
Metropolis Architecture Refinement
Styles and Methodology

Douglas Densmore – University of California, Berkeley
densmore@eecs.berkeley.edu

Technical Memorandum UCB/ERL M04/36

November 5, 2004

Copyright c
�

2004 The Regents of the University of California.
All rights reserved.

1

Contents

Contents 2

1 Abstract 5
1.1 Keywords . 5

2 Introduction 7

3 Refinement Theory 9

4 Refinement Methodology 13
4.1 General Architecture Structure 14
4.2 Vertical Refinement . 15
4.3 Horizontal Refinement . 16
4.4 Depth Refinement . 17

5 Refinement Properties 19
5.1 Properties . 19
5.2 Property Relationships . 21

6 Initial Simple Architecture 23

7 Specific Vertical Refinement Modifications 25
7.1 Netlists . 25
7.2 Services . 28
7.3 Service Access Definitions 30
7.4 Tasks . 30
7.5 Quantity Managers . 31
7.6 Request Definitions . 32

2

7.7 Support Structures . 32
7.8 Vertical Additions to Simple Architecture 32

8 Proposed Horizontal Refinement Modifications 35
8.1 Horizontal Additions to Simple Architecture 35

9 Proposed Hybrid Refinement 37
9.1 Tasks transformed to Media 37

10 Xilinx Architecture Platform 39

11 More Information and Sponsors 41
11.1 Referencing This Document 41
11.2 Sponsors . 41

Bibliography 45

3

One

Abstract

This document will detail both the ideology as well as the techniques
involved with the development of architecture models in the Metropo-
lis Design Environment at various abstraction levels. In particular, it is
concerned with discussing how these models relate to each other when
considered to be various refinements of one another. These issues have
both theoretical as well as implementation issues when considering de-
signing in the Metropolis Design Environment. The document with de-
scribe the concepts regarding the refinement of architectures and then go
on to detail the development on an example architecture included with
the distribution of Metropolis.

1.1 Keywords
Refinement, Vertical, Horizontal, Depth, Hybrid, simple architecture model,
MicroProperties, MacroProperties, functional refinement, structural re-
finement, abstraction

5

Two

Introduction

This document serves several purposes. First of all, it introduces the
reader to the initial Metropolis ideas and concepts regarding refinement
development and verification of architecture descriptions in Metropo-
lis. While this is in the context of the Metropolis Meta Model (MMM),
many ideas extend outside of this framework and can be examined by the
reader separately. Secondly, it serves as a guide to how the simple archi-
tecture models were refined (resulting in one completed model example
and two proposed models). This description serves as a ”step-by-step”
guide in which the model design process is documented and the design
decisions explained. This version of this document is intended to be a liv-
ing document that evolves as the Metropolis Team gathers feedback and
the investigation into these topics change. Many of the ideas contained
here are preliminary and have not been fully investigated. However, this
is intended to provide not only a guide to how the example architecture
was created but to also set forth interesting questions for the developer
to explore with Metropolis.

The primary goals for architecture modeling and subsequent refine-
ment that the Metropolis Team are trying to reach are to (1) determine
how we can characterize the refinement of Metropolis architecture mod-
els (2) how we can carry out this refinement automatically (or have a
very exact standardized methodology) (3) how to formally verify that
one model is a refinement of another model (4) determine how to relate
refinement across various architecture types and properties at various
levels of abstraction.

7

2. INTRODUCTION

Point #1 is important so that we have a vocabulary in which to de-
scribe not only what a refinement is but also to understand what prop-
erties a refinement should preserve (and hence what the design objective
is). The second point naturally is something that would be ideal from
a tool and efficiency standpoint. Efficiency meaning that it is compu-
tationally tractable and expressible in the MMM. The third point really
indicates that we must understand what properties of a model we are
looking at and specifically how to check those properties efficiently. The
final point underscores the need to explore refinement inside of Metropo-
lis.

The experimentation to be described is regarding how one might re-
fine the current simple architecture developed by the Metropolis team
and located in examples/pip/architecture/simple. This was initially constructed
for the PiP exercise (an initial design proposed and implemented in the
Metropolis environment). This has resulted in one example model that
will be described in detail and two that are theoretically described. What
is in progress is how to (1) characterize how we ”prove” this is a refine-
ment (2) how we can quantify that this refinement is different from the
original models. Hopefully the discussion that follows can be useful in
trying to get at these issues.

*Note on the terminology: Simple architecture refers to the simple
architecture provided with the release.

8

Three

Refinement Theory

Refinement from a ”System Level Design” standpoint has many different
definitions and each can dramatically change the interpretation of what
it means to refine an architecture model. The basic definition for the pur-
poses of this document and Metropolis development is:

Definition: Refined Architecture Model - a model which can be sub-
stituted into a system (read: Metropolis Netlist) in place of another model
while maintaining the correct overall functionality of the system while
differentiating itself from the original via a communication, computa-
tion, or coordination property.

