
Functional Model Exploration for Multimedia Applications via Algebraic
Operators

Shinjiro Kakita
Sony Corporation

Kita-shinagawa, Tokyo 141-0001, Japan
Shinjiro.Kakita@jp.sony.com

Yosinori Watanabe
Cadence Berkeley Laboratories

1995 University Ave., Berkeley, CA 94704, USA
watanabe@cadence.com

Douglas Densmore, Abhijit Davare, Alberto Sangiovanni-Vincentelli
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720, USA

{densmore, davare, alberto}@eecs.berkeley.edu

Abstract

An optimized functional design space exploration method
for multimedia applications is proposed. The basis of the
method is a way of representing the dependency and the
concurrency of an application in a compact form exploiting
algebraic operators and expressions. The optimized design
process consists of mapping one of the possible expressions
in the application space onto a concurrent architecture. We
use the Metropolis design framework to demonstrate the ef-
fectiveness of the procedure using an FPGA architecture as
the target implementation platform. The advantage of us-
ing this platform is the availability of models that approxi-
mate well the performance of the final implementation when
performing the mapping from function to architecture thus
yielding a robust design methodology.

1 Introduction

Embedded system design has become increasingly rel-
evant in the electronic industry evolution towards products
that couple complexity with tight requirements on time to
market and cost. The trend is clear: the use of highly con-
current and programmable platforms that allow quick design
cycles with reasonable cost and performance will be perva-
sive. The design problem then becomes one of mapping a
given application onto the architecture of a flexible imple-
mentation platform. Choosing a good mapping is non trivial
as the application has to be manipulated to expose an amount
of concurrency and complexity that matches what is offered
by the implementation platform: this is the design space ex-
ploration problem we tackle in this paper.

The functionality required by an application is best seen

as a denotational specification: in this case, the specification
describes what we would like to do including constraints,
and not how it should be done. Often the design process
starts with a mix of denotational and operational descrip-
tions; the operational description outlines how the applica-
tion should operate, it already constraints the way the func-
tionality will be implemented, thus potentially eliminating
a vast part of the design space that could be explored. For
example, a specification of an MPEG algorithm is often ex-
pressed in a sequential language such as “C” that cannot
expose the degree of concurrency that is possible given the
features of the algorithm. Designers when confronted with
execution platforms that exhibit parallelism attempt to par-
tition the code so that the final implementation exploits the
services offered by the architecture. It is not surprising that
this approach is error prone, tedious, and may stop far from
optimality.

Our approach is to use a design process where we wish
first to extract a set of concurrent behaviors that are implied
by the functionality of the system. This set is represented in
the most compact possible way and, at the same time, can be
explored efficiently. Second, we wish to map, possibly op-
timally, one of these behaviors to a given architecture. The
essential part in this phase is the selection of the behavior
from the set identified in the first phase. This design process
is similar to the one that is commonly in use for logic synthe-
sis; the challenges are related to the choice of the representa-
tion of the behaviors (in logic synthesis the choice has been
standardized to Boolean networks) and of the exploration al-
gorithm.

The design space to explore in the functional domain is
very large, as many are the ways to combine the opera-
tions needed to achieve the desired functionality including
the choice of the granularity of the basic elements to use in

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

the decomposition. In this paper, we propose a method that
effectively enumerates a large number of these possibilities
in a systematic manner. We take as input a set of operations
in a program that describes the functionality and their depen-
dence. We define an algebra to represent the relations, and
laws that allow transformations of the algebraic expressions
without changing the functional correctness of the expres-
sions. By successively applying these transformations, start-
ing from an expression that corresponds to a particular struc-
ture of the operations (e.g., the original functional descrip-
tion), we obtain a transitive closure of algebraic expressions
in which each expression represents a valid way of execut-
ing the operations with the concurrency represented by the
expression.

