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Engineering biology
h SYNTHETIC BIOLOGY ENCOMPASSES the synthe-

sis or enhancement of complex biological systems

to elicit behaviors that do not exist in nature. Syn-

thetic biology promises to introduce new biother-

apeutic, bioremediation, biosensing, bioenergy, and

biomaterials based solutions to a diverse set of

grand challenges. Progress in designing novel bio-

logical systems has been hindered primarily by the

complexity of biology. Living systems perform a

variety of functions including self-replication, cell-to-

cell communication, cell division and differentia-

tion into a more specialized collections of cells. In

contrast to human-engineered systems, much of the

underlying science of biology is still largely a mys-

tery. Every organism is unique and studied under

very specific environmental conditions. Extraordi-

nary efforts spanning mul-

tiple hierarchical levels

are needed to completely

characterize and under-

stand every component

and reaction in the context

of the whole. Despite

knowledge gaps, experi-

mentalist utilize their in-

stincts and experiences to

engineer biological sys-

tems, often through trial

and error, and more recent-

ly with some assistance from computational tools.

Recent achievements include engineered bacteria to

treat malaria [1], to invade cancer cells [2], to remove

toxins such as herbicides from the environment [3], to

produce biofuels such as ethanol and butanol [4], and

to develop highly tuned biological sensors [5].

Computational methods and tools to (re-)engi-

neer and synthesize biological systems, referred bio-

design automation, are poised to play a critical role

in the development of novel biological systems

similarly to how electronic design automation (EDA)

transformed designing VLSI circuits since the advent

of silicon transistors in the 1950s. BDA tools will

conceptually span specification, modeling, analysis,

design, simulation, synthesis, verification, and as-

sembly. Similarly to how Moore’s law has shaped the

EDA industry, biological discoveries, reduced DNA

synthesis costs and technical innovations will drive

BDA tools. Biology-specific metrics (e.g., evolution-

ary stability and reliability) and application-specific

metrics (e.g., yield of desired compounds) will be

used to evaluate design quality.

Editors’ notes:
Through principled engineering methods, synthetic biology aims to build
specialized biological components that can be modularly composed to
create complex systems. This article outlines bio-design automation using
two complementary design approaches, bottom-up modular construction
from biological primitives and pathway-based approaches. The article also
highlights future challenges for both.
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One synthetic biology design approach aims for

systematic construction of larger systems from biolo-

gical primitives. DNA-encoded ‘‘Parts’’ are designed

and then assembled to create modular ‘‘Devices’’ that

can be integrated into a host organism or assembled

into a larger ‘‘System.’’ Such hierarchy paves way to,

familiar, and proven engineering concepts such as

abstraction, modularity, standardization and composi-

tion. Devices such as toggle switches and oscillators

have been experimentally built (see sidebar 1). To

specify context and assembly chemistries, Parts are

characterized and catalogued in libraries (see sidebar 2,

iGEM). The focus on design methodologies and sup-

porting tools are now emerging (see sidebar 2, IWBDA).

A second complementary approach manipulates

existing biological pathways or adds novel pathways

to an existing cell. This approach has been long

advocated by metabolic engineering, the discipline

concerned with optimizing genetic and regulatory

processes within cells to increase production of par-

ticular substances. Pathway engineering of micro-

bially produced artemisnic acid as a viable source of

antimalarial drugs [1] resulted in decreasing the

production cost from $2.40 per dose to $0.25 per dose,

enabling cheaper treatment for marlaria that threatens

300–500 million people and annually kills more than

one million people. While design methodologies

utilizing this approach are often ad hoc and domain

specific (therapeutics versus biofuels), they share

point computational tools that aid the design cycle.

This article reviews basic concepts and BDA tool

advances for these two approaches. We first provide

a short review and shed some light on how the two

approaches evolved. We then describe computa-

tional design tools available for each approach,

drawing parallels between BDA and EDA when ap-

propriate. We believe BDA has the potential to usher a

design era that can radically transform living systems.

Biology primer
DNA, discovered in 1953 and consisting of two

long entwined strands of repeating units called nu-

cleotides, encodes genetic instructions that are exe-

cuted during the development and function of all

known living organisms. This encoding/decoding

process is known as the ‘‘central dogma,’’ and is il-

lustrated in the top box in Figure 1. Intricate biol-

ogical machinery executes the code, performing the

following transformations: DNA becomes mRNA

(transcription via the RNA polymerase machinery);

mRNA then becomes a protein (translation via the

ribosome machinery). Proteins that influence bio-

chemical reactions are referred to as ‘‘enzymes.’’

Transcription and translation processes specify the

production rate, conditions and concentrations of

produced proteins. Example circuitry that performs

these tasks can be referred to as a ‘‘genetic regulatory

network,’’ GRN. Here genes both regulate their own

expression as well as the expression of other genes.