The main challenge with this definition is how do you measure the
”communication, computation, or coordination” property? In addition
there is the difficulty of saying under which environments (external stim-
ulus) can the model be substituted? Are restrictions necessary to the en-
vironment or can it be in any environment? Naturally, this all assumes
that minimally the correct behavior of the system is maintained upon the
refinement.

Initially there are two basic divisions of refinement verification:

� Provide properties and check that those properties hold between
two models.

– The user would supply a set of models and a set of properties
encapsulated either in the model descriptions themselves or as
a separate specification.

9

3. REFINEMENT THEORY

� Check two models and tell which properties hold between them.

– The user would supply a set of models and the result would
be a set of properties which are satisfied (or not satisfied).

The first method requires that one know which properties one would
like to check. This is problematic since you must not only specify these
properties but also you must make sure not to ”miss” any that would
lead to incorrect information regarding the refinement relationship. In
addition, you must be ”sure” that these are relevant properties. What is
relevant to one model might not be to the other and what is relevant in
one application might not be in the other.

The second method requires that ”all” properties be checked. This is
difficult naturally from a feasibility standpoint. Not only is the number of
properties large (presumably infinite) but also the definition of a property
must be automatically decided.

Refinement checking should be a combination of these two approaches.
This means that the verification process can accommodate both the spec-
ification of properties as well as the checking of implicit properties rel-
evant to that model/application. This could be achieved by defining a
two stage process.

Two Stage Process of Refinement
� Group Properties together in such a way that the establishment of

one property ensures the adherence of the others.

– The initial property that is checked is referred to as the Macro-
Property. The other properties implied are MicroProperties.

– The relationship between a MacroProperty and its MicroProp-
erties is a Partial Order. It is reflexive, antisymmetric, and tran-
sitive.

� Develop refinement methodologies such that if a model is created
in a certain manner then the MacroProperty is preserved.

– Depending on which MacroProperty you want to preserve you
do refinement in a specific manner. This leads to the need for
a specific refinement methodology!

– This is correct by construction and provides insight into the re-
lationship between various MacroProperties.

10

Methods of refinement as defined by [4] are trace based, execution
based, and property based. The level of property specification can be
LTL, CTL, Timed LTL, LOC, etc (these are all logics that are used in for-
mal verification). What is important is that the Macro and Micro proper-
ties can be expressed in the same syntax.

With MacroProperties that cannot be preserved by construction meth-
ods, checking this property is still much smaller than checking all its as-
sociated MicroProperties. Having relatively easy to verify MacroProper-
ties is key to this methodology.

Another issue is that of Structural vs. Functional refinement. This
means refinements that hold particular functional properties (data con-
sistency) and refinements that hold particular structural properties (FIFO
size). Depending on your goals, one or the other (both) might be impor-
tant. Naturally, there are many obvious cases where you want functional
refinement such as in protocol development. The key is to determine
what aspects of your architecture are concerned with functional refine-
ment. It is not a given that all functional aspects of a system must be pre-
served in refinement. Structural refinement likewise may be important in
such areas where a design is known to need certain structures (memory
requirements). Again, structural refinement does not necessarily have to
hold across the entire design.

11

Four

Refinement Methodology

In order to systematically refine a model there must be a methodology in
place that demonstrates the procedure for a designer to follow in order
to perform various refinements. In following such a procedure, ideally
one can say a priori which of the properties will hold between the abstract
and refined model. Naturally, this leads to the fact that one can follow
various procedures depending on which properties are of interest. In ad-
dition, knowing which properties should be checked prunes the space of
all properties making the automatic checking of such properties feasible.

The initial refinement procedures to be described are termed verti-
cal or horizontal refinement. Horizontal refinement refers to the fact that
the goal of the refinement is to move architectural aspects of the model
from the ”scheduling netlist” into the ”scheduled netlist”. A key will
be to identify which properties can be preserved by horizontal refine-
ment. Vertical refinement refers to the process of transforming items in
the ”scheduled netlist”. This typically is done by targeting one partic-
ular process or media element and decomposing it into multiple media
and process elements and then replacing that decomposed structure back
into the model. Again, a key will be to identify which properties can be
preserved by vertical refinement. Naturally, a hybrid approach can be
taken in which ”vertical” and ”horizontal” aspects of refinement can be
combined. Finally, there is a third ”axis of refinement” termed depth re-
finement. This is where a single process or media is changed internally
(i.e. a scheduling algorithm changes or a media service is modified).

An interesting area is to identify how the mapping process in Metropo-

13

4. REFINEMENT METHODOLOGY

lis plays into refinement. Does the method by which you refine make
for easier or harder mappings? More efficient mappings? Better perfor-
mance mappings? Does it make a difference? For example, if one were
to perform a refinement by which they change the scheduling algorithm
for a task using a resource (depth refinement), an intelligent mapping may
now need to take into account that a ”better” mapping may occur by
mapping certain processes which could better use that scheduling algo-
rithm to that resource and mapping other process which don’t benefit
from that scheduling to another resource. If all scheduling algorithms
were the same, the mapping could be ”dumber” and arbitrarily assign
processes. Mapping is described in the document [2].