We demonstrate the effectiveness of this approach by ap-
plying the method to a multimedia application, where we
focus on operations in loop structures of the original descrip-
tions. The expressions enumerated by the method represent
possible re-structuring of the loops and their operations. Ap-
plications in this domain are characterized by the presence
of many loop structures [11] that will be restructured using
our approach. As already mentioned, the restructuring must
be guided by optimization criteria and constraints that are
often related to the implementation architecture. Hence, to
demonstrate fully the method, we chose a flexible architec-
ture that can be reconfigured easily, the Xilinx Virtex II Pro
platform [13], and performed design space exploration with
the goal of optimizing timing performance and workload bal-
ances. Experimental evidence shows that small differences
in loop structures and operations result in dramatic effects on
the quality of implementations and that our method selects a
good set of candidate implementations.

The rest of the paper is organized as follows: Section 2
defines algebraic operators and laws. Section 3.1 details the
method to enumerate possible functional models with these
algebraic laws. Section 3.2 uses those operators and laws
to create concise formal descriptions of potential functional
model realizations. Section 4 explains how to partition func-
tional models for implementation on computing resources.
Section 5 provides a case study which ties these techniques
together for an exploration of a subset H.264 application.
Conclusions are provided in Section 6.

2 Algebraic Operators and Laws

In this section, algebraic operators and laws are defined
to express and manipulate functional topologies. A func-
tional topology is a collection of computational blocks and
dependency relations between the computational blocks. A
computational block may be defined at any abstraction level,
e.g. an instruction, statement, or an entire process. The com-
position laws for the operators allow exploring functional
topologies that are equivalent to the seed of the search. The
operators and the laws are essentially term rewriting rules
that have been used for code optimization in software and

(a)

(b)

P0 P1 P2 Pn-1...

Q0

Q1

Q2

Qn-1

...

Figure 1. Parallel and Sequential Composition
of Computational Blocks

more recently for hardware implementations. The novelty
of our approach is in the use of the rewriting rules to gener-
ate implicitly a large search space to map optimally a given
programmable platform.

2.1 Operator Definition

After [7], we represent parallel composition and sequen-
tial composition of computational blocks with operators ‖
and ◦ respectively.

Let P and Q be two computational blocks. Parallel com-
position of P and Q is denoted by P ‖ Q, which denotes that
unit P and unit Q can be executed concurrently. Meanwhile,
their sequential composition is denoted by P ◦Q, which de-
notes that unit P must be followed by unit Q.

We introduce two more operators,
∏

and
⊙

. Figure 1 il-
lustrates two types of directed acyclic functional topologies.
An arrow in Figure 1 represents a dependency relation which
determines the execution order of adjacent nodes. Figure 1
(a) depicts that computational blocks Pi(i = 0, · · · , n − 1)
are executed concurrently, and the relation is expressed with
parallel operators ‖ and

∏
as Equation (1). Figure 1 (b)

represents that Qi(i = 0, · · · , n − 1) are executed sequen-
tially, where Q0 needs to be followed by Q1 for instance,
and Equation (2) gives the relation.

n∏
i=0

Pi = P0 ‖ P1 ‖ P2 ‖ · · · ‖ Pn−1 (1)

n⊙
i=0

Qi = Q0 ◦ Q1 ◦ Q2 ◦ · · · ◦ Qn−1 (2)

Sequential operators bind more strongly than parallel op-
erators. This defines the order of operations and is required
for the following axioms.

Finally suppose that we have the three statements in Fig-
ure 2 (a). Notice unit P and unit Q have a dependency re-
lation. P and R have a concurrency relation and so do Q

and R. Therefore the dependency graph is expressed as Fig-
ure 2 (b) and the algebraic expression is given as follows in
Equation (3).

P ◦ Q ‖ R (3)

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

P

Q

RP: p = a + 1;

Q: q = p + 1;

R: r = b + 1;

(a) (b)

P o Q || R

Figure 2. Code Snippet and Corresponding
Potential Functional Topology

2.2 Operator Axioms

Five laws regarding operators are defined. Applying these
laws to a functional topology creates another valid functional
topology. Let A, B, C, P , Q, and R be computational
blocks.