Realized proteins in turn catalyze (accelerate)

biochemical reactions, as illustrated in the bottom

box of Figure 1. Reactions consume and produce

metabolites and signify chemical activities in living

cells. Each reaction is associated with a flux, the

molecule turnover rate. Reactions are organized in

pathways, and conceptually as functional modules.

Several organizational networks have been identi-

fied within cells such as cell signaling (communica-

tion) and metabolic networks. Metabolism sustains

life within cells. The cell’s metabolism is regulated

using positive or negative (control) feedback loops

at multiple levels. Regulation also occurs through

allosteric regulation.

Figure 1. Overview of a biological system
at two levels: GRNs and metabolism.
The transcription/translation machinery
(top box) produce enzymes, which in
turn control the rate of reactions within
metabolic pathways (bottom box).
Feedback loops within the metabolic
networks and across levels allow the
system to self regulate (adapted from [7]).
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Conceptually and admittedly simplistically, GRNs

provide control over the data flow in a system’s

pathways. GRN engineering has focused on designing

primitives that can be assembled into meaningful

control circuitry. The pathway approach has focused

on either adding new data paths, removing paths, or

modifying control of existing paths. While tools for the

hierarchical, part-based assembly approaches are

relatively new, top-down modeling and analysis tools

are more established. These approaches have their

roots inmetabolic engineering and in systemsbiology, a

field that calls for an integrative approach for studying

and analyzing biological systems. These two particular

approaches were chosen over others for this article

because they clearly benefit from structured design

automation tools and flows. For example, a promising

technique is whole-genome engineering [6]; however,

the technique is recent and computational tools and

design flows have not been established.

While genetic and metabolic networks are cur-

rently treated as separate networks with vastly differ-

ent operational time scales, understanding feedback

and influences is necessary to engineer biology. The

availability of novel high-throughput experimental

methods allows various (-omics) measurements,

which in turn will enable correlating activities and

models at various levels. Genomics refers to under-

standing the DNA composition through sequencing

and annotation of whole genomes. Transcriptomics

measure mRNA and signify gene expression levels.

Proteomics measure protein abundance. Metabolo-

mics measure the concentration of metabolites.

Fluxomics measure fluxes through the metabolic

network. In the future, detailed coordinated models

spanning multi-scale levels will become available.

Moreover, manipulating biology at multiple scales

will enhance the capabilities of engineered complex

biological systems. For example, a GRN may provide

some monitoring capability of a particular metabo-

lite within the system. Once exceeding a particular

value, the GRNmay change enzyme values to enable

suppressing the production of a particular metabo-

lite. Appropriately dispensing medicine is one ap-

plication example. Just like in electronics, the design

technology and the tools will evolve over time to

enable creating complex synthetic systems.

Bottom up: DNA to parts to devices
A genetic circuit is a collection of biological

components organized to detect biological signals

via a series of transcriptional and translational steps

and to produce other signals which ultimately define

the behavior (output) of the circuit. Signals are

biological and typically small molecules and pro-

teins. Small molecules often are externally intro-

duced in the system or present in the surrounding

environment. Proteins are collections of amino acids

produced in the cell during translation of mRNA. The

modular construction approach abstracts biological

functionality into ‘‘Parts’’ and then utilizes the Parts to

create ‘‘Devices.’’ Parts are specific DNA sequences

categorized by their role in the central dogma.

Attempts are made to characterize the performance

of these Parts and standardize how they are

composed into larger Devices. ‘‘Systems’’ can then

be created by composing Devices. For example, one

might encapsulate a green florescent protein (GFP)

as a Part by isolating the specific gene that encodes

that protein. In addition to the DNA sequence for the

gene, additional DNA sequences (called ‘‘restriction

sites’’) will be added at both ends of the DNA. These

sequences are selected such that other Parts using

similar sequences might be more easily joined with

the introduction of specific enzymes which cut the

DNA at these sites leaving single stranded overhangs

which can be matched and ligated together. A heavy

metal sensor Device could be created by joining a

lead sensitive Part with a GFP Part (e.g., glow green

when lead is detected). These Devices then would

be put into organisms [e.g., Escherichia Coli (E.Coli)]

and flow cytometer data will report on the florescence

levels achieved by these Devices in the presence or

absence of a number of control and experimental

companion Parts. This data will be used to drive the

creation of models which predict the florescence

levels in more complex designs. This Device now will

be added to the library of Devices and can be used in

future designs.

Example: Transcription-based
combinational logic

Figure 2 provides a genetic regulatory network

(GRN) of a 2-input (tf 1 and tf2) single-output ðpro1Þ
‘‘NOR gate’’ [8]. It should be pointed out that the

following is a prokaryotic (e.g., bacterial) system.

The translational/transcriptional mechanisms de-

scribed will be different in other organisms. The

general concepts will be similar in eukaryotes but

items such as ribosome binding site structure,

translational/transcriptional coupling, and the
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presence of additional organelles will make the

details decidedly different. The design consists of

the following elements:

1) The system input consists of small molecule

transcription factors (tf 1 and tf 2), which may not

exist naturally in the cellular context and can be

added from an external source.

