
A Platform-Based Design Environment for Synthetic
Biological Systems

Douglas Densmore1∗, Anne Van Devender1+, Matthew Johnson2∗, Nade
Sritanyaratana2∗

Department of Electrical Engineering and Computer Sciences1

Department of Bioengineering2

University of California, Berkeley∗
Washington and Lee University+

vandevendera@wlu.edu {densmore@eecs, matthewjohnson, nadesri}.berkeley.edu

ABSTRACT
Genomics has reached the stage at which the amount of
DNA sequence information in existing databases is quite
large. Synthetic biology is now using these databases to cat-
alog sequences according to their functionality thus creating
a system of standard biological parts. Flexible tools are
needed which both permit access and modification to that
data and also allow one to perform meaningful, intelligent
manipulation. A Platform-Based Design approach views ge-
netic information as having a particular functionality and
assembles platforms (collections of DNA elements) to per-
form this functionality. Specifically this paper presents the
Clotho toolset which uses these concepts to create a com-
plete design environment for standardized biological parts.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Management

Keywords
Platform-based Design, Synthetic Biology

1. INTRODUCTION
Synthetic biology is a rapidly growing field in which the tech-
niques of chemistry, biology, and engineering merge. Syn-
thetic biologists look to create new microorganisms by ma-
nipulating the basic building blocks of life to create living
material which interacts with, manipulates, and responds to
the environment in which it lives. Synthetic biology is very
much a design science where a new system is created by re-
searchers in laboratories using a series of design steps along
with their understanding of biological processes. Synthetic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,requires prior specific
permission and/or a fee.
Tapia’09, April 1-4, 2009, Portland, Oregon, USA.
Copyright 2009 ACM 978-1-60558-217-7/09/04...$5.00

biology has the potential to greatly impact greater society
through the development of new technologies in drug pro-
duction, biofuels, and drug delivery vessels.

In an attempt to standardize this process, leverage previ-
ous design experiences, and begin to create a predictive de-
sign environment, registries of standard biological parts are
beginning to emerge [14]. Researchers have begun to talk
about how to classify these parts, create CAD systems, and
establish standards [13], [12], [7], [19], [10]. [18] lays out
very nicely an example of how these parts can be used to
program bacteria and discusses how they can be character-
ized (e.g. sensors, switch logic, inducers, etc). The fact
that these collections of parts can be discussed in terms of
their functionality along with rules for their composition,
raises the interesting question of how the Electronic Design
Automation (EDA) community (traditionally in electrical
engineering and computer science) possibly can leverage its
techniques in the creation of biological systems.

This paper describes the design of a toolset called Clotho
(named after the Greek fate which spun the thread of life)
which uses a methodology called Platform-Based Design (PBD)
[16] to approach the problem of designing synthetic biolog-
ical systems. In particular, we will describe its separation
of computation, communication, and coordination, the con-
cept of a “platform” as a common semantic meeting place
for designs, and the notion of both “top down” and “bottom
up” design styles.

1.1 Requirements
In the world of biology one can roughly separate tool offer-
ings into three broad categories. The first category are those
tools which provide computational power to specific biologi-
cal algorithms. BLAST (Basic Local Alignment and Search
Tool) [15] aligns nucleotide and protein sequences to allow
for functional prediction and to aid in locating sequences in
databases. ORBIT [11], [4] is protein design software which
allows the design of an amino acid sequence that folds into a
particular 3D structure. Mfold [20] enables the prediction of
mRNA secondary structures which aids in predicting mRNA
regulation and ribosome binding site strengths. These types
of tools require a strong understanding not only of the un-
derlying biology but also that the biology be predictive.

The second category of tools are those tools which allow the

24

user to design biological systems. Many biological systems
are not well understood, thus requiring a very empirical ap-
proach in which one must observe a number of experiments
and create hypotheses based on the collected data. In order
to perform this research in an efficient, repeatable manner
tools must exist to help in this process. Examples of these
tools are APE (A Plasmid Editor) [5], BioJADE [8], Gene
Designer [17] by DNA 2.0, and GenoCAD [3].