2.2.1 Commutative Law

A ‖ B = B ‖ A (4)

The commutative law defines that terms with a parallel
operator commute, but those with a sequential operator do
not commute.

2.2.2 Associative Law

A ‖ (B ‖ C) = (A ‖ B) ‖ C = A ‖ B ‖ C (5)

A ◦ (B ◦ C) = (A ◦ B) ◦ C = A ◦ B ◦ C (6)

The associative law shown in Equations (5) and (6) allows
for various groupings of a given algebraic expression.

2.2.3 Substitutive Law

‖⇒ ◦ (7)
∏

⇒
⊙

(8)

The substitutive law (7) states that a parallel operator ‖
can be replaced with a sequential operator ◦, and similarly∏

can be replaced with
⊙

as (8). Note that the opposite
does not apply. ⇒ denotes “replacement”.

2.2.4 Distributive Law

A ◦ B ‖ C ⇒ (A ‖ C) ◦ B (9)

A ◦ B ‖ C ⇒ A ◦ (B ‖ C) (10)

The distributive law is equivalent to an edge addition as
shown in Figure 3. The topology in the center of the diagram
corresponds to the left hand side of Equations (9) and (10).
The left portion of the diagram is Equation (10) and the right
portion is Equation (9).

A

B

C

A

B

C

A

B

C

A o B || CA o (B || C) (A || C) o B

Figure 3. Distributive Law Example

P

Q R

 P: p = a + 1;

 Q: q = p + 1;

 R: r = p + 1;

P

Q R

 P: p = a + 1;

 Q: q = p + 1;

P

 P: p = a + 1;

 R: r = p + 1;

P o (Q || R)

(P o Q) || (P o R)

P

Q R Q: q = a + 1;

 R: r = b + 1;

 P: p = q + r;

P

Q R

P

(Q || R) o P

(Q o P) || (R o P)

 Q: q = a + 1;

 P: p = q + r;

 R: r = b + 1;

 P: p = q + r;

Figure 4. Split Law Example

2.2.5 Split Law

P = P ‖ P (11)

The two split P s in the right hand side have the same
functionality and state executing concurrently. Figure 4 il-
lustrates an example of the split law applied to a software
program. As shown in Figure 4 (left), P before a sequential
operator can be split with the law. It is equivalent to Equa-
tion (12). Meanwhile P after a sequential operator cannot
be split as shown in Figure 4 (right) and Equation (13).

P ◦ (Q ‖ R) = (P ◦ Q) ‖ (P ◦ R) (12)

(Q ‖ R) ◦ P �= (Q ◦ P) ‖ (R ◦ P) (13)

An expression (14) shows a composition method for two
split P s. When expression f1 includes P and is connected
with a sequential operator, the P which appears later is elim-
inated.

f1(A,P) ◦ f2(B,P) ⇒ f1(A,P) ◦ f2(B) (14)

3 Enumeration of Functional Topologies

3.1 Enumeration with a Transitive Closure

The method can effectively enumerate possible topology
candidates in a systematic manner. Starting with an algebraic
expression of a given functional topology, possible topology
candidates are generated by applying the axioms outlined in
Section 2. With each selected functional topology equation,
algebraic laws are applied to create a set of successor topolo-
gies. For example, the topology shown in Figure 2 (b) has
nine candidates according to the transitive closure as illus-
trated in Figure 5. The partial order created in the transitive

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

closure is compatible with the original functional topology.
Nine candidates are grouped into six types of topologies as
shown in Figure 6 by taking into account the commutative
law. Since usage of the split law can lead to an infinite num-
ber of candidate nodes, we ignore the law for simplicity.

com: Commutative, asc: Associative, dis: Distributive, sub:Substitutive

P o Q || R

P o (R || Q)

R || P o QP o (Q || R)(P || R) o Q

P o Q o R

(R || P) o Q

P o R o QR o P o Q

com sub

sub
dis dis

com

sub dis

dis

sub
com

com

subsub

com

com

Figure 5. Generating Candidates with Transi-
tive Closure

P P P P

Q Q Q Q

R

R

R

R

P o (R || Q)