2) Inducible Promoters (ip1 and ip2). Promoters as a

biological primitive broadly can be considered

where transcription begins on the DNA. In the

absence of transcription, DNA cannot encode

for a protein (it never will have become mRNA).

Only the genes ‘‘downstream’’ (to the right by

convention) of a promoter have the ability to be

transcribed and ultimately expressed. Inducible

promoters allow for RNA polymerase to bind

and begin transcription only when specific

transcriptions factors come into physical contact

with the operator site of the promoter. In this

case, ip1 and ip2 require tf1 and tf2, respectively.

3) Ribosome binding sites (rbs1 and rbs2) indicate

where a ribosome will attach to the mRNA

transcript to begin translation. Once bound, the

ribosome will examine the mRNA in three base

pair chunks (codons) for the purpose of trans-

lation. These codons correspond to amino acids

as defined by the genetic code.

4) Gene1 and Gene2 are specific regions of the DNA

which encode for specific proteins. These seg-

ments of DNA are flanked by start and stop co-

dons (specific three base pair DNA sequences)

which signal the ribosome to begin creating the

amino acids which are chained together by

peptide bonds to create the protein expressed by

the gene. The amino acid chain begins at the

start codon and finishes at the stop codon.

5) Terminators (ter1 and ter2) indicate where the

RNA polymerase will end the process of tran-

scription. This is where the RNA polymerase will

leave the DNA and end the mRNA transcript.

6) Repressible promoter ðrp1Þ. This primitive is

similar to an inducible promoter. However, it is

turned off in the presence of its transcription

factors to prevent transcription from occurring at

the transcriptional start site.

7) Protein ðpro1Þ is expressed by Gene2. This is a

collection of amino acids created during trans-

lation of Gene2 by a ribosome. This is the system

output.

For our purposes the reader can consider the

machinery of the central dogma occurring from left

to right. The GRN NOR gate acts as follows.

1) In the presence of externally introduced small

molecules (tf1 or tf2) either ip1 or ip2 (or both)

will be induced. This process will allow RNA

polymerase to bind upstream (to the left) of

rbs1.

2) RNA polymerase will produce an mRNA tran-

script containing sequences for rbs1 and gene1.

Nothing further downstream will be transcribed

because of terminator ter1.

3) A ribosome will then bind to this transcript at

the rbs1 site and translate gene1 into a protein.

4) gene1’s protein will now act as a repressor of rp1.

By doing so, it will prevent transcription of the

second DNA segment which in turn ultimately

prevents the production of pro1.

5) In true NOR fashion, if either or both of the

inputs (tf 1 or tf2) are present, then the output

pro1 is not present. In the absence of tf 1 and tf 2,

nothing represses rp1 and hence pro1 will be

expressed. The time for transcription and trans-

lation in this system is in the order of tens of

minutes from first input to output signal.

It should be pointed out that the DNA for this

style of NOR gate has two distinct segments (labeled

Figure 2. Synthetic biological genetic regulatory
networks have been described using traditional digital
logic terminology. Example circuits include a two-input
(tf1 and tf2) single-output (prot1) NOR gate (described
in the text). The presence or absence of small molecules
(ultimately indicating transcription) dictates the
production or absence of an output protein.
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on Figure 2). While each segment requires contig-

uous DNA, the segments themselves need not be. In

fact, their order in a single DNA could be changed,

they could be on opposite strands, or they could be

on different DNA molecules in the same cell. This

spacial computation aspect highlights a key differ-

ence between circuits in silicon and those in DNA.

Building genetic regulatory networks
The process of physically building a GRN re-

quires the following steps.

1) Obtain the DNA segments for the primitives of

interest. These can include promoters, rbs, genes,

and terminators. These can be isolated from

natural sources or created via a chemical process

called ‘‘DNA synthesis.’’ This begins as a request

for a specific DNA sequence (e.g., ACTTTAG)

and ends with a physical DNA sample stored in a

tube in a laboratory freezer. Companies like

DNA2.0, GeneArt, and Blue Heron provide these

services, priced per base pair (�$1/bp). This

process is more accurate and expensive com-

pared to standard assembly (step 3).

2) PCR amplify the DNA. Polymerase Chain Reac-

tion (PCR) creates several orders of magnitude

more DNA than the initial starting sample. This

process will provide enough DNA primitives to

ensure successful composite assembly going for-

ward given a certain concentration of DNA is

needed for assembly.

3) Assemble DNA primitives into a composite DNA

Device. There are a variety of assembly chemis-

tries for this process but they all involve making

the DNA primitives compatible with their neigh-

boring primitives, exposing a single strand of the

double stranded DNA primitives, and ligating the

complementary single strands together. Methods

include BioBricks [9] and Gibson [10]. This

manual approach is relatively inexpensive but

potentially prone to error. Note that if one

wished to bypass this step they could synthesize

the entire Device in step 1).

