barely satisfy
the compatibility conditions. Given the uncertainty in the
biology domain, we avoid fragile solutions if possible. We
measure fragility of a quantitative solution with the noise
margins.

Definition 8. Let G be a quantitative solution to an AGRN.
Let G be a GRN and d = ⟨ ,p,o⟩ be a device with the
specifications ⟨h,l⟩ and i ∈ be an input of d. The noise
margin for the device-input pair (d,i) is min(HG(i) − h(i),l(i) −
LG(i)) . The noise margin of G is the minimum noise margin
of any such device-input pairs in G.
Intuitively noise margin is the tolerance between input and

output values per connection. The noise margin for the (d2, Y)
pair in Figure 8 is 0.18 (computed from min((2.7 − 2.52),(2.1
− 1.5))).
Finally we define the signal matching problem as follows:

Find a quantitative solution of a given AGRN that has the
maximum noise margin.

Extension To Handle Small Molecule Interactions and
Other Features. Handling small molecule reactions requires
generalizing the input definition of a device. Our simple model
allows an input to be a regulating protein only. An extended
representation will also allow composite inputs that are
composed of a regulating protein and a small molecule.
Composite inputs also have low and high values associated with
each component, as well as the output of the reaction between
the components. So in a way these composite inputs will look
similar to device descriptions. The main difference would be
the treatment of the output. In the composite input case, the
output is unlabeled and yet uniquely identified via the inputs,
whereas for a regular device the output is always a specific
regulating protein. The current MatchMaker implementation
supports small molecule interactions. Our current models
implicitly support RBSs: that is we model a coding sequence as
a combination of an RBS and a gene. Thus the same gene with
different a RBS preceding it will be treated as a different part/
feature and will have a different device specification. Explicit
representation of RBSs is a simple matter of syntax and will not
change the complexity of the entire problem.

Part Matching. At the end of the signal matching step we
are in GRN space, i.e., all abstract features are mapped to real
features. Remember that by definition a GRN is a graph. Our
goal is to convert this graph into a feature sequence that can be
implemented with the parts that we have. Moreover, we would
like to achieve this by using as few parts as possible since more
parts means more assembly steps in the lab, which also means
longer assembly time, higher chance of error, and increased
cost. So informally, the question is, given a set of available parts
and a GRN, what is the shortest parts sequence that can
implement the GRN? Next we will formally define (in two
steps) what it means for a part sequence to implement a GRN.
The production edges in an GRN imposes some ordering

constraints on the nodes. For example, for the network in
Figure 7, we have the following constraints: (1) Y1 should
immediately follow X1 and (2) Y2 should immediately follow
X2. Any total order on the nodes of this network satisfying these
two constraints will be a valid linearization of the GRN. (This is
simplified; additional biological constraints may apply.)
Definition 9. Let G be a GRN and v1 < ... < vn be a total

order on the veritices of G such that for every edge
(vj,vi,produce) of G, vi < vj and there is no vk such that vi < vk
< vj. Then feature(v1)... feature(vn) is a linearization of G.
Finding a linearization of a GRN is a trivial problem that can

be solved in linear time. Going back to Figure 6, the valid
linearizations of this network are [X1,Y1,X2,Y2] and
[X2,Y2,X1,Y1].
Definition 10. Let S be the sequence of parts, P1 ... Pn, and G

be a GRN. S implements G iff the sequence feature(P1) ...

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344342

feature(Pn) is a linearization of G where feature(P) is the
sequence of features contained in part P.
Now we are ready to define minimal implementation of a

GRN with respect to a parts database.
Definition 11. Let D be a parts database, i.e., a set of parts,

and G be a GRN. A parts sequence S is a minimal
implementation of G wrt D iff

(i) All parts in S are in G, and
(ii) There is no other parts sequence S* that is shorter than S

and satisfies (i).

Finally we define the part matching problem as follows:
Find a minimal implementation of a given GRN G with respect
to a given parts database.
This is very similar to the classical MINIMAL SET COVER

problem: Given a finite set S and a family F of subsets of S, find
the smallest collection C ⊆ F of subsets whose union is S. This
is once again known to be an NP-Complete problem. To
address this challenge we utilize greedy heuristic search in our
algorithms.
Algorithms. The main algorithm for MatchMaker first

computes the possible candidates for each node in the input
AGRN (Chart 1). These candidates are further pruned by
cross-referencing them to the available signal and part
databases. These candidates are further pruned down with
the ensureEdgeConsistency algorithm (Chart 2) to enforce that
pairwise edge constraints in the AGRN will be satisfied. The
algorithm has two modes: first or best. In the first mode the
algorithm returns the part sequence for the first quantitative
solution to AGRN that can be implemented with the parts in
the part database. The best mode returns the part sequence that
implements the quantitative solution with the most noise
margin the algorithm found within a time limit.
SolveFeatureMatching algorithm (Chart 3) finds a topological

solution to given AGRN wrt a given feature database and then
checks for signal compatibility using the CheckSignalMatching
algorithm (Chart 4) to ensure that it is also a quantitative
solution. The algorithm returns one or more of such GRNs
depending on the temporal search deadline and the operation
mode. The algorithm does not allow reuse of features (Line
18). However our implementation allows reuse of features
under certain conditions. For example terminators are allowed
to be reused, or if the user invokes the algorithm with a flag,
promoter nodes with same regulatory dependencies might be
mapped to the same feature. Note that such additional
constraints can easily be done by simply adding more steps
to prune to the variable domains.
Algorithm CheckSignalMatching (Chart 4) checks if every

device in a GRN is n-signal compatible for a given noise level.
Algorithm Linearize (Chart 5) returns an arbitrary lineariza-

tion of a GRN.
Algorithm SolvePartMatching (Chart 6) applies a greedy

search algorithm to find the shortest sequence of parts that can
implement a given GRN linearization. The algorithm does not
guarantee minimality but at every decision step it tries to pick
the parts that cover the longest subsequence of the target
linearization.