P o Q || R

R || P o Q

P o (Q || R) (P || R) o Q

P o Q o R(R || P) o Q P o R o Q R o P o Q

P

Q

RP

Q

R

Figure 6. Functional Topology Candidates

3.2 Recurrence Formula and Design Space
Exploration

A naive approach of applying the axioms could enumerate
a large number of candidate topologies in general. Further-
more, an algebraic expression itself could become complex.
One could observe however that in many cases, the enumer-
ated expressions may involve sub-expressions, and thus if the
sub-expressions could be commonly represented, the result-
ing expressions can become less complex. This is especially
the case when we consider operations involved in loop struc-
tures of a program, which often are the primary target of op-
timization in multimedia applications. For instance, consider
the program in Figure 7 (left). Extracting data dependency
gives the functional topology shown in Figure 7 (right), and
its algebraic expression is given in Equation (15).

Pi ◦ Qi (i = 0, · · · , 7) (15)

Instead of applying the axioms directly to these eight ex-
pressions as a whole, one could first re-define the expressions
recursively so that an expression for a particular loop itera-
tion is given by the terms of that iteration together with an
expression of the preceding iterations, and then apply the ax-
ioms to that expression. For example, the same functionality
can be represented as follows (16):

Ln =

{
P0 ◦ Q0 (n = 0)
Pn ◦ Qn ‖ Ln−1 (n = 1, · · · , 7)

(16)

When one applies the axioms to Ln, Ln−1 is treated as
a single term, and therefore the number of expressions enu-
merated in this process is determined by the three terms with
the two relations; in this example six expressions are enu-
merated. However, each appearance of the term Ln−1 in any
of the six expressions can be equivalently replaced by any of
the expressions obtained for Ln−1, and thus the total space
of exploration is exponentially larger than the number of ex-
pressions explicitly enumerated by this method.

Note that there are many different recurrent expressions
to represent the same functionality. For example, let L0 be
a group of expressions given by L0 = {P0, Q0, P1, Q1},
and L2n denote L2n = {P2n, Q2n, P2n+1, Q2n+1, L2n−2}.
Then one obtains the following (17) as opposed to (16).

L2n =

⎧⎨
⎩

P0 ◦ Q0 ‖ P1 ◦ Q1 (n = 0)
P2n ◦ Q2n ‖ P2n+1 ◦ Q2n+1 ‖ L2n−2

(n = 1, 2, 3)
(17)

for i=0,..,7

Pi: pi = a + 1;

end for

for i=0,..,7

Qi: qi = pi + 1;

end for

P0 Q0

L1

L0

L7

..
.

P1 Q1

P7 Q7

Figure 7. Code Snippet 2 and Corresponding
Potential Functional Topology

In general, one can produce recurrence expressions by
first defining terms that constitute the expressions and then
by applying some rules based on the relations of the terms
specified in the original expressions. Examples of such rules
are depicted in Figure 8, where the computational blocks A,
B and C denote the terms. Figure 8 (a) states that two se-
quential computational blocks are clustered into a computa-
tional block with an expression A ◦ B, and (b) shows that
A and C are clustered into a computational block with an
expression A ‖ C. Figure 8 (c) is the split law described in
Section 2.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

A B

C

A o B

A

B A || C B

C

A

B A B

CA

(a)

(b)

(c)

Figure 8. Rules to Produce Recurrence Ex-
pressions

q-1=0

for i=0,1,2

P: pi = x + 1;

Q: qi = pi + qi-1;

R: ri = qi + 1;

end for

(a)

(b)

(c)

L1

L0

L2

p-1=0

for i=0,1,2

P: pi = pi-1 + 1;

Q: qi = pi + 1;

R: ri = qi + 1;

end for

L1

L0

L2

r-1=0

for i=0,1,2

P: pi = x + 1;

Q: qi = pi + 1;