4) Insert the DNA into a host organism. Depending

on the organism the process can differ dramat-

ically but this ultimately results in introducing

the DNA into a cell. In prokaryotes (e.g., bac-

teria) this is done via a process called transfor-

mation where the DNA is made circular (also

called a DNA plasmid) and taken up into the cell

via a process called ‘‘heat shock’’ where the

competent cells (cells developed specifically for

this process) are heated and cooled causing the

outer membrane to become porous enough for

the DNA to enter.

5) Growing cultures of the host organism. The cells

with the DNA of interest are allowed to go

through the cell division cycle to produce colo-

nies when plated on growth media. The DNA

introduced to the cells has an ‘‘origin of replica-

tion’’ associated with it so that upon division the

newly introduced DNA is also in the daughter

cells.

6) Harnessing the DNA back out for future use from

the host organisms. The cells can be harvested

and the DNA extracted through a process called

‘‘plasmid preparation.’’ In this way you go from

one small set of DNA constructs to many more.

These are saved for another round of processing

in the future.

More general information on Part-based design can

be found at partsregistry.org.

The design process
Bio-design automation for Part-based systems can

encompass specification, design, assembly, and data

management workflows. Figure 3 illustrates that a

formal biological specification can be created. Here

the biological behavior and constraints on this be-

havior can be described. For example, under which

biological inputs the system should respond to and

its eventual actuation requirements (e.g., glow

green, produce chemical X, etc.) can be formally

captured. Constraints such as the desired reaction

concentrations, permitted or desired primitives to

be used, or general Device topologies can be spe-

cified. Languages such as Proto [11], Eugene [12]

and GEC [13] exist for this stage. The Design stage

then takes abstract genetic regulatory networks

(collections of transcriptional promoters and genes

created in the previous stage) and represents them

as bi-partite graphs of promoters and transcription

factors. Using graph isomorphism algorithms Parts

are assigned to these elements based on available

library primitives and their experimentally charac-

terized performance. The goal is to cover this net-

work with elements which when joined and put into

a specific cellular context, will carry out the desired

behavior. Work has been done to provide robustness
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and reliability in these networks by introducing

‘‘retroactivity’’ [14] and biological network control

feedback [15]. Once elements have been selected

in the design stage, they can be retrieved from labo-

ratory stock and physically assembled in the lab.

Physical chemistry steps can be converted into li-

quid handling commands for robotics and opti-

mized assembly strategies can minimize the time

and cost of the assemblies [16]. Finally, the newly

created Parts can be added back into the data man-

agement software along with characterization data

on their performance once experiments have been

carried out.

Metrics
Like electronics, there are an emerging number of

metrics for design evaluation. Complexity is cap-

tured by the number of promoters, design length in

base pairs, number of stages in the genetic circuit,

fanout/fanin of transcriptional signals, and the num-

ber of individual DNA segments assembled in a

single assembly step. Performance can be specified

using Polymerase per second (PoPs) [17], which

indicates the rate of mRNA transcription and

florescence levels can be correlated to protein pro-

duction. Tolerance to environmental factors (e.g.,

temperature, PH) characterize a Part’s variability.

Evolutionary resiliency against genetic mutations

(e.g., point mutations, small DNA insertions and

deletions) determine the circuit’s reliability. Many

other metrics exist and there is a movement toward

‘‘datasheets’’ for synthetic biological Parts [18].

Current tools and future challenges
Currently there are only a handful of BDA soft-

ware tools that enable the design flow outlined in

this paper for part-based synthetic biological sys-

tems. Figure 4 illustrates this space [19]–[25]. Data

management tools enable locating specific Parts

and examine relationships between Parts (e.g.,

regulatory relationships, physical sample tracking).

Simulation tools validate functional system require-

ments. Design and assembly tools refine and con-

strain designs to enable their physical realization.

Engineering GRNs imposes unique challenges

compared to designing electronic circuits. A wide

variety of small molecules and proteins can be used

to induce or repress transcription. These lead to a

strong requirement of orthogonality to ensure

correct genetic circuit operation. The concept of

‘‘crosstalk’’ is quite prevalent in synthetic biology,

and spans multiple levels. For designs to function

correctly, the impact of small molecules introduced

and proteins produced by the system must be

thoroughly understood.

The physical DNA which makes up the GRN can

be acted on at any given location. For example in

Figure 2, tf1 and tf2 can act anywhere on the DNA

Figure 3. Bio-design automation for Part-based systems can be decomposed into specification, design,
assembly, and data management stages. Tools are developed for each stage to satisfy specific
optimization and constraint requirements. Workflows can be developed around these four areas to
create synthetic biological systems starting from abstract specifications and ending with physically
realized DNA constructs.
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concurrently. There is no linear

requirement that ip1 and ip2

will be solely activated upon.