■ ASSOCIATED CONTENT
*S Supporting Information
(1) Detailed complexity discussion including the proof of the
feature matching problem and (2) sample feature and signal
Clotho databases used with MatchMaker as an SQL file

(MatchMaker.sql). This material is available free of charge via
the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: fusun@bbn.com.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Work partially sponsored by DARPA under Contract No.
HR0011-10-C-0168. The views and conclusions contained in
this document are those of the authors and not DARPA or the
U.S. Government.

■ REFERENCES
(1) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339−42.
(2) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(3) Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K.
L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., and Kirby, J.
(2006) Production of the antimalarial drug precursor artemisinic acid
in engineered yeast. Nature 440, 940−943.
(4) Kirby, J. R. (2010) Synthetic biology: Designer bacteria degrades
toxin. Nat. Chem. Biol. 6, 398−399.
(5) Salis, H., Tamsir, A., and Voigt, C. (2009) Engineering bacterial
signals and sensors. Contrib. Microbiol. 16, 194−225.
(6) Beal, J., Lu, T., and Weiss, R. (2011) Automatic compilation from
high-level biologically-oriented programming language to genetic
regulatory networks. PLoS ONE 6, e22490.
(7) Chandran, D., Bergmann, F., and Sauro, H. (2009) TinkerCell:
modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
(8) Chandran, D., Bergmann, F. T., and Sauro, H. M. (2010)
Computer-aided design of biological circuits using TinkerCell.
Bioengineered Bugs 1, 274−281.
(9) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.
(10) Berkeley Software 2009 iGem Team, Eugene. http://2009.igem.
org/ Team:Berkeley_Software/Eugene, 2009.
(11) Czar, M., Cai, Y., and Peccoud, J. (2009) Writing DNA with
GenoCAD. Nucleic Acids Res., 37.
(12) Pedersen, M., and Phillips, A. (2009) Towards programming
languages for genetic engineering of living cells. J. R. Soc., Interface,
S437−S450.
(13) Dalchau, N., Smith, M. J., Martin, S., Brown, J. R., Emmott, S.,
and Phillips, A. (2012) Towards the rational design of synthetic cells
with prescribed population dynamics. J. R. Soc., Interface,
DOI: 10.1098/rsif.2012.0280.
(14) Soloveichik, D., Seelig, G., and Winfree, E. (2010) DNA as a
universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. U.S.A.
107, 5393−5398.
(15) Shea, A., Fett, B., Riedel, M. D., and Parhi, K. (2010) Writing
and compiling code into biochemistry. Pac. Symp. Biocomput. 15, 456−
464.
(16) Alterovitz, G., Muso, T., and Ramoni, M. F. (2010) The
challenges of informatics in synthetic biology: from biomolecular
networks to artificial organisms. Briefings Bioinf. 11, 80−95.
(17) Andrianantoandro, E.; Basu, S.; Karig, D. K.; Weiss, R. Synthetic
biology: new engineering rules for an emerging discipline. Mol. Syst.
Biol. 2006, 2.
(18) Densmore, D., Hsiau, T. H. C., Kittleson, J. T., DeLoache, W.,
Bten, C., and Anderson, J. C. (2010) Algorithms for automated DNA
assembly. Nucleic Acids Res. 38, 2607−2616.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344343

http://pubs.acs.org
mailto:fusun@bbn.com
http://2009.igem.org/
http://2009.igem.org/

(19) Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012) j5
DNA Assembly design automation software. ACS Synth. Biol. 1, 14−
21.
(20) Beal, J., and Bachrach, J. Cells are plausible targets for high-level
spatial languages. (2008) Proceedings of the 2008 Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, Washington, DC, pp 284−291.
(21) Densmore, D., Devender, A. V., Johnson, M., and
Sritanyaratana, N. (2009) A platform-based design environment for
synthetic biological systems. The Fifth Richard Tapia Celebration of
Diversity in Computing Conference: Intellect, Initiatives, Insight, and
Innovations, New York, NY, pp 24−29.
(22) Galdzicki, M. et al. Synthetic Biology Open Language (SBOL)
Version 1.0.0. RFC 84, 2011; doi: 1721.1/66172.
(23) Cook, S. A. (1971) The complexity of theorem-proving
procedures. Proceedings of the Third Annual ACM Symposium on Theory
of Computing, New York, NY, pp 151−158.
(24) Messmer, B. T., and Bunke, H. (1995) Subgraph Isomorphism in
Polynomial Time, Technical Report, University of Bern, Bern.
(25) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugene: A domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS ONE 6, e18882.
(26) MIT Registry of Standard Biological Parts. 2003; partsregistry.
org.
(27) Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and
Keasling, J. D. (2012) Design, implementation and practice of JBEI-
ICE: an open source biological part registry platform and tools. Nucleic
Acids Res., DOI: 10.1093/nar/gks531.
(28) Beal, J., Weiss, R., Yaman, F., Davidsohn, N., and Adler, A.
(2012) A Method for Fast, High-Precision Characterization of Synthetic
Biology Devices; Technical Report: MIT-CSAIL-TR-2012-008; http://
hdl.handle.net/1721.1/69973.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300032y | ACS Synth. Biol. 2012, 1, 332−344344

partsregistry.org
partsregistry.org
http://hdl.handle.net/1721.1/69973
http://hdl.handle.net/1721.1/69973

