
Rule Based Constraints for the Construction of
Genetic Devices

Douglas Densmore∗, Joshua T. Kittleson†, Lesia Bilitchenko‡, Adam Liu§ and J.Christopher Anderson†
∗Synthetic Biology Engineering Research Center, Joint BioEnergy Institute, Emeryville, CA 94608

Email: dmdensmore@lbl.gov
†Department of Bioengineering,§Department of EECS, University of California, Berkeley, CA 94720

Email: {jkittles, adam z liu, jcanderson}@berkeley.edu
‡Department of Computer Science, Cal Poly Pomona, CA 91768

Email: lbilitchenko@csupomona.edu

Abstract— The construction of composite genetic devices from
primitive parts is a key activity in synthetic biology. Currently
there does not exist a formal method to specify constraints on
the construction of these devices. These constraints would help
enable an automated design flow from device specification to
physical assembly. This paper examines the laboratory creation
of variations of a particular genetic device called a phagemid. We
illustrate how lessons learned empirically from the non-functional
designs can be captured formally as constraints in a newly created
domain specific language called “Eugene”. These constraints will
prevent many faulty constructions automatically in the future
saving time and money while increasing design abstraction and
productivity.

I. INTRODUCTION

The automated design of electronic circuits has matured to the
point where it is often taken for granted. The standard design flow
for application specific integrated circuits (ASICs) beginning with
a Verilog or VHDL description of the design, proceeding through
the logic synthesis process, and resulting in a GDSII layout file is
largely a highly optimized, standardized, and completely automated
process [1]. This automation fueled a large part of 2008’s 249 billion
dollar semiconductor industry [2]. All the more impressive are these
designs consist of millions of individual components all operating at
the nano-scale.

Now imagine the design of a genetic device created from biological
material. This device could similarly be described at a high level
regarding its functionality, its basic building blocks, and the chemical
processes needed to make it a reality. Moreover, as opposed to its
electrical counterparts it would not consist of millions of components
but only a handful. The automation of these devices however is
virtually non-existent. The lack of automation not only makes the
design process more tedious but also iterative and error prone. This
paper begins to examine at how we can start down the path of
automating such designs with the high level specification of genetic
devices along with constraints on their construction. The idea is to
leverage concepts from electronic design automation and apply them
in novel ways to the design of genetic devices.

In this paper we will describe a genetic device called a phagemid
that was created in a laboratory environment in seven alternate
forms. Only one of these functioned correctly. The six non-functional
designs represent wasted time and money yet provide valuable insight
into the form of constraints which we can use to prevent faulty
designs in the future. We capture these constraints in a domain
specific language we created called Eugene [3]. We then use Eugene
and a design environment called Clotho [4] to show that these newly
created constraints will prevent these same types of faulty designs
from being created in the future.

Executable Spec
(Eugene)

Rules/
Constraints

(Eugene)

Biological Parts
(Eugene)

Physical Assembly

Part
Repository

Successful
Assembly

Unsuccessful
Assembly

Fu
nc

ti
on

al

N
on

‐F
un

ct
io

na
l

Fig. 1. Constraint Based Genetic Device Design Flow

Figure 1 illustrates the general design process. Biological build-
ing blocks (well characterized DNA segments) are captured in a
formal specification. In addition, constraints for the “correct-by-
construction” composition of these parts are also captured formally.
Together these are combined to form an executable specification
whereby the space of valid designs can be explored. All of this
specification can be done with Eugene. Eugene is then passed to
Clotho and its tools to create design files for liquid handling robots.
Once the designs are physically created, an analysis of the designs is
performed (using laboratory assays). The correct parts are fed back to
the part repository for future use. Both functional and non-functional
designs then contribute to the creation of constraints for future runs.
As the rule set grows, the number of non-functional designs will
continue to decrease while money and time saved increases.

A. Definitions
Before we delve into the details of the genetic device, we provide

some definitions for the reader. Due to space constraints we cannot
cover all the required biological background. However a key idea
in this work is abstraction and treating the following as primitive
building blocks by which our genetic device can be created, should
be sufficient.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 557

Definition 1: Phage - A virus that infects bacteria.
Definition 2: Plasmid - A circular piece of DNA that propagates

itself in bacteria.
Definition 3: Phagemid - A plasmid that contains a sufficient

complement of phage elements to get itself packaged into viral
particles.

Definition 4: Lysogen - Viral DNA that passively propagates
inside bacteria.

Definition 5: Lytic Mode - Alternative to lysogeny, where phage
generate more viral particles and destroy the host bacteria.

Definition 6: Promoter - A DNA element that causes transcription
(DNA to mRNA).

Definition 7: Anti-Repressor - A protein that neutralizes a regu-
latory protein normally expressed by the phage lysogen, causing the
phage to enter the lytic mode.