The same is true of proteins.

While the process of trans-

cription and translation in

Figure 2 was depicted left to

right, GRNs operate massively in

parallel and biological agents

act on DNA both upstream and

downstream.

Finally, proteins and small

molecules degrade over time.

Protein concentrations which at

one stage were strong enough

to repress or activate a promoter

will fluctuate. Cell division also

occurs. Biological designs must

be resilient against their own

biological processes.

Towards synthetic
synthesis pathways

Unlike in human-made elec-

tronic systems where each mod-

ule is designed to perform a

distinct function, biological

modules evolved over billions

of years and exhibit high degrees of robustness and

redundancy. To engineer cells to produce com-

pounds that are non-native to the host cell, similar to

adding functionality to an existing chip, or to en-

hance the production of a compound already pro-

duced within the cell, three distinct experimental

approaches, independently or synergistically, are

currently used. All three focus on engineering syn-

thesis pathways.1 A pathway refers to a series of

enzyme-catalyzed chemical reactions that map

substrate(s) to a product metabolite(s). It is implied

that the pathway is stoichiometrically balanced, with

equal number of atoms consumed and produced

along the internal nodes of the pathway.

In the first approach, non-native pathways are

embedded into a host organism. For example,

pathways from Clostridium were embedded into

E. Coli for the production of butanol [4]. In the

second approach, one or more competing pathways

are removed from a micro-organism to maximize

production of a desired compound. Maximal etha-

nol production was achieved by removing unde-

sired reactions using gene deletions [26]. In the third

approach, existing pathways are modified by chang-

ing gene expression levels which in turn modify

enzyme concentrations. A strain of E. coli was modi-

fied to produce fatty esters (biodiesel), fatty alco-

hols, and waxes directly from simple sugars [27].

The three approaches share common underlying

concepts: a) individual pathways do not operate in

isolation but in the context of other system compo-

nents, and b) treating pathways, rather than individ-

ual reactions, as modular, functional units of cellular

biosynthesis.

Pathway-based design methodologies are ad hoc,

driven by intuition and domain expertise. The key

conceptual steps however can be summarized as

follows [28]. Once a particular compound is

identified as a target, a suitable host is identified. If

the compound is native to the host, then host

Figure 4. BDA tools for part-based synthetic biological systems can be
classified into tools for data management, simulation, and design and
assembly activities. Some approaches (e.g., Clotho) provide ‘‘App’’ based
environments in which users can develop different tools which can span
all of these areas. Other tools (e.g., Tinkercell) provide simulation
frameworks where externally created biological process models can be
imported. See [19]–[25].

1A synthesis pathway produces compounds that are non-
native to the host cell. The pathway may be native to another
organism, or completely or partially synthetic.
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modifications, such as knocking competing path-

ways or enhancing the activity of another, are

pursued to optimize yield. If non-native, then a suit-

able synthesis pathway must be selected and eval-

uated in the context of the host cell. Pathway

synthesis, evaluation, and host enhancement, how-

ever, are interdependent, and an iterative design

cycle ensues. The relevant current computational

tools presented here focus on system (host) analy-

sis, pathway analysis, and pathway synthesis.

System analysis
A biochemical network represents a cellular pro-

cess consisting of a set of reactions and compounds

(Figure 5a). Reaction stoichiometry, invariant to the

cell’s operating conditions, specifies the relative

number of atoms consumed or produced due to

the chemical reaction. A biochemical network with

m compounds and n reactions is represented using

a m� n stoichiometric matrix N (Figure 5b). Each

column describes a reaction. A column entry repre-

sents the stoichiometric coefficient of a compound

participating in the relevant reaction. A column

entry is zero if the compound does not participate in

the reaction, positive if the compound is produced

and negative if consumed. Reactions in a network

can be classified as internal or exchange reactions

linking a biochemical network to its external envi-

ronment, as defined by the user and providing either

uptake or production of external metabolites. Each

row summarizes how a compound participates in

various reactions. When utilizing the N matrix dur-

ing analysis, typically only rows corresponding to

internal compounds are included. The matrix can

be viewed as a graph (see Figure 5c). Reactions

maybe be reversible, and are sometimes split into

Figure 5. System analysis fundamentals. (a) The systems are modeled as a set of
biochemical reactions. (b) Reaction stoichiometry is captured using a stoichiometric
matrix. Zero entries are removed from the matrix for simplicity. (c) The network of
reactions can be represented using a graph. (d) Example equation and graph for reaction
rate as a function of substrate concentration. (e) Flux Balance Analysis example to
maximize the flux of reaction R3. (f) Elementary modes for the network in Figure (c).
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forward and reverse reactions during analysis. Only

steady-state analysis, similar to DC analysis in cir-

cuits, is possible using a stoichiometric matrix.