Finally, the third category are “glue tools” which do not
require a great deal of biological knowledge but are used
routinely by biologists in a laboratory setting. Function-
ality needed includes: translation of a gene into an amino
acid sequence, producing the reverse complement of a se-
quence, calculating the melting point for a region of DNA,
identifying restriction sites and other DNA motifs, calcu-
lating transmembrane regions, calculating the probability
that a protein has a secretion signal sequence (signalP), etc.
This list continues to grow and each lab has its own set of
favorites.

M
a
p
p
in
g
 V
ie
w

(A
s
s
ig
n
m
e
n
t o
f fu

n
c
tio
n
a
lity

 to
 p
a
rts
)

P
a
rt
s
 V
ie
w

(C
o
m
p
o
n
e
n
ts
 f
o
r
a
 d
e
s
ig
n
)

Functional View

(Behavior for a design; Part agnostic)

RBS Regulatory

1. Multiple Views of the Design

Signalling
Protein

Gen.

ACGTACGGTT

View API 1 View AP2 View API N

Functionality 1

(Codon Optimize)
Functionality 2
(Sequence Align)

Functionality 3
(mRNA analysis)

Functionality N

User Interface

(Command Line, Window Based, GUI, Scripts, etc)

Menu Menu

Title

Button Tool Bar

D
a
ta
b
a
s
e

A
P
I
1

(R
e
la
ti
o
n
a
l)

D
a
ta
b
a
s
e

A
P
I
2
 (
X
M
L
)

D
a
ta
b
a
s
e

A
P
I
N

XML

MySQL

Relational

T
o
o
l
A
P
I
1

(C
o
m
p
u
ta
ti
o
n
)

T
o
o
l
A
P
I
N

(S
im
u
la
ti
o
n
)

Input/Output, Import, Export Support

(FASTA, GenBank, Proprietary Formats)

2. Interface to Part

Repositories

3. Interface to

Computational Tools

5. Interface to Simulation Tools

i.e.

BLAST

i.e.

Matlab

4. Push Info to the User

Figure 1: Framework for the Design of Synthetic
Biological Systems

This work recognizes the fact that a successful design envi-
ronment will encompass all three categories. It should do so
in such a way that allows for the tool to grow and expand
while not being overwhelming complex for an end user. Any
new tool offering in the design area needs to minimally sup-
port five aspects.

1. Provide various views of the design. It is im-
portant that the designer be able to view the system
at various abstraction levels and from various perspec-
tives. Examples of abstraction levels in DNA manipu-
lation may include viewing the entire genome, individ-
ual genes, and various nucleotide sequences. Perspec-
tives include DNA “design” functionality (e.g. sensors,
actuators, switches) or DNA “biology” functionality
(e.g. terminators, ribosome binding sites, promoters).

2. Interface with both local and remote part repos-
itories. The tools should support both importing and
exporting parts to well know databases such as MIT’s
Registry of Standard Biological Parts [14].

3. Support the interaction with computational tools.
The environment should allow the design under exam-
ination to be operated on by a large variety of external
computational tools. It should also support the export
and import of designs in a variety of standardized for-
mats (such as FASTA, GFF3, and GenBank).

4. “Push” information to the user. The tools should
not passively allow for the designer to create a sys-
tem. Constant feedback as to the validity of the design
should be provided whenever possible.

5. Provide simulation support. Simulation of a com-
pleted system or aspects of the system should be avail-
able when such simulation engines exist [2]. The in-
ternal design representation should be modular as to
allow subsections to be extracted for this purpose.

Figure 1 illustrates such a framework with these five aspects.
Platform-based design will very nicely lend itself to the first
requirement (various views) as will be shown. The other
aspects will require a very structured software engineering
approach with a polymorphic, inheritance based approach
to API design. These issues are touched on in Section 2.

Finally we should state the goals of such a design envi-
ronment clearly. A tool in this space should take the de-
sign of small biological circuits and systems (<20,000 base-
pairs) and push it to the whole engineering of a genome (4
megabases+). It should allow both designs for commercial
synthesis as well as design in by researchers in an academic
setting (i.e. be technology agnostic). It should also be freely
available under an open source ideology such as BSD.