R: ri = qi + ri-1;

end for

L1

L0

L2

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

P0 Q0 R0

P1 Q1 R1

P2 Q2 R2

Figure 9. Multimedia Program Structures

For the case of a program shown in Figure 9 (a), we obtain
the following by applying these rules:

Ln =

{
P0 ◦ Q0 ◦ R0 (n = 0)
(Pn ◦ Qn ‖ Ln−1) ◦ Rn (n = 1, 2)

(18)

Note that this process of producing recurrence expressions
does not employ an assumption that the loop boundary must
be statically known. Therefore, the same can be applied for
an unbounded loop.

Similarly a recurrence expression for Figure 9 (b) is ob-
tained using the split law as follows.

Ln =

{
M0 ◦ Q0 ◦ R0 (n = 0)
Mn ◦ Qn ◦ Rn ‖ Ln−1 (n = 1, 2, ..N)

(19)

Mn =

n⊙
k=0

Pk (n = 0, 1, 2) (20)

Finally a recurrence expression for Figure 9 (c) is given
by Formula (21) and Formula (22). The split law is used.

P

Q

R

(a)

P

Q

R

(b)

P

Q

R

(c)

P

Q

R

(d)

Figure 10. Mapping onto Processes

Ln =

{
M0 ◦ R0 (n = 0)
Mn ◦ Rn ‖ Ln−1 (n = 1, 2, ..N)

(21)

Mn =

{
P0 ◦ Q0 (n = 0)
(Mn−1 ‖ Pn) ◦ Qn (n = 1, 2, ..N)

(22)

As this section shows, the number of explicit topology
candidates based on the transitive closure depends on the re-
currence formula expression. This stems from the granular-
ity of operations represented by the algebraic expressions.
The coarser the granularity, the narrower the explored de-
sign space is, while the finer the granularity is, the broader
the space is.

4 Mapping

4.1 Partitioning Computational Blocks

Once a functional topology has been selected, the next
step is mapping it onto computing resources. Mapping
determines how computational block functionality will be
partitioned onto computing resources (which are ultimately
used for implementation). Mapping is based on two rules.
First, when a topology has a concurrency relation, the nodes
with the relation are partitioned and mapped to separated re-
sources given by the concurrency relation. Second, when the
topology has a dependency relation, the nodes with the rela-
tion are partitioned and mapped onto either shared or sepa-
rated resources.

As an example, Figure 10 (a) has three computational
blocks P , Q, and R, and two arcs between P and Q and
between P and R. The functional topology has dependency
relations between P and Q and between P and R, and a con-
currency relation between Q and R. Following the rules, (a)
is mapped onto two partitions as shown in (b) or (c), and then
units with dependency relations are separated into three par-
titions as shown in (d). A gray zone in the figure illustrates
a partition. As a result, three candidates ((b), (c) and (d)) are
obtained. Notice that Q and R are not allowed in the same
partition with these rules.

4.2 Mapping with Recurrence Formula

This section explains how to map a functional topology
onto physical resources using the recurrence formula. The

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

following two relations are needed in order to create func-
tional topologies: dependency relations within a granularity
set and dependency relations between two granularity sets.
In Section 3.2, the granularity in a recurrence formula is dis-
cussed to decide the size of the exploration space. In addition
to the recurrence granularity, mapping uses another granu-
larity. This granularity reflects the available resources of the
potential implementation platform. For example, we have a
recurrence Formula (23) by transforming Formula (16), and
provided that the granularity for mapping is Pn and Qn, a
dependency relation in a granularity set is Pn ◦ Qn. A de-
pendency relation between two granularity sets is given as
Pn ◦ Pn−1.

Ln = Pn ◦ (Qn ‖ Ln−1) (23)

Similarly, when a granularity set is Pn, Qn, Pn−1 and
Qn−1, a dependency relation in a granularity set is Pn ◦
(Qn ‖ Pn−1 ◦ Qn−1), and a relation between two sets is
Pn−1 ◦ Pn−2 given by Formula (24).