Staring with section 6, we will give ”step by step” instructions on how
”vertical refinement” was done in the simple architecture along with how
this can be done generically for an arbitrary model.

4.1 General Architecture Structure

In order to present a standardized structure of an architecture we pro-
pose the following structure for Metropolis architecture model structure
which is based upon the original simple architecture structure at

examples/pip/architecture/simple. The example files mentioned are from
that original simple architecture model.

An architecture description in Metropolis should consist of:

� Top level netlist - this instantiates the architecture; Top.mmm

� Architecture level netlist - this instantiates and connects the schedul-
ing and scheduled netlist; Architecture.mmm

� Scheduling Netlist - defines which components are in the schedul-
ing netlist; ArchSchedulingNetlist.mmm

� Scheduled Netlist - defines which components are in the scheduled
netlist; ArchScheduledNetlist.mmm

� Request Definitions - defines the request structure for services. These
structures are how requests are made to the Quantity Managers
during the request phase of architecture execution; InterfaceSchedReq.mmm

14

Vertical Refinement

� Services - these are items the provide services, CPU, BUS, etc; Mem.mmm
CpuRtos.mmm Bus.mmm

� Quantity Managers (Schedulers) - this can be as few as global time
or as many as one scheduler per service; MyScheduler.mmm Sched-
ulerFIFO.mmm SchedulerTimeSliceBased.mmm

� Tasks - processes which utilize the resources; SwTask.mmm

� Service Access Definitions - provides the prototypes for the service
interfaces and defines ports. This dictates what the high level API
for the services in the architecture is; InterfaceScheduling.mmm In-
terfaceScheduled.mmm

� Support Structures - code which provides data structures needed
for services; ProcessAccount.mmm ProcessRecord.mmm

Based on this structure we can talk generically about what the differ-
ent refinement styles would consist of. All architecture should have these
elements. What refinement will do is change the number and the connec-
tion between them. For example, a vertical refinement will add services
and quantity managers. This will also lead to more service access defini-
tions. Horizontal refinement will reduce the Quantity Managers but add
services in the scheduling netlist.

4.2 Vertical Refinement

Vertical refinement is the notion that within the model changes are made
”vertically” where these changes are additions/subtractions/divisions
of media. This will consist of topological changes to existing media as
well. This means that you do not swap aspects/relationships/devices
between netlists but rather you move within a particular netlist. Natu-
rally, this contrasts to horizontal refinement.

Vertical refinement of an architecture can be seen as a whole spec-
trum of refinement with the levels being defined as to what elements are
passive (media) and which are active (processes). For example, you can
change the number and types of processes in the scheduled netlist or you
can change the number and type of media in the scheduled netlist.

15

4. REFINEMENT METHODOLOGY

What this would imply is that the most abstract would only have the
clock be the only active element while the least abstract would have all
processes (vice versa depending on perspective).

The primary method of vertical refinement in practice is likely to be
the addition of media. This style of refinement ultimately is the addition
of services. This is adding a level of granularity to the abstract services
provided initially. Vertical refinement is most likely the most common
form of refinement from a structural standpoint concerning the netlists.
This is also the most straightforward of the refinement styles. This will
require the following types of changes:

� Need to add/create services themselves

� Need to add requests for each services

� Need to add ”schedulers” for these services. There is a one-to-one
correspondence between the services and schedulers.

� Need to introduce these into the corresponding netlists

Notice that with a vertical refinement you are moving vertically in
both netlists. For example, the addition of a service in the scheduled
netlist requires an additional scheduler in the scheduling netlist.

4.3 Horizontal Refinement
Horizontal refinement is the moving of the scheduler’s (quantity man-
ager’s) functionality into the scheduled netlist.

The spectrum of horizontal refinement really simply results by how
many of the schedulers you move and what portion of the schedulers
you move. You many not move all functionality but rather only certain
aspects if you so desire. It is that freedom which provides the abstraction
levels in this refinement style. Horizontal refinement is done to represent
in the ”scheduled netlist” the components that will physically need to be
present in an implementation. It is to make the design more ”tangible”
and less reliant on simulation-based components. Horizontal refinement
also changes the speed and semantics of the simulation.

This would require the following changes:

16

Depth Refinement

� Need to modify interfaces from services to scheduling netlist to re-
flect their new relationship with the migrated new services.

� Need to add the functionality to the services which now provide
the previous scheduling duties.

Notice that horizontal refinement is less systematic in some sense
when compared to vertical refinement since potentially there are more
interactions that must be explored. Horizontal refinement will change
the simulation semantics significantly since the access to services now
are handled by the method created by the user as opposed to the seman-
tics of the defined quantity managers.