1.2 Organization
The rest of this paper is organized as follows: Section 2 dis-
cusses Clotho’s system architecture. This demonstrates how
we adhere to PBD concepts as well as those of disciplined,
object oriented software design. Section 3 discusses Clotho’s
design flow. We illustrate how each of the five aspects of a
successful design tool are included. We also show how “top
down” and “bottom up” design can be achieved. Finally,
Section 4 provides conclusions and future work.

2. CLOTHO SYSTEM ARCHITECTURE
Platform-based design is a very complex methodology which
cannot be completely covered in this paper. For brevity’s
sake we will focus on three aspects of PBD in this paper:

25

ClothoCore

ClothoHub

ClothoPartsNav
ClothoAlgorithm

ManagerConnection

ClothoAlgorithm1

ClothoAlgorithmN

ClothoHub ClothoHub
ClothoHub

ClothomySQLConnection

Algorithm Manager UI

ClothoSequenceView

ClothoInfoView

ClothoFeatureLib

ClothoEnzymeLib

ClothoData

InfoView UI SequenceView UI

mySQL

Database

EnzymeLib UI

FeatureLib UI

Parts Nav UI

mySQLConfig UI

Table X

Field Y
Field Z

PoBoL Object

PoBoL Field

PoBoL Field ClothoPoBoLConnection

Relate syntactic database

names to semantic PoBoL

relationships

Sender

Recipient

OpCode

UseCode

PayLoad

Payload Info

Figure 2: Clotho System Architecture

“orthogonalization of concerns”, the concept of a “platform”,
and a “meet in the middle” approach to design. This section
will focus on orthogonalization of concerns and Section 3
will focus on the other two. For a more complete picture of
PBD we refer the reader to the references.

“Orthogonalization of concerns” is the separation of commu-
nication, coordination, and computation. This aids in reuse,
debugging, and system analysis. The added modularity al-
lows for system expansion as well as configurability. There-
fore each aspect of the Clotho system is classified as to what
type of operations it is involved with and the communication
between components is explicitly separated from the compu-
tation of each component. The coordination of the system
is also removed from each individual component and main-
tained in a central location. Figure 2 illustrates Clotho’s
overall system architecture. In particular there are six areas
of interest: the ClothoCore, ClothoHubs, ClothoConnections,
ClothoData, ClothoAlgorithms, and PoBoL Bindings. Each
of these areas will be described in the following subsections
beginning with the most basic element, ClothoConnections.

2.1 ClothoConnection
ClothoConnections are the“workhorses”of the system. They
represent the computational aspect of PBD. Connections are
categorized as view type, connector type, function type, and
interface type. View connections deal with the display of bi-

ological information. This can be both graphical or textual.
Views may also present (push) system information to the
user. Connector type connections connect Clotho to exter-
nal tools or data sources. Function connections are process-
ing engines for data. Interface connections are points of
interaction for the user to control the operation or settings
assigned to Clotho. Interface connections can also manage
libraries which Clotho uses. An example of a ClothoConnec-
tion is marked by #3 in Figure 2. Notice that connections
are explicitly separated from the user interface (UI). This al-
lows complete aesthetic overhauls of Clotho without having
to modify the connections.

ClothoConnections are by far the most prevalent objects
in the system. They are derived Java classes which inher-
ent methods to process data, communicate with other con-
nections, display information to specific debugging sources,
group themselves with other connections, and to make them-
selves explicitly available to the user via a Java Swing GUI
interface. Key to the operation of ClothoConnections, is the
ClothoData object which will be described next.

2.2 ClothoData
In Figure 2, #4 marks a ClothoData object. ClothoData
objects are the means by which ClothoConnections com-
municate with one another. ClothoData objects are classes
encapsulating the following information:

26

• Sender - The connection which generated this object.
This is the connection which is typically initiating a
transaction.

• Recipient - The intended destination for this object.
This is the connection which is typically responding to
a transaction.