Definition 8: Inducible Promoter - A promoter that operates only
after addition of a specific small molecule.

Definition 9: Lytic Replicon - A protein that recognizes its own
sequence and generates linear double stranded DNA molecules that
can be packaged into viral particles.

Definition 10: Packaging Site - A protein the recognizes its own
sequence, required to package DNA into viral particles.

Definition 11: Regulated Promoter - A promoter that only oper-
ates after the phage has entered the lytic mode.

Definition 12: Terminator - DNA element that terminates tran-
scription.

II. DESIGN OVERVIEW

Phages offer efficient delivery of large pieces of DNA to bacteria,
and can amplify themselves an order of magnitude faster than their
hosts. Consequently, subversion of phage function enables the de-
velopment of improved tools for molecular biology, which improves
the ability of scientists to pursue projects such as the development
of a tumor destroying bacteria. Here, the goal was to construct a
genetic device that both controls entry of a phage lysogen into lytic
mode and causes itself to be packaged into phage particles. This is
known to minimally require a packaging site, a lytic replicon, and
an anti-repressor protein. What was not known was how to organize
and control the expression and timing of the component parts. Figure
2 provides an annotated overview of the Phagemid system.

Fig. 2. Phagemid Design Overview

Specification 1 shows how using Eugene we defined the primitive
properties of interest as well as which collections of properties made
up the individual parts. Properties as shown can be text values or
numbers along with a name assignment. Parts are assigned names

and properties when defined. In our design we had 8 properties and
6 parts.

Specification 1 Property and Part Definitions
1: Property sequence(txt); //DNA Sequence
2: Property offStateStr(txt); //Amt. of transcription when off
3: Property onStateStr(txt); //Amt. of transcription when on
4: Property forwardEff(num); //Fwd. termination eff.
5: Property reverseEff(num); //Rev. termination eff.
6: Property toxicity(txt); //Toxicity level
7: Property activity(txt); //Relative effectiveness of protein
8: Property copyNum(num); //DNAs generated or maintained
9: Part AntiRepressor(sequence, toxicity, activity);

10: Part InduciblePromoter(sequence, offStateStr, onStateStr);
11: Part LyticReplicon(sequence, copyNum, toxicity);
12: Part PackagingSite(sequence, toxicity);
13: Part RegPromoter(sequence, offStateStr, onStateStr);
14: Part Terminator(sequence, forwardEff, reverseEff);

After the parts and properties are defined, they are instantiated.
This is the process of assigning actual values to the part properties.
This can be done manually or retrieved from a part repository [5]
and converted with Clotho into Eugene. Specification 2 illustrates a
few sample instantiations. Not shown here are ar2, ar3, rp2, rp3, t2,
or t3. These are different instantiations of anti-repressors, regulated
promoters, and terminators respectively.

Specification 2 Sample Part Instantiation
1: AntiRepressor ar1(“CTA...”, “medium”, “high”);
2: InduciblePromoter ip(“CAA...”, “very low”, “high”);
3: LyticReplicon lr(“TAC...”, 100, “high”);
4: PackagingSite ps(“CCG...”, “none”);
5: RegPromoter rp1(“GCC...”, “medium”, “unknown”);
6: Terminator t1(“TGA...”, 99, 99);

After the parts were instantiated they were assembled into devices.
The following sections introduce the seven devices we investigated.
They are classified by how they actually performed in the laboratory
environment. All devices are shown in Figure 3.

A. Failed to Assemble
The first category of devices consists of four devices that failed

to assemble. Two of these devices, d1 and d2, both contained the
same regulated promoter controlling the lytic replicon. The physical
DNA for both of these devices could not be obtained in the lab
because the regulated promoter proved to be always active instead of
regulated as expected, and the lytic replicon proved to be toxic when
always activated. The other two devices, d3 and d4, contained the
same anti-repressor (but one different from that used in d1 and d2).
Both of these devices were never constructed in the lab because that
anti-repressor proved to be highly toxic and significantly impaired
growth of bacterial cells regardless of the regulation used.

Specification 3 Devices That Failed To Assemble
1: Device d1(ip, ar1, ps, t1, rp1, lr, t2);
2: Device d2(rp1, lr, t2, rp2, ps, t1, ip, ar1, t3);
3: Device d3(rp3, ps, t1, ip, ar3, lr, t2);
4: Device d4(ip, ar3, t3, rp2, ps, lr, t2);

558

Fig. 3. Phagemid Device Overview and Classification

B. Failed to Function
The second category of devices consists of two devices that failed

to function. d5 and d6 were both successfully constructed; however,
they were unable to cause the phage to transition from lysogenic
mode to lytic mode. As these devices both employ the same anti-
repressor, it can be surmised that that anti-repressor does not have
sufficient activity to work properly in these devices.