Kinetic models of biochemical networks capture

dynamic behaviors such as how fast a reaction oc-

curs as a function of the relevant concentration.

Kinetic models resemble RLC circuit models as they

enable SPICE-like ‘‘transient analysis.’’ Biochemical

reactions, distinct from purely chemical reactions,

experience saturation when catalysed by an en-

zyme. An example reaction rate as a function of

substrate concentration is shown in Figure 5d, along

with the simplest equation, in Michaelis–Menten

form [29], used to describe enzyme kinetics. Vmax is

the maximum rate for a particular reaction that

occurs at saturating substrate concentrations. The

Michaelis constant K 0m is determined experimentally

and represents the substrate concentration at which

the reaction rate is half of Vmax. The system thus can

be described by coupled ordinary differential equa-

tions (ODEs). However, parameters are often un-

known, and the equation forms are best fits. Despite

computational advances in parameter estimation,

the size and complexity of biochemical networks

reconstructed from genome databases have greatly

increased over the years, rendering the estimation of

kinetic or regulatory parameters, or fitting against

in vitro experimental data, either impractical or out-

right infeasible. Often, steady-state analysis is the

only means to analyze a biochemical system.

An interesting feature of biochemical networks is

that they exhibit a large number of possible func-

tional states, resulting in a great variety of pheno-

types. At best, system biologists today can utilize

known constraints, such as conservation of mass,

energy and momentum, to limit possible functional

states. The quintessential use of constraints occurs

when using a technique called flux balance analysis

(FBA) [30] to analyze flux distributions at steady

state, when the net production and consumption

rates are equal. Flux, the turnover rate of molecules

associated with a reaction or pathway, resembles the

flow of current in an electrical circuit. Flux for a

particular reaction i, is typically denoted by vi.

Equivalent to Kirchhoff’s current law, mass conserva-

tion at steady state declares that the rate of con-

sumption and production of internal compounds

must be equal for a particular metabolite (see

Figure 5e). Specifying mass balance constraints for

all internal compounds results in a set of linear

equations. An objective function can be defined to

correspond to maximizing the flux through a reac-

tion leading to a desired target metabolite. For ex-

ample, as shown in Figure 5e, specifying the uptake

rate of R1 to be 10 and maximizing vR3, results in vR3

equal to 10. There are, however, several flux distri-

butions that maximize vR3 as the set of linear equa-

tions describing the system is underdetermined

(fewer equations than unknowns). One possible dis-

tribution vector is ½10 15 10 5 5�T , which the entries

corresponding to the flux in reactions 1 through 5.

Another is ½10 10 10 0 0�T . In each case, the equa-

tions in Figure 5e are satisfied. Only lab measure-

ments of flux values can verify the fluxes within the

cell. This situation does not arise in dc analysis in

circuits as systems are completely specified and

each voltage and current value is uniquely deter-

mined. Constrained-based analysis have been used

to analyze flux variability, flux coupling, and to

identify optimal gene (reaction) knockout strate-

gies. See [31] for a review.

Pathway analysis
Elementary flux mode (EFM) analysis is a path-

way analysis technique that decomposes a bio-

chemical network into an independent set of

stoichiometrically balanced pathways called ele-

mentary flux modes (EFMs) [32]. When applied to

the example in Figure 5c, the resulting three

elementary modes are as illustrated in Figure 5g,

and correspond to vectors ½1 1 1 0 0�T ½1 1 0 1 0�T ;
½0 1 0 1 1�T . A feasible flux distribution, such as

½10 15 10 5 5�T , can be expressed as a linear com-

bination of the EFMs. Using weights 10, 0, and 5 for

elementary modes 1, 2, and 3, respectively, we can

write the distribution as the linear sum of 10 �
½1 1 1 0 0�T þ 0 � ½1 1 0 1 0�T þ 5� ½0 1 0 1 1�T .
EFM analysis exhaustively enumerates all stoichio-

metrically balanced pathways and cycles. Once all

EFM are identified, they can be analyzed individu-

ally or within EFM families and used to make engi-

neering decisions. Yield improvements can be

obtained by enhancing enzyme activities along a

particular pathway and eliminating competing

pathways through gene knockouts, where a reaction

is effectively eliminated from the network by sup-

pressing the production of the catalyzing enzyme.

For example, in Figure 5c, when maintaining an up-

take rate for R1, suppressing the enzyme that cata-

lyzes R4 will allow all D molecules to convert to

May/June 2012 15



E molecules and not to F, thus enhancing the

production of E. While increasingly sophisticated

algorithms have been developed to generate EFMs

(see [33] for a summary), including the canonical

basis approach, the nullspace approach, and bit-

pattern trees, the analysis remains computationally

intractable for larger models, as the run-time scales

exponentially with the complexity of the network.