• Op Code and Use Code - These codes determine the
type of operation which the data should be used for
(e.g. calculate a DNA sequence’s open reading frames)
as well as how it should be used within the operation
itself (e.g. the data is the sequence itself). There are
an explicit enumeration of both Op Codes and Use
Codes which enforce type safety in the system.

• Payload - This is the bulk of the data. This is a generic
data object which allows the system to pass back and
forth whatever is required for the transaction.

• Payload Information - An additional mechanism for
detailing the payload should the Op and Use codes
not be sufficiently granular.

Each individual connection is responsible for both being
able to generate their own ClothoData objects and well
as process incoming data objects. ClothoData objects are
routed throughout the system by a connection addressing
scheme. A key aspect of this addressing scheme is a Clotho-
Hub.

2.3 ClothoHub
To make the location and management of connections eas-
ier, connections are grouped and linked to ClothoHubs (#2
in Figure 2). Like connections, hubs are categorized as view,
interface, connector, and function. There is one type of each
of these hubs in the system. Connections belong to one hub
each and belong to the hub corresponding to the type of
connection they are derived from. Hubs maintain a list of
all connections they are responsible for and provide infor-
mation about these connections to the ClothoCore during
initialization. This information includes the hub address of
the connection and connection abilities. Hubs allow for not
only point to point communication between connections but
also can broadcast a single ClothoData object to all the con-
nections of the hub. This is useful if an application wishes to
send one piece data to multiple connections simultaneously.
All hubs are connected to one ClothoCore.

2.4 ClothoCore
The ClothoCore object (#1 in Figure 2) maintains control
over the hubs and (by implication) the connections in the
system. The core is responsible for routing ClothoData ob-
jects to the correct hub. The core is also responsible for
setting up initial connections in the system. The core has
both a hub and connection addressing scheme. This system
allows for the core to know both how to address a connection
in a hub as well as where connections are without having to
directly speak to the hub. This bypassing is useful if general
system information needs to be queried or to perform com-
mon operations faster. For example, once a connection has
been contacted by the core, it then can initiate a transaction
back to the core in response to the sender of the data. The

core can store the information about this link and there-
fore prevent redundant setup information to be repeatedly
passed back in forth in the event that each connection wants
to transfer more than one ClothoData object. This can oc-
cur as long as needed to finish the transaction. This is sim-
ilar to direct memory access (DMA) transfers in computer
architecture.

Because of the modular way in which Clotho has been de-
signed, a developer wishing to use Clotho need only create a
connection derived from one of the 4 basic types of connec-
tions. Once the connection has been defined, it need only
be instantiated in the Clotho main file and then call the re-
quired activate method. The ClothoCore takes care of the
rest. Activation of a connection associates it with the core,
a specific hub, provides it a global and hub address, and
runs any needed start up routines. The core is used to not
only activate connections but it can also run regular start
up operations, load preference data on start up, and save
preference data to various files in the Clotho system.

2.5 ClothoAlgorithm
Finally, in addition to connections, Clotho also supports
ClothoAlgorithms. These interact specifically with the Clotho
Algorithm Manager. This specific connection makes user
created algorithms available to the rest of the system. The
user can create an extension of the ClothoAlgorithm class
and simply instantiate the algorithms in the Clotho software
architecture netlist and register them with the ClothoCore.
This then makes the algorithm available to use through a
flexible GUI. The algorithm manager also allows the algo-
rithms access to any of the database connections available to
Clotho. This can be used to look up part information or save
and create new parts. ClothoAlgorithms will be touched on
more in Section 3.3.

3. CLOTHO DESIGN FLOW
As the previous section illustrated Clotho’s ability to cleanly
separate computation, communication, and coordination, this
section will illustrate how designs can be viewed function-
ally as well as structurally. In addition, the idea of support-
ing a “platform” (a unification of functional descriptions and
implemented designs) is shown in Clotho’s support for Bio-
Bricks [12] and the Provisional BioBrick Language (PoBoL)
[1].