4.4 Depth Refinement

Depth Refinement is where individual processes or services are themselves
changed. The canonical example is changing a scheduling policy from
round robin to earliest deadline first (EDF) for example. This is where
new objects are not added but rather the internal behavior of a process
or media is modified. If this behavior can be expressed by the decompo-
sition of the current object into multiple objects then this might be better
expressed as a ”vertical” refinement.

The Control Flow Automata (CFA) backend currently available (by re-
quest; not a part of the initial release) for Metropolis could be viewed as
depth refinement checking. When you change a process you can check
trace containment on the function calls to media made by the process as
compared to its abstract counterpart. This containment can give you an
indication as to whether the internal change will affect the overall func-
tionality of the system.

The CFA backend is available for use as a backend in Metropolis. It
is very limited and requires the use of an external set of tools including
Intel’s FORTE environment and the University of California, Berkeley’s
Mocha [1]. Currently the CFA backend has had several issues pointed
out as potential limitations by the Metropolis team.

� No notion of fairness or liveness

– Empty Trace is always a refinement

17

4. REFINEMENT METHODOLOGY

� How to handle non-determinism

� Potential state explosion

� Witness module required by Mocha not automatically generated
(perhaps not possible)

These are listed so that the key issues are documented. We will look to
address these issues (and others as they arise) in a future revision of this
document.

An initial attempt to use this backend for single threaded processes
in Metropolis is in [3] at DATE04. This paper talks about the refinement
process performed with researchers at Cypress Semiconductor. It details
what the refined models looked like as well as how depth refinement on
individual processes was verified at each refinement stage.

18

Five

Refinement Properties

The key issue for refinement is resolving what are the properties that
are required to hold between the abstract model and the refined model.
The first question is how do those properties manifest themselves as at-
tributes of a model? For example if one is interested in the resulting
latency of a process, what are the observable behaviors of the process
that give me insight into this property? The second question is how are
those attributes to be related between the two models? We introduce this
definition of a property for the purposes of the following discussion.

Definition: MicroProperty - the combination of one or more attributes
(quantities, properties) and a relation defined on these attributes.

Definition: MacroProperty - a property that encompasses a collection
of MicroProperties. The satisfaction (i.e. the property holds or is true) of
the MacroProperty ensures all MicroProperties covered by this Macro-
Property are also satisfied. Since the implication does not commute be-
tween Micro and MacroProperties there are MacroProperties which share
MicroProperties but they are themselves not the same nor do they imply
the satisfaction of one another.

5.1 Properties

This section is where we will begin to talk about which properties (which
make up MicroProperties) can be discussed during refinement. Right
now the list is very sparse and lacks details but gives an intuition as to

19

5. REFINEMENT PROPERTIES

what could be expected in this area. The majority of effort will now go
into identifying these properties, their relationships, and how to check
them.

You can categorize the properties as structural, functional, and per-
formance. Notice that it is important to understand that in the tradition
of platform based design and its orthogonalization of concerns, that these cat-
egories be explicitly distinct.

Examples of performance properties:

� Latency - time for a task to complete

� Throughput - number of tasks completed per unit time

� CPI - cycles per instruction (request)

� Jitter - random variation in a signal

Performance properties typically have to do with specifications re-
garding the desire for a certain level of performance. However some-
times these properties can actually be required for the correctness of a
system. Many performance properties are related to one another.

Examples of functional properties:

� Mutex - mutual exclusion of a resource

� Data Consistency - data in equals data out

Functional properties typically have to do with the correctness of a
system. Often they affect the performance properties of a system as well.

Examples of structural properties:

� Memory Size - size of memory elements such as FIFOs

� ALU operand size - the size of the ALU operands (i.e. bits)

� Datapath width - the size of the instruction

Structural properties typically have to do with both the performance
and the correctness of a system. They will interact with other structural
properties as well as with functional and performance properties. These
properties often pertain more to the implementation issues associated

20

Property Relationships

with the design of a system and therefore typically appear at lower ab-
straction levels.

What will be of key importance is the way in which properties are
related and categorized so that we can:

� Determine which properties are related and how

� Determine which refinements related to which properties

In terms of grouping properties and initial attempt used is in [4] which
has a method that uses the following terminology:

� Rule of Computation (CMP)

� Rule of Read Order (RO)

� Rule of Write Order (WO)

� Rule of Write Atomicity (WA)

You can group properties by this method. For example, the ”mutex”
functional property is a WA property. While Data consistency is a RO
and WO property. Perhaps this method can be used to examine Macro
and Micro Properties relationships.

5.2 Property Relationships
Here are how property relationships can be established which is key to
the Micro and Macro properties discussed earlier. This is an example.
Future work will be devoted to establishing these relationships.

Data Consistency � Data Storage Space Sufficient (FIFO Size), Read
Access, Write Access

In this case if the MacroProperty ”Data Consistency” is shown it then
implies the MicroProperties Data Store Space Sufficient, Read Access, and
Write Access. Notice that the MicroProperty ReadAccess does not imply
anything at this point.