Specification 4 Devices That Failed To Function
1: Device d5(ip, ar2, t3, rp3, ps, lr, t2);
2: Device d6(rp3, ps, t1, ip, ar2, lr, t2);

C. Functioned
The final category of devices contains one device that functioned

as desired. d7 caused lysogens to transition into lytic mode, and
showed evidence of packaging into viral particles. Therefore, d7 must
generate the necessary components at the appropriate time, without
otherwise harming the cell.

Specification 5 Functioning Device
1: Device d7(ip, ar1, t3, rp3, ps, lr, t2);

III. RULE AND CONSTRAINT SPECIFICATION

Once the status of the devices had been determined, constraints
were created to prevent undesirable device construction. There are
five potential modes of failure that would prompt the creation of rule
sets.

1) Devices must contain a sufficient set of biological functions to
accomplish a particular goal. The absence of one or more of
these functions leads to partial or complete abrogation of the
desired functionality, so rules can be created to ensure that all
of the necessary types of parts are present.

2) A particular part may prove to not function as expected, or at
all, so rules can be created to prevent their incorporation into
devices.

3) A particular part may prove to be toxic when expressed at too
high a level or at the wrong time.

4) Parts may be mis-regulated, being expressed at either the wrong
time or in the wrong quantity, preventing overall device effec-
tiveness. Rules can be created to ensure that toxicity is avoided
and function optimized by properly regulating expression.

5) Parts may interfere with each other, and rules can be generated
to ensure that they appear only in allowable combinations.

In Eugene constraints are specified as rules. Rule operands can
be part instances, numbers, or text values. Rule operators include
compositional requirements (BEFORE, AFTER, WITH, NEXTTO,
NOTCONTAINS, NOTMORETHAN) and comparison (<, ==, etc).
Rules themselves are enforced with Note statements which can be
created with boolean operations (AND, OR, NOT). In the event that
the Note evaluates to “false” a the offending device is flagged.

In Specification 6 there are five constraint types illustrated. The
first three are constraints that could be specified a-priori. The last two
are the results of empirical evidence. The first set requires that there
be no more than one of the same terminator in a device. The second
set requires that a inducible promoter be immediately before an anti-
repressor. Set 3 requires that an inducible promoter, lytic replicon,
packaging site, and one type of anti-repressor be present in a device.
Set 4 specifies that a specific regulated promoter not be with the lytic
replicon. Finally, set 5 prevents the second and third anti-repressor
from being used at all.

Specification 6 Constraint Based Rules
1: //Constraint Set 1 - a priori
2: Rule r1a(t1 NOTMORETHAN 1);
3: Rule r1b(t2 NOTMORETHAN 1);
4: Rule r1c(t3 NOTMORETHAN 1);
5: Note (r1a AND r1b AND r1c);
6:
7: //Constraint Set 2 - a priori
8: Rule r2a(ip BEFORE ar1);
9: Rule r2b(ip BEFORE ar2);

10: Rule r2c(ip BEFORE ar3);
11: Rule r2d(ip NEXTTO ar1);
12: Rule r2e(ip NEXTTO ar2);
13: Rule r2f(ip NEXTTO ar3);
14: Note((r2a AND r2d) OR (r2b AND r2e)

OR (r2c AND r2f));
15:
16: //Constraint Set 3 - a priori
17: Rule r3a (ip WITH lr);
18: Rule r3b (lr WITH ps);
19: Rule r3c (ps WITH ar1);
20: Rule r3d (ps WITH ar2);
21: Rule r3e (ps WITH ar3);
22: Note(r3a AND r3b AND (r3c OR r3d OR r3e));
23:
24: //Constraint Set 4 - empirical
25: Rule r4a(rp1 NOTWITH lr);
26: Note(r4a);
27:
28: //Constraint Set 5 - empirical
29: Rule r5a(NOTCONTAINS ar2);
30: Rule r5b(NOTCONTAINS ar3);
31: Note(r5a AND r5b);

559

Specification 7 illustrates constraints on text values of properties.
In particular, in this case the activity of anti-repressors must be
“medium”, “high”, or “very high” for devices to be considered valid.