Ln = Pn ◦ (Qn ‖ Pn−1 ◦ (Qn−1 ‖ Ln−2)) (24)

As a next step, the partitioning method explained in Sec-
tion 4.1 is applied. Consequently, Formula (23) gives can-
didates of process network as shown in Figure 11 (a), and
Formula (24) gives candidates as depicted in Figure 11 (b).
A gray zone illustrates a partition. Pe and Po are P with even
and odd indices respectively. A self loop implies a repetition
of units in a process.

A drawback of this method is that it is not capable of
describing relations between nonadjacent granularity sets.
Therefore, this method cannot give such a topology de-
scribed in (25).

8⊙
n=0

Pn ◦

8⊙
n=0

Qn (25)

5 Case Study

Functional model exploration of the deblocking filter
from H.264 [12], [5] is reported in this section. The ob-
jective of the case study is to explore the optimal functional
topology to minimize overall execution time.

5.1 Functional Behavior

We chose to explore the H.264 deblocking filter algorithm
since it is responsible for a significant percentage (approx.
33%) of the total computational complexity of H.264 [6].
The deblocking filter function is applied to a block (4×4 pix-
els) border of an image for the luminance and chrominance
components separately, except for the block borders at the

Pn

Qn

Pn

Qn

Po Qo

QePe

Po Qo

QePe

Po Qo

QePe

Po Qo

QePe

Po Qo

QePe

Po Qo

QePe

Po Qo

QePe

Pn

Qn

(a)

(b)

(a-1) (a-2)

(b-1) (b-2) (b-3)

(b-4) (b-5) (b-6)

Figure 11. Mapping onto Partitions with Re-
currence Formulas

boundary of the image. Note that the deblocking filter func-
tion is performed on a macroblock basis after the completion
of the image construction function.

In a macroblock, a block border V 0 is selected first, and
then eight pixels denoted as ai and bi with i = 0, · · · , 3 are
filtered, and the other fifteen rows along V 0 are also filtered.
The filtering is applied to a set of eight samples across a
block border (in the order of V 0, V 1, V 2, V 3, H0, H1,
H2, and H3 in Figure 12). When H1 is selected, eight pix-
els denoted as ci and di with i = 0, · · · , 3 are filtered as well
as the other fifteen pixel set along H1.

d3

d2

d1

d0

c0

c1

c2

c3
H0

V0

H1

H2

H3

V1 V2 V3

a3 a2 a1 a0 b0 b1 b2 b3

pixel

block
border

macroblock (16x16pixels)

block
(4x4pixels)

Figure 12. Macroblock Processing

Figure 13 is the pseudo code for the deblock-
ing filter derived from H.264 reference software [12],
[10]. DeblockMB checks whether neighbor macroblocks
(16 × 16 pixels) are available for a target macroblock.
GetStrength outputs a boundary strength (stri,j,k) for the
filter, and EdgeLoop does filtering for eight samples de-
pending on the strength. The boundary strength is in the
range of 0 and 4 (integer number) and the number is decided
depending on slice type, reference pictures, the number of
reference pictures, and the transform coefficient level of ev-

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

ery block. Our exploration is carried out for the worst case
among five boundary strengths. We observed the total cy-
cle count is the worst (largest) when the boundary filtering
strength is one. GetStrength and EdgeLoop will be the
units of granularity for our exploration.

D : DeblockMB();
for i=0,1 do

Ii :
for j=0,· · ·,3 do

Jj :
for k=0,· · ·,15 do

Pk : stri,j,k = GetStrength(i, j, k);
end for
for k=0,· · ·,15 do

Qk : EdgeLoop(i, j, k, stri,j,k);
end for

end for
end for

Figure 13. Deblocking Filter Pseudo Code

5.2 Functional Exploration

In the code shown in Figure 13, the data dependency is
extracted in a similar manner to [9]. Labels D, P and Q in-
dicate DeblockMB, GetStrength and EdgeLoop respec-
tively. Labels I and J describe an iteration given by index i