The keys to these relationships are (1) There must be a method to
prove the relationship (2) The MacroProperties cannot be more expen-
sive to check then the sum of MicroProperty checking costs (3) The Mi-
croProperties must be non-trivial.

21

Six

Initial Simple Architecture

Figure 6.1 shows the standard simple architecture. This is discussed in
the ”A Simple Case Study in Metropolis” document found in this release
[2]. Please refer to this document as the following discussion assumes
that the reader is familiar with the concepts and terminology contained
there.

23

6. INITIAL SIMPLE ARCHITECTURE

T1 Tn

CpuRtos

cpuRead

ScheduledNetlist SchedulingNetlist

Bus

Mem

busRead

memRead

Request(e,r)

setMustDo(e)

resolve()

PiP Architecture

CpuScheduler

BusScheduler

MemScheduler

GTime

Figure 6.1: Initial Simple Architecture Model

24

Seven

Specific Vertical Refinement
Modifications

This refinement will start with the files that compose the ”simple” ar-
chitecture. Having an understanding of this architecture is the foun-
dation for the refinement. This structure will aid in process of docu-
menting how the refinement will evolve from that model. The following
sections detail what will be changed in the current architecture model
for a vertical refinement as shown in figure 7.1 and provided in exam-
ples/pip/architecture/simple.

7.1 Netlists
A vertical refinement requires many changes to be done to the netlists.
Primarily services need to be introduced to the scheduled netlist and
their quantity managers need to be put into the scheduling netlist. This
requires that the same structures which instantiate and parameterize the
existing services need to be duplicated for the new services. In addition,
the connections need to be changed to reflect the new topology.

Top.mmm
No major changes required. May simply change the name of the archi-
tecture netlist to reflect that this is a refinement of the original. In this
case, Top.mmm became top vert.mmm. Here are the steps that required:

25

7. SPECIFIC VERTICAL REFINEMENT MODIFICATIONS

T1 Tn

CpuRtos

cpuRead

ScheduledNetwork

Bus

Mem

busRead

memRead

Original Architecture

Cpu
Scheduler

Bus
Scheduler

Mem
Scheduler

T1 Tn

Cpu

ScheduledNetwork

Bus

Mem

Vertical Architecture

Rtos

Cache

Cache
Scheduler

Rtos
Scheduler

GTime

Scheduling
Network

Connect Each
Scheduler to GTime

memRead

busRead

cpuRead

read

cacheRead

Bus
Scheduler

Mem
Scheduler

Cpu
Scheduler

GTime

Scheduling
Network

Figure 7.1: Vertical Refined Architecture Model

1. Need to add parameters for whatever new services you are adding.

� This should represent some aspect of the service that will effect the
simulation.

2. Need to introduce those parameters into the instantiation of the Architec-
ture

� Make sure to change the constructor for the architecture.

3. Optional: Change the names of the instances if desired.

� Useful if you view the elaborated netlist.

Essentially for each service which is currently found one would need
to add duplicate parameter structures for each new service that will be
introduced.

26

Netlists

Architecture.mmm
Changes here are also minimal (perhaps only name changes to netlists).
Naturally instantiations of the scheduling and scheduled netlist will oc-
cur. Architecture.mmm became architecture vert.mmm.

This is the netlist that brings the scheduling and scheduled Netlist
together.

1. Change the number of quantities to reflect the new value.
� This will be one for each new service.

2. This requires the introduction of constructor to reflect top level netlist
call.

� This is defined in the top-level netlist.

3. Fix the constructors to pass the values to the scheduling and sched-
uled netlists

4. Majority of work entails using the same structure in place to add
the other service(s). Just add the same structure for each new object
in terms of variables and connections.

5. Optional - change the Netlist name arguments.

ArchSchedulingNetlist.mmm
This netlist needs to introduce the new items for the entire scheduling
netlist. In a vertical refinement, this will be new schedulers for services.
This became piparchscheduling vert.mmm.

This is the scheduling netlist. Since this is a vertical refinement there
is no swapping between the two netlists, just the addition of schedulers
for each service you added in the scheduled netlist.

1. Add schedulers for each service

2. Update parameters (Quantity count and TAGs)

3. Change constructor if need be

4. Instantiate the schedulers

5. Add components and make connections

27

7. SPECIFIC VERTICAL REFINEMENT MODIFICATIONS

ArchScheduledNetlist.mmm
This now will include a RTOS media and cache media. In addition, it
needs to reorganize the connections appropriately. This file is now pi-
parchscheduled vert.mmm.

Since this is a vertical refinement there is not an exchange to this
netlist from the scheduling netlist. All that is necessary is to add the
new services.

1. Provide necessary parameters for new services.

� This involves changing the constructor for netlist.