From a microbe redesign perspective, not all

pathways or elementary modes are of interest. Iden-

tifying a pathway of interest without exhaustive

enumeration provides an excellent and familiar al-

ternative, similar to shortest and longest delay analy-

sis in timing analysis. The Dominant Edge algorithm

[34] identifies a pathway containing the best ther-

modynamic bottleneck reaction, from a source

metabolite to a destination metabolite using Gibbs

free energy change as edge weights. Results for sev-

eral tests cases indicated that thermodynamically

feasible paths are either identical, a proper subset, or

overlaps with EFMs. The Dominant-Edge algorithm

can be utilized with flux values as edge weights to

identify a path that contains the flux-limiting reac-

tion, or to find the pathway with the least flux

variability.

Pathway synthesis
Pathway synthesis is the process of identifying a

series of reactions to form a pathway to produce a

particular metabolite in a host organism. In some

cases, the choice for a synthesis pathway is obvious.

For example, there is only one known pathway for

biosynthesis of 1,3-propanediol (a building block for

synthetic polymers such as laminates and adhesives)

from glycerol. This pathway consists of two reac-

tions, each catalyzed by a singular enzyme. More

generally, the number of alternative pathways for a

given target may be too large for computational and

experimental exploration, especially if the goal is to

exploit the diversity of metabolic enzymes across

many different organisms. A database such as the

Kyoto Encyclopedia of Genes and Genomes (KEGG),

which currently lists over 8000 reactions, must be

searched to produce the final product molecule from

one or more reactant metabolites in the host orga-

nism. The search process needs to take into account

not only the main reactants, but also cofactors.

Because of the combinatorial nature of the prob-

lem, an exhaustive search for candidate pathways is

impractical. Over the past several years, a number of

heuristic approaches have been developed for

particular applications (e.g., predicting novel path-

ways for degradation of xenobiotics or biosynthesis

of native and nonnative compounds). One example

approach is PathPred, a method to construct plausi-

ble reaction pathways based on the chemical struc-

ture transformation patterns of small molecules

[35]. PathPred specifically exploits the KEGG RPAIR

database, which contains biochemical structure

transformation patterns for substrate product pairs

(reactant pairs) of known enzymatic reactions.

Another example approach is OptStrain, which

uses mixed integer programming to identify stoi-

chiometrically balanced pathways by adding or de-

leting reactions to selected host metabolic reaction

networks [36]. A key advantage of this approach is

to couple the selection of reactions with the ranking

of the synthesis pathways in terms of theoretical

yields. Success of the optimization however criti-

cally depends on thoroughly preprocessing the

database, which remains a non-trivial task. Another

method for constructing synthesis pathways utilizes

a graph-based probabilistic-search approach and

ranking the pathways using FBA [37]. This approach

is promising as when compared to an exhaustive

search enumerating all possible reaction routes

consisting of 10 reaction steps, the search returned

nearly identical distributions of maximal yields,

while requiring far less computing time.

In the likely event that a large number of candi-

date pathways have been identified, the computa-

tional analysis needs to evaluate these pathway

based on a performance metric such as maximal

predicted yield once placed in the host system. The

evaluation needs to also assess whether the intro-

duction of the synthesis pathway will negatively im-

pact the host organism’s capacity for balanced

growth. There currently is a lack of data and consen-

sus on the best synthesis pathway scoring methods.

The number of pathway steps does not necessarily

correlate with yield or the implementation practi-

cality. Another metric for ranking the non-native

pathway is metabolic burden which computes the

reduction in the growth rate as a result of added

reactions. Thermodynamic feasibility which tries to

compute the change in the Gibbs free energy of the

reaction along the pathways is another possible

ranking metric. Tighter integration between synthe-

sis and evaluation, or precharacterizing the host

could improve finding the optimal pathway.
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Current tools and future challenges
While several point analysis and synthesis tools

are available as described above, the analysis and

synthesis at the system and pathway levels can

benefit greatly from algorithmic improvements in

terms of efficiency and prediction accuracy. Impor-

tantly, predictive models that capture complex

biological behaviors will elucidate underlying bio-

logical principles and advance synthesis and reengi-

neering practices. Building dynamic predictive

models are of essence as steady state analysis has

limited predictive capabilities. Within EDA, we clear-

ly understand the value and limits of DC analysis and

abstracted event driven simulations, and utilize

detailed transient SPICE simulations as needed.

One possible direction to build dynamic models is

to exploit hierarchical modularity, an inherent orga-

nizational principle of biochemical networks, where

larger, less cohesive clusters of network components

comprise functionally distinct sub-clusters [38].

While there is general agreement that a biochemical

module should represent a group of connected net-

work components, and that the arrangement of

modules in the network is hierarchical, there is less

consensus on the criteria that should be used to

systematically extract biologically meaningful mod-

ules. Uncovering the modularity of a biochemical

network will allow system partitioning into minimally

interdependent parts and will enable coarse-grained

yet predictive models. The parameter estimation prob-

lembecomes simpler by substituting detailed reaction

kinetics with less detailed module kinetics.