and j. Dependency relations appear between GetStrength

and EdgeLoop in every iteration of index k, where a bound-
ary strength is sent from GetStrength to EdgeLoop. In
addition, a dependency relation between two consecutive
groups of sixteen (k = 0, · · · , 15) EdgeLoop computational
blocks appears because EdgeLoop reads eight sets of pixel
data from a memory and writes eight sets of filtered pixel
data to the memory. Hence data written along a block bor-
der is supposed to be data read along the next block border.
This data dependency can be represented as a graph shown
in Figure 14, where the nodes labeled with Pk and Qk denote
the k-th executions of GetStrength and EdgeLoop respec-
tively in the corresponding loops in the code.

This case has four iteration loops with 257 computational

D

...

......

......

......

8

P0

Q0

P1 P15

Q1 Q15

P0

Q0

P1 P15

Q1 Q15

P0

Q0

P1 P15

Q1 Q15

Figure 14. Topology of Deblocking Filter

blocks every macroblock, which results in explosive design
space. To reduce the design space, we take a look at depen-
dency relations for every level of nested loop structure. A
dependency relation in the deepest level (iteration index k)
is expressed algebraically as follows (26).

Pk ◦ Qk (k = 0, · · · , 15) (26)

A dependency relation for iteration index i and j is given as
follows (27) (28).

I0 ◦ I1 (27)

Jj ◦ Jj+1 (j = 0, 1, 2) (28)

The most outer loop has the following relation (29).

D ◦ Ii (i = 0, 1) (29)

Considering relations (27),(28), and (29), labels D, I and J

are executed sequentially. We focus on relations of unit P

and unit Q as the case study.
The following recurrence Formula (30) is obtained from

relation (26) when the granularity is set as Pn and Qn.

Ln =

{
P0 ◦ Q0 (n = 0)
Pn ◦ Qn ‖ Ln−1 (n = 1, · · · , 15)

(30)

Table 1 shows recurrence formulas (second column)
when the formula granularity is set as Pn and Qn, and de-
pendency relations in a granularity set (third column) and
dependency relations between granularity sets (fourth col-
umn) when the mapping granularity is set Pn, Qn, Pn−1 and
Qn−1. Recurrence formula ID 1 has no relation between
granularity sets.

Table 1. Functional Topology Candidates
ID Recurrence Relations in Set Relations

Between Sets
1 Pn ◦ Qn ‖ Ln−1 Pn ◦ Qn ‖ Pn−1 ◦ Qn−1 -
2 Pn ◦ (Qn ‖ Ln−1) Pn ◦ (Qn ‖ Pn−1 ◦ Qn−1) Pn−1 ◦ Pn−2

3 (Pn ‖ Qn) ◦ Ln−1 (Pn ‖ Pn−1 ◦ Qn−1) ◦ Qn Qn−2 ◦ Qn−1

4 Pn ◦ Qn ◦ Ln−1 Pn ◦ Qn ◦ Pn−1 ◦ Qn−1 Qn−1 ◦ Pn−2

5 Pn ◦ Ln−1 ◦ Qn Pn ◦ Pn−1 ◦ Qn−1 ◦ Qn Qn−2 ◦ Qn−1

Pn−1 ◦ Pn−2

6 Ln−1 ◦ Pn ◦ Qn Pn−1 ◦ Qn−1 ◦ Pn ◦ Qn Qn−2 ◦ Pn−1

5.3 Metropolis Integration and Mapping

To capture this functional behavior we use METROPO-
LIS [1]. METROPOLIS is a system level design framework
based on platform-based design (PBD) [8]. PBD explicitly
separates the functional and architectural portions of a sys-
tem. The METROPOLIS framework evaluates performance
by mapping the functional model onto an architectural model
for simulation. The architecture models for our flow are
based on the Xilinx Virtex II Pro FPGA platform [13] created