2. Instantiate new services.

3. Add the services into the netlist.

4. Make necessary connections.

� This will involve not only the addition of new connections but
also changing existing ones. *In this case the tasks are now
connected to the RTOS instead of the CPU.

7.2 Services
The nice thing about a vertical refinement is that ideally many of the
services can remain unchanged. Only those interacting with the new
services will need to be modified. The main effort in this area is simply
in creating the new services themselves.

CPURtos.mmm
This will now become just a CPU media. The functions it provides should
be the same. The CPU does not have to resolve tasks requests. It will be
given a request and simply provide services for that request. Tasks will
not be able to access the CPU until given permission by the RTOS. The
main change is now the CPU is simply set to use the FIFO scheduling
policy. The RTOS will select between the FIFO and the TimeSlice based
scheduling policies. This file now is Cpu.mmm.

This is the CPU from the Simple Arch model with the following changes:

28

Services

1. Need to change the ports to accommodate any new services (Cache).

2. Need to make sure the interface is defined.

� In this case cacheInterface.

3. Need to add any needed functionality for the new service that it
interacts with.

� In this case it needs to determine if service calls should be
made to the Memory or Cache port depending on a cache hit
or miss.

4. Need to change what service it implements (i.e. now it is an RtosSlave).

Mem.mmm

An excellent example of a service not affected by vertical refinement since
it does not interact with a new service. This file is the same as the simple
architecture’s, Mem.mmm.

This lack of interaction leads to an easier vertical refinement. Observ-
ing this it might be advantageous to keep interactions between services
minimal. This demonstrates that a clean, modular design will make the
refinement process much smoother. It also points out a potential check
for automation. A tool could simply check the connection structure to
determine whether a service needs to be modified.

Naturally, some modifications for debugging such as blackbox state-
ments might be useful but can be trivially added.

Bus.mmm

This file will stay the same as before as Bus.mmm. This is because of
the fact that in vertical refinement the only services that have to change
are those that interact with the newly introduced services. The bus just
interacts with the CPU and Mem as it did before.

29

7. SPECIFIC VERTICAL REFINEMENT MODIFICATIONS

7.3 Service Access Definitions
These typically just have to change to accommodate the new services.
Ideally the interfaces will stay the same for reasons such as interface
checking and compatibility. The interfaces often are a way in which you
can relate on abstraction level model to another level.

InterfaceSched.mmm

This file is still named InterfaceSched.mmm. Changes here result usu-
ally from a set of interfaces for each newly added service. In this case, it
has the following changes:

1. Adds the ”cacheInterface” interface.

2. Adds the ”RtosSlave” interface.

InterfaceScheduling.mmm

This file is still named InterfaceScheduling.mmm. Nothing is changed
in this file and if the architecture structure remains as in these examples
then nothing should change.

7.4 Tasks

SwTask.mmm

These should now only have ports to the RTOS and the statemedia that
communicate to the schedulers. The functions that these tasks can per-
form should be unchanged (other than the fact they reflect the new name
change). This file keeps the same name SwTask.mmm, to reflect the ide-
ology that SwTasks should not be concerned with what service handles
their requests.

1. SwTasks are the same regardless of architecture type (vertical, etc).
It is the responsibility of the designer to implement a service that
provides a SwTaskService interface consistent with the one shown
in this example.

30

Quantity Managers

2. Need to modify the port to reflect what service the task can interact
with (in this case, it stays the same but the RTOS now provides the
SwTaskService interface)

3. Optional - Added a simulate flag to switch which thread runs; i.e.
mapping(0) or simulation (1)

The changes in this file really reflect more a change in thought process
which demonstrate the fact that SWtasks should not really specify what
they are running on (other than through port connections). Changes to
SwTask.mmm need to be closely coordinated with the mapping effort
since they will be mapping processes during the mapping phase of the
design.

7.5 Quantity Managers

In a vertical refinement, a key property is that for each new service added
to the ”scheduled netlist” there is a corresponding quantity manager
added in the ”scheduling netlist”. However due to the generic nature
of the schedulers in the simple architecture example, these do not have
to change at all for the vertical refinement.

MyScheduler.mmm

This stays untouched and keeps the same name, MyScheduler.mmm.

SchedulerFIFO.mmm

This stays untouched and keeps the same name, SchedulerFIFO.mmm.

SchedulerTimeSliceBased.mmm

This stays untouched and keeps the same name, SchedulerTimeSlice-
Based.mmm.

31

7. SPECIFIC VERTICAL REFINEMENT MODIFICATIONS

7.6 Request Definitions
These are requests for scheduling. These should be consistent across re-
finement since the schedulers are not changing.

InterfaceSchedReq.mmm
This stays untouched and keeps the same name, InterfaceSchedReq.mmm.

7.7 Support Structures
These structures are in place in order to facilitate some operation in the
original model. Unless you remove the component that uses these struc-
tures then you will simply keep them. If you do remove the component
then you will also no longer need the support structures. This is always
true in a vertical refinement. If this is not true, this may fall under the
category of a depth refinement.