Pathway analysis using EFMs is computationally

intractable. Computational methods based on sta-

tistical sampling, graph-based approaches, or more

compact basis to represent the EFM solution space

are possible. Efficient representation of EFMs in a

BDD-like structure could improve average runtimes.

Another profitable approach is to focus on the enu-

meration objective in lieu of enumeration to obtain

results more efficiently. Integrating synthesis path-

ways (as well as synthetic GRN circuitry) within a

system poses a metabolic burden and may com-

promise the cell’s growth and evolutionary stability.

Developing multiscale models and multiscale sim-

ulation methodologies that integrate regulatory and

metabolic interactions will become necessary. Effi-

cient impact prediction due to an added module

will enhance pathway and GRN synthesis, and can

be validated against more detailed models.

Conclusion
BDA today is a reminder of EDA in the 1960s,

prior to Intel’s first processor with only 2300 transis-

tors. Synthetic biology’s principled design method-

ology encompassing modularity, composition,

standardization, and abstraction holds great prom-

ise to streamline engineering biology. Progress cer-

tainly hinges on further understanding biology. This

article highlighted the state of BDA tools and design

flows for designing synthetic biological circuits and

pathways, and outlined computational challenges

that span specifying desired biological behaviors to

understanding biological systems. While several

analogies can be drawn between BDA and EDA,

challenges in BDA will require unique algorithmic

solutions. Success will not be counted in number

gene/promoter interactions or produced metabo-

lites. The societal impact will be the metric. Will

Design Automation work this time around?

Sidebar 1: Classic synthetic biology
circuits

To provide some historical perspective, two

‘‘classic’’ genetic circuits are presented (see

Figure 6). These circuits fundamentally changed

the way in which engineers approached the design

of genetic regulatory networks. Both were intro-

duced in the year 2000 and ushered in a new era of

genetic engineering.

The genetic toggle switch [39] is composed of

two repressors and two promoters. Each promoter

is inhibited by the repressor that is transcribed by

the opposing promoter. A specific configuration of

the toggle switch responds to the introduction of

isopropyl-�-D-thiogalactopyranoside (IPTG) or a

pulse of anhydrotetracycline (aTc). These small mo-

lecules are considered anti-repressors in the system

(their presence enables the constitutive transcrip-

tion of a promoter by disabling its repression). This

device produces two stable ‘‘genetic states’’ and can

be thought of as a primitive memory element. In the

absence of either small molecule either stable state

is possible (analogous to powering up electronic

system state elements). In the presence of both small

molecules, the behavior is undefined and subject to

a number of competing biological factors (ana-

logous to an SR latch). Memory elements are an

important type of genetic device investigated by

synthetic biologists.
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Another seminal circuit is the repressilator [40].

Here a cascade of three genes each repressing each

other produces oscillatory behavior. A green fluo-

rescent protein acts as a periodic readout of the state

in individual cells. The resulting oscillations, with

typical periods of hours, are slower than the cell-

division cycle, so the state of the oscillator has to be

transmitted from generation to generation. Genetic

oscillators can be used to recreate many of the

rhythmic patterns found in nature or act as clocks to

synchronize genetic systems.

Sidebar 2: IGEM and IWBDA
The International Genetically Engineered Ma-

chine Competition (iGEM) is the premier synthetic

biology competition for undergraduate researchers.

Teams of students are provided with access to bio-

logical parts (partsregistry.org) at the start of

the summer. They are tasked with building novel

biological systems to present at regional jamborees

(Americas, Asia, and Europe). The best teams then

compete at the world jamboree at MIT in late fall.

Teams are awarded bronze, silver, and gold medals

for completing predesignated requirements. Addi-

tionally, they compete for prizes for best wiki, presen-

tation, engineered Part, natural Part, software tool,

model, and human practices. A key aspect of the

competition is not only its global nature (over 160

teams from all over the world) but also its require-

ment that teams contribute the designs they create

back to the part registry at the conclusion of the

competition. In this way the number of biological

designs available to the community (and subsequent

competitions) continues to grow. Winning teams

have created colored pigment producing biosen-

sors, bioenergy solutions, and heavy metal bioreme-

diation. For more information see igem.org.

The International Workshop on Bio-Design Auto-

mation (IWBDA), founded in 2009 by Soha Has-

soun, Douglas Densmore, and Marc Riedel, brings

together researchers from the synthetic biology, sys-

tems biology, and design automation communities.

The focus is on concepts, methodologies and soft-

ware tools for the computational analysis and syn-

thesis of biological systems. IWBDA has brought

together over 430 researchers, 60 presentations, 55

posters, 12 keynote presentations, and three tutorial

sessions since its introduction. In addition, it has

hosted three Synthetic Biology Open Language

(sbolstandard.org) meetings, and supported

40 sponsored students. For more information, see

biodesignautomation.org.
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