Clotho currently uses the architecture described to create a
general design flow which entails: 1) Connecting to a data-
base of standardized biological parts. 2) Associating the
syntactic database fields (text) to a standardized semantic
definition (PoBoL). 3) Manipulating the part data, assem-
bling parts, and analyzing a design. 4) Packaging the result
as a new part and distributing/saving the part back to exist-
ing databases. The following subsections will elaborate on
this flow and provide some examples of the UIs in Clotho.

3.1 Data Retrieval and Semantics
In Figure 2 the ClothomySQLConnection is responsible for
the first step in the design flow. Clotho currently supports
the connection to mySQL databases. This was the second
requirement of a tool as outlined in Section 1.1. The second
step is to assign the fields found in the database (e.g. name,

27

DNA sequence, part number) to a standardized semantic
definition. This allows Clotho to connect to databases or-
ganized in a wide variety of ways, containing a wide variety
of information, and still perform standard operations which
require a semantic meaning behind the data. For example, a
user may want to view all the DNA samples in a particular
plate. If the database names the plates “trays”, there needs
to be a way to indicate that trays == plates.

Clotho uses PoBoL to provide this semantic meaning. This
standard provides a basic data model for BioBricks. Bio-
Bricks are a DNA sequence held in a circular plasmid. This
standard is becoming increasing popular as a format for the
distribution of biological parts. BioBricks are an example of
a platform support by Clotho. PoBoL contains “object” and
“fields”. Figure 3 shows the user interface to “bind” aspects
of the database to PoBoL objects and fields. Once this bind-
ing has been defined, Clotho can then perform various look
ups to the database and “interpret” the database in a stan-
dard way. Clotho maintains a list of binding files allowing
the users to have a unique configuration on a per database
basis.

Figure 3: Clotho PoBoL Binding Manager

3.2 Multiple Views
The first requirement in Section 1.1 was support for multiple
views. These are used for design and analysis (step 3). The
currently available view is the Sequence View. Figure 4 illus-
trates this user interface. Using the Sequence View the user
can perform protein translation, find open reading frames,
highlight specific user defined features, identify restriction
enzymes, view reverse complemented sequences, determine
the melting point of subsequences, and the %GC content.

3.3 Computational Tools
Step 3 in the flow is aided by the Clotho Algorithm Man-
ager shown in Figure 5. Illustrated are various operations
available. The first is the ability for the user to select an
algorithm from a drop down menu populated automatically
by the ClothoCore during initialization. Each provides their
own customized instructions. One can run the algorithm on

Figure 4: Clotho Sequence View

the data provided either in the text window provided or
from an imported file. The user can view the results of the
algorithm textually (a report file) or visually (a graph or
diagram). Finally, the user can save the result of running
the algorithm. Computation was the third requirement in
Section 1.1 and currently Clotho includes algorithms for the
assembly of BioBrick based systems.

3.4 Clotho Interfaces
Finally the completed design can then be “packaged”as part
or saved in a common file format. Part packaging allows the
design to be saved as a PoBoL based BioBrick. Once this
process is done, it can then be exported back to an existing
database for use by the worldwide synthetic biology commu-
nity. Figure 6 shows an example of a part info viewer which
allows the information currently associated with a part to
be viewed during this packaging process.

Figure 6: Clotho Parts Info

4. CONCLUSIONS
We have presented Clotho which adheres to a Platform-
based design methodology. This creates a very structured
software architecture and design flow. This design flow lends
itself very nicely to the designed of standardized biological
parts. This is due to the fact that it allows for flexible data
syntax and semantics, the separation of the data being ma-
nipulated from the location in which it is stored, and both
a top down (function driven) and bottom up (parts driven)
design approach.

28

ClothoAlgorithm

ManagerConnection

getInstructions

runAlgorithm

getOutputs

saveFileAs

ClothoAlgorithm

getInstructions

run

setOutputToString

setPossibleOutputs

packageData

1

2

3

4

Figure 5: Clotho Algorithm Manager

Clotho is still very much in development. Currently the al-
pha version of Clotho is available at [6] and a beta version
should be available by Fall 2008. Future work includes the
inclusion of specific user interfaces based on specific PoBoL
objects (e.g. DNA samples, plates, biobricks, etc), the in-
tegration of simulation, and the addition of more views. In
addition, we expect to fully integrate Clotho into the larger
synthetic biological community by working with such efforts
such as BrickIt [9].