ProcessRecord.mmm

This stays untouched and keeps the same name, ProcessRecord.mmm.

ProcessAccount.mmm

This stays untouched and keeps the same name, InterfaceSchedReq.mmm.

7.8 Vertical Additions to Simple Architecture
This section will detail the new files that I added.

Rtos.mmm

This is a new service that is now inserted between the tasks and the
CPU. It now calls the CPU for the tasks. This would allow for multi-
ple CPU services as well as new scheduling mechanisms that can utilize
the services more efficiently. It represents the addition of an RTOS ser-
vice. This is simply an intermediate media that dispatches tasks to the

32

Vertical Additions to Simple Architecture

CPU. A ”depth refinement” would be to add to the RTOS scheduler the
ability to change the order in which the task go to the CPU. Basically it
just relies on the same structure as the CPU used to have but has the no-
tion of an RTOS overhead parameter. This is a new service not present
in the original model. This looks like a CPU essentially but 1) It has both
the Time Slice Scheduling option and the FCFS FIFO scheduling option
2) It does not have cache ports or the calls to caches 3) it has a different
service cycle interface and parameter settings.

1. Whatever is the ”top” service must interface with tasks and have
this interface. In this case, the ”top” service is this RTOS.

2. Need to add a new port to access the CPU.

3. Change the constructor.

4. Change parameters as necessary.

5. Add to the scheduled netlist.

Cache.mmm
This Cache model is based on the caches provided with the processor
model examples in Metropolis. The cache instantiated is an Associative
Cache set to be two-way set associative, with a block size of 32 bits, and
a miss penalty of 10 cycles.

1. Need to make an interface definition for this service.

2. Need to add the appropriate ports

3. Need to add the appropriate parameters

4. Need to add this to the scheduled netlist

33

Eight

Proposed Horizontal Refinement
Modifications

This refinement will start with the files that we have created as the sim-
ple architecture as the foundation for the refinement. This structure will
aid in process of documenting how the refinement will evolve from that
model. The following sections detail what will be changed to the current
architecture model for a horizontal refinement as shown in figure 8.1.

8.1 Horizontal Additions to Simple Architecture
Here are the steps that would need to transpire for a horizontal architec-
ture to be created from an existing architecture:

1. New services would have to be created for the scheduled netlist.
There would be one new service for each scheduler object that you
want to migrate.

2. Would need to introduce those services into the ”scheduled netlist”.

3. Would need to change the connections from those new services into
the ”scheduling netlist”.

35

8. PROPOSED HORIZONTAL REFINEMENT MODIFICATIONS

CPU

MEM

BUS

CpuSched

BusSched

MemSched

Task1 TaskNTask2

Global Time

Scheduling NetlistScheduled Netlist

Figure 8.1: Horizontal Refined Architecture Model

36

Nine

Proposed Hybrid Refinement

Figure 9.1 shows the proposed hybrid refinement. The main features to
note are:

� The RTOS is now a process. It uses media to provide services to
perform its functions. Tasks must go through the RTOS in order to
gain access to various hardware resources. It should be noted that
the RTOS is still a ”task” in itself which runs on the CPU.

� The quantities from the previous model now are media in the sched-
uled netlist. These are the services the RTOS can access to provide
tasks access to the ”hardware” resources.

9.1 Tasks transformed to Media
Currently the tasks are processes. One future approach may be to make
tasks media. Some hierarchy would be created always with a process
as the ”top” of the hierarchy. This process now makes calls to media
lower on the hierarchy, which make calls to media lower on the hierarchy
etc. This would build a kind of library of media that can compose an
application.

This is similar to how the hybrid refinement deals with the RTOS. The
RTOS is a process which calls ”tasks”. The RTOS is the top process in the
hierarchy and naturally the lower media functions can create a hierarchy
that builds functionality that is more complex.

37

9. PROPOSED HYBRID REFINEMENT

CPU

MEM

BUS

CPUAccess

BusAccess

RTOS

SM1

SM3

SM2

MemAcces
s

Task1 TaskNTask2

SM4

SM5

setMustNotDo

resolve

resolve

resolve

Global Time

request
release

Scheduling
Netlist

Scheduled
Netlist

request
release

request
release

TimeRequest

TimeRequest

LockRequest

TimeRequestable

TimeRequestable

Figure 9.1: Hybrid Refined Architecture Model

38

Ten

Xilinx Architecture Platform

Ultimately, it would be nice to have a set of ”real” architectures that can
be targets of the refinement and mapping process in Metropolis. One
architecture family which we have access to and is ideal (due to its FPGA
and embedded processor design) is the Xilinx Virtex II Pro. We have the
part available to use in our lab at Berkeley as well as access to the tools
to program it. Work is underway which models key parts of this device
along with peripherals to create and embedded system with it.