Specification 7 Constraint Based Rules Cont.
1: Rule r6a(ar1.activity == “medium”);
2: Rule r6b(ar2.activity == “medium”);
3: Rule r6c(ar3.activity == “medium”);
4: Rule r6d(ar1.activity == “high”);
5: Rule r6e(ar2.activity == “high”);
6: Rule r6f(ar3.activity == “high”);
7: Rule r6g(ar1.activity == “very high”);
8: Rule r6h(ar2.activity == “very high”);
9: Rule r6i(ar3.activity == “very high”);

10: Rule ar1Con(NOTCONTAINS ar1);
11: Rule ar2Con(NOTCONTAINS ar2);
12: Rule ar3Con(NOTCONTAINS ar3);
13: Note((r6a OR r6d OR r6g) OR ar1Con);
14: Note((r6b OR r6e OR r6h) OR ar2Con);
15: Note((r6c OR r6f OR r6i) OR ar3Con);

IV. PERFORMANCE

To examine how effective our constraints can be, we examined
how they would have pruned the design space of 45 designs under
consideration originally. Figure 4 illustrates that simply with the ad-
dition of rule r4a, the 45 designs are reduced to 20. The application of
two more rules then reduces the final designs to only four candidates.
This is a 91% reduction in overall design count. Examining the final
designs experimentally revealed that these devices do indeed function
(three functioned moderately well, while one functioned very well).

Constraints also provide a cost and time savings as well. Both the
cost and design time associated with building the devices depends
on the number of junctions between parts. The median number of
junctions for devices in this work is 6. Each junction costs approxi-
mately $3 to make (due primarily to DNA purification columns and
restriction enzymes), and takes about 10 minutes of design time (20
junctions amortized across 200 minutes). Thus, the time and costs
drop from $810 and 2700 minutes to $72 and 240 minutes by going
from 45 constructs to 4. This is also illustrated on Figure 4.

2700 minutes

1200 minutes

480 minutes

240 minutes 100

1000

20

25

30

35

40

45

50

si
gn

 C
os

t (
$)

es
ig

n
Co

un
t

1

10

0

5

10

15

No Rules r4a r5b r5a

D
esD
e

Rule Count Cost

Fig. 4. Design Space and Cost Reduction Via Constraint Application

Finally Algorithm 8 illustrates how the permute function in Eugene
operates by replacing part instances in a device with other available,

Algorithm 8 Device Permutation
//Generate permutations of device DN for assembly
permute(DN)
for all Pi ∈ DN do

for all pn ∈ Pi do
pn → pn+1

Store(DN+1)
CreateAssembly(DN+1)

end for
end for

defined part instances in the same part family. The run time of this
algorithm in O(|D|*|P|) where |D| is the number of parts in a device
(the size of the device) and |P| is the number of individual instances
of the part. In our design the max value of |D| was 9 and the max
value of |P| was 3 so the runtime was negligible. Even for very
large values we expect fast computational runtimes which will be
insignificant compared to the physical assembly time.

V. CONCLUSION

We have briefly illustrated how lessons learned from a small
set of devices created experimentally can be captured formally as
constraints in the Eugene language. These constraints when applied
to larger design sets have the potential to not only greatly prune
the overall design space but most importantly lead to functioning
designs. This reduction in design count saves a substantial amount of
time and money for the designer. The construction of rules is flexible
and modular which allows them to be reused and the computational
runtime of the software will be insignificant.

Future work includes expanding the designs examined and looking
for ways to automatically generate rules by analyzing the results
of assembly to detect patterns and other anomalies in the designs.
Another potentially useful mode for such a tool is in pinpointing
which properties should be probed to most reduce the set of potential
devices by considering which rules can be applied if experimental
data for properties is obtained. For example, if the strength of all
promoters is known and there are many rules governing expression
levels, many orders of magnitude fewer parts may need to be
considered if the designer is able to apply these rules. It then becomes
an optimization problem as to which properties an experimentalist
should measure. Ultimately this would involve a tradeoff between
effort in property determination and desired design space reduction.

ACKNOWLEDGMENT

The authors would like to thank Joanna Chen, Richard Mar,
Thien Nguyen, Nina Revko, and Bing Xia for helping to develop
tools related to Eugene’s development. In addition, discussions with
Cesar Rodriguez and Emma Weeding were very useful in our initial
discussions of Eugene.

REFERENCES

[1] D. G. Chinnery and K. Keutzer, “Closing the gap between asic and
custom: an asic perspective,” in DAC ’00: Proceedings of the 37th Annual
Design Automation Conference. New York, NY, USA: ACM, 2000, pp.
637–642.

[2] Semiconductor Industry Association, “Industry fact sheet,” http://www.
sia-online.org/cs/industry resources/industry fact sheet, 2009.

[3] Berkeley Software iGEM Team, “Eugene domain specific language
overview,” http://2009.igem.org/Team:Berkeley Software/Eugene, 2009.

[4] D. Densmore, A. Van Devender, M. Johnson, and N. Sritanyaratana,
“A platform-based design environment for synthetic biological systems,”
in TAPIA ’09: The Fifth Richard Tapia Celebration of Diversity in
Computing Conference. New York, NY, USA: ACM, 2009, pp. 24–
29.

[5] MIT, “Registry of standard biological parts,” http://partsregistry.org, 2009.

560