5. ACKNOWLEDGMENTS
The authors would like to thank Prof. Chris Voigt, Prof. J.
Christopher Anderson, Prof. Alberto Sangiovanni-Vincentelli,
Dr. Tom Knight, Dr. Ryan Owen, Ethan Mirsky, and Josh
Kittleson for their valuable input on the paper and related
discussions.

6. REFERENCES
[1] Provisional BioBrick Language. World Wide Web,

http://www.pobol.org, 2008.

[2] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. O.
Palsson, and M. J. Herrgard. Quantitative prediction of
cellular metabolism with constraint-based models: the
cobra toolbox. Nature protocols, 2(3):727–738.

[3] Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud. A
syntactic model to design and verify synthetic genetic
constructs derived from standard biological parts.
Bioinformatics, 23(20):2760–2767, October 2007.

[4] B. I. Dahiyat and S. L. Mayo. De novo protein design: fully
automated sequence selection. Science, 278(5335):82–87,
October 1997.

[5] M. W. Davis. A Plasmid Editor. World Wide Web,
http://www.biology.utah.edu/jorgensen/wayned/ape/,
2008.

[6] D. Densmore. Platform-Based Design of Synthetic
Biological Tools. World Wide Web,
http://biocad-server.eecs.berkeley.edu/wiki, 2008.

[7] D. Endy. Foundations for engineering biology. Nature,
438:449–453, Nov 2005.

[8] J. Goler. BioJADE: A Design and Simulation Tool for
Synthetic Biological Systems. Master’s thesis, MIT, MIT
Computer Science and Artificial Intelligence Laboratory,

May 2004.

[9] R. Gruenberg. BrickIt. World Wide Web,
http://brickit.wiki.sourceforge.net/, 2008.

[10] S. Hayat, K. Ostermann, L. Brusch, W. Pompe, and
G. Rödel. Towards in vivo computing: quantitative analysis
of an artificial gene regulatory network behaving as a rs
flip-flop and simulating the system in silico. In BIONETICS
’06: Proceedings of the 1st international conference on Bio
inspired models of network, information and computing
systems, page 5, New York, NY, USA, 2006. ACM.

[11] L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle,
D. Rothlisberger, A. Zanghellini, J. L. Gallaher, J. L.
Betker, F. Tanaka, C. F. Barbas, D. Hilvert, K. N. Houk,
B. L. Stoddard, and D. Baker. De novo computational
design of retro-aldol enzymes. Science,
319(5868):1387–1391, March 2008.

[12] T. F. K. Jr. Idempotent vector design for standard
assembly of biobricks. Technical report, MIT AI Lab, 2002.

[13] T. Knight. Computer Aided Design and Construction of
Living Systems. Synthetic Biology Conference 3.0, ETH
Zurich, Switzerland, 2007.

[14] MIT. Registry of Standard Biological Parts. World Wide
Web, http://parts.mit.edu, 2008.

[15] A. Pertsemlidis and J. W. Fondon. Having a blast with
bioinformatics (and avoiding blastphemy). Genome Biol,
2(10), 2001.

[16] A. Sangiovanni-Vincentelli. Defining platform-based design.
EEDesign of EETimes, February 2002.

[17] A. Villalobos, J. E. Ness, C. Gustafsson, J. Minshull, and
S. Govindarajan. Gene designer: a synthetic biology tool
for constructing artificial dna segments. BMC
Bioinformatics, 7:285, June 2006.

[18] C. A. Voigt. Genetic parts to program bacteria. Curr Opin
Biotechnol, 17(5):548–57, Oct 2006.

[19] R. Weiss, G. E. Homsy, and T. Knight. Towards in vivo
digital circuits. DIMACS Workshop on Evolution as
Computation, 1:1–18, January 1999.

[20] M. Zuker. Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic acids research,
31(13):3406–3415.

29