Also of interest is how a refined architecture could be made of the
Xilinx platform. A coarse approach is for IP blocks to be modeled as
media that provide various tasks. Applications could be designed in the
previously mentioned way by calling functions on those media. Here are
some rough initial correspondences:

� CPU � PowerPC - could create a PowerPC like service media

� BUS � CoreConnectBus - bus like services

� MEM � IP Memory Blocks

� Custom Functions � Hierarchy of FPGA CLB blocks

Currently there are rough models of the following components in
Metropolis: PowerPC405, MicroBlaze SoftProcessor, CoreConnect Pro-
cessor Local Bus (PLB) and On-Chip Peripheral Bus (OPB), PLB/OPB
bridges, BlockRam Memory, and Synthetic Master and Slave devices that
can replicate FPGA hardware. These are not part of the release and are

39

10. XILINX ARCHITECTURE PLATFORM

still in their infancy. Information regarding them can be made available
upon request.

40

Eleven

More Information and Sponsors

In order to begin to consolidate the information on refinement this docu-
ment begins to cite papers that we feel address this topic. The bibliogra-
phy here will continue to grow and is by no means complete. This should
serve as a reference for those interested in refinement. If you have papers
to add to this list please let us know at densmore@eecs.berkeley.edu. This
address should be used to further direction questions and comments re-
garding this document’s structure or content. Finally see [5] for other
concepts regarding these topics.

11.1 Referencing This Document
Here is an example of how to reference this document:
Douglas Densmore, "Metropolis Architecture Refinement Styles and Methodology",
Technical Memorandum UCB/ERL M04/36, University of California, Berkeley, CA 94720,
September 14, 2004.

11.2 Sponsors
This work was supported in part by the following corporations:

� Cadence

� General Motors

� Intel

41

11. MORE INFORMATION AND SPONSORS

� Semiconductor Research Corporation (SRC)

� Sony

� STMicroelectronics

� and the following research projects:

– NSF Award Number CCR-0225610 and the Center for Hybrid and
Embedded Systems (CHESS, http://chess.eecs.berkeley.edu)

– The MARCO/DARPA Gigascale Systems Research Center (GSRC,
http://www.gigascale.org)

The Metropolis project would also like to acknowledge the research contri-
butions by:

� The Project for Advanced Research of Architecture and Design of Elec-
tronic Systems (PARADES, http://www.parades.rm.cnr.it/) (in particu-
lar Alberto Ferrari)

� Politecnico di Torino

� Carnegie Mellon University

� University of California, Los Angeles

� University of California, Riverside

� Politecnico di Milano

� University. of Rome

� La Sapienza

� University of L’Aquila

� University of Ancona

� Scuola di Sant’Anna and University of Pisa

Metropolis contains the following software that has additional copyrights.
See the README.txt files in each directory for details

examples/yapi cpus/arm/arm sim arm sim is an ARM processor simulator
that was originally released under the GNU Public License. The ARM
Simulator is only necessary if you would like to create your own trace
files. Most users need not build the ARM Simulator.

42

Sponsors

src/com/JLex JLex has a copyright that is similar to the Metropolis copyright.

src/metropolis/metamodel Portions of the Java code were derived from sources
developed under the auspices of the Titanium project, under funding from
the DARPA, DoE, and Army Research Office. The Java code was further
developed as part of the Ptolemy project. The Java code is released under
Metropolis copyright.

src/metropolis/metamodel/frontend/Lexer Portions of JLexer are: ”Copy-
right (C) 1995, 1997 by Paul N. Hilfinger. All rights reserved. Portions
of this code were derived from sources developed under the auspices of
the Titanium project, under funding from the DARPA, DoE, and Army
Research Office.”

src/metropolis/metamodel/frontend/parser/ptbyacc ptbyacc is in the public
domain.

43

Bibliography

[1] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer,
Sriram K. Rajamani, and Serdar Tasiran. MOCHA: Modularity in
model checking. In Computer Aided Verification, pages 521–525, 1998.

[2] Abhijit Davare, Douglas Densmore, Vishal Shah, and Haibo Zeng. A
simple case study in metropolis. Technical Memorandum UCB/ERL
M04/37, Univerity of California, Berkeley, CA 94720, September
2004.

[3] Doug Densmore, Sanjay Rekhi, and Alberto Sangiovanni-Vincentelli.
Microarchitecture development via metropolis successive platform
refinement. In Design Automation and Test Europe, 2004.

[4] Ratan Nalumasu, Rajnish Ghughal, Abdelillah Mokkedem, and
Ganesh Gopalakrishnan. The ’test model-checking’ approach to the
verification of formal memory models of multiprocessors. In Com-
puter Aided Verification, pages 464–476, 1998.

[5] Dong Wang, Pei-Hsin Ho, Jiang Long, James H. Kukula, Yunshan
Zhu, Hi-Keung Tony Ma, and Robert Damiano. Formal property
verification by abstraction refinement with formal, simulation and
hybrid engines. In Design Automation Conference, pages 35–40, 2001.

45