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

in METROPOLIS. Specifically we will be examining archi-
tectures based on Microblaze soft-microprocessor cores and
Fast Simplex Links (FSLs). An FSL is a FIFO-like com-
munication channel, which connects two Microblazes in a
point-to-point manner. Besides their general attractiveness,
FPGAs can be characterized a priori thus giving us more
confidence in the accuracy of the estimations that guide the
optimization process. More details of the architectural mod-
eling are reported in [2] and [4]

Once the functional topology has been created we must
transform this into a METROPOLIS functional model. We are
interested in investigating potential clock cycle counts when
mapped and simulated with an METROPOLIS architecture
model. METROPOLIS’ higher abstraction level [8] allows
functional model statements to be classified into three prim-
itive functions: read, write, and execute. The total num-
ber of clock cycles required is found by accumulating cy-
cles for read, write, and execute functions. GetStrength

and EdgeLoop are composed of these basic functions. The
arguments to read, write, and execute are translated by
METROPOLIS characterizer databases. This translates into
a cycle count for each operation [3]. We refer to a process
with GetStrength and EdgeLoop as a filter process hence-
forth.

The mapping is carried out in such a way that a filter pro-
cess and a communication channel in the functional model
are mapped onto a Microblaze and an FSL in one-to-one
manner respectively as shown in Figure 15.

We define a source process in the functional model as fol-
lows. A source process is a storage with stream data and
baseband data. A source process communicates with filter
processes in such a way that a filter process sends 32-bit
wide data (a read/write flag, a target address, and a target data
length in this order) and afterwords a source process sends or
receives data in a burst transfer manner. The source process
has in/out ports connected to all filter processes as shown in
Figure 15 and receives requests from the filter processes in a
first-come-first-served basis with non-blocking reads.

The source process is also mapped onto a Microblaze.
The length of a FIFO connected between the source process
and filter processes is large enough so that processes are not
blocked on write operations. For this study, the source FI-
FOs have a depth of 16. The length of a FIFO between filter
processes changes in this case study, and is given by N in
Figure 15.

Provided that the number of MicroBlazes is three and un-
der, 14 functional topology candidates are obtained from Ta-
ble 1 as shown in Figure 16. A gray zone represents what
will be executed on each Microblaze (a partition; mapping)
and resource ID is denoted by PID in the figure. For ex-
ample, (C) in Figure 16 implies that resource 1 (PID1) has
computational block P and resource 2 (PID2) has computa-
tional block Q. ID 1 from Table 1 gives candidates (A), (B),
(C) and (J). We skip sequential structured topologies 4, 5 and
6 from Table 1 to simplify.

P Q

P Q
(H)

uBlaze

uBlaze

uBlaze
(src)

uBlaze

P Q(C)

uBlaze

uBlaze

uBlaze
(src)

PID1 PID2

PID1

PID3

PID2

Functional model Architectural model

Functional model Architectural model

length = 16

length = 16

length = N

16

16

16
N

N

Mapping Assignment

Mapping Assignment

F
 u n

 c t
 i o

 n a
 l T

 o p
 o l

 o g
 y

Figure 15. Mapping a Functional Model onto
an Architectural Model

5.4 Results of Exploration

Execution cycle count results for the functional topology
candidates explored (Figure 16) are discussed in this sec-
tion first. Figure 17 shows the total execution cycle count
breakdown (computation cycles, communication cycles with
a source process, and waiting cycles) when the length of a
FIFO between filter processes (N denoted in Figure 15) is
one. The waiting cycles accumulate in two following cases:
when a filter process waits for other filter processes to fin-
ish their transaction with a source process and when a filter
process waits for data to come to a FIFO from other filter
process.

The vertical axis in Figure 17 is the number of clock cy-
cles required and horizontal axis shows topologies (A to N)
as shown in Figure 16. B through G have two bars, where
the first bar corresponds to process 1 denoted by PID1 in
Figure 16 and the second is process 2 denoted by PID2.
H to N have three bars, where the first bar corresponds to
process 1 denoted by PID1 and the second and third bars
are results of process 2 and process 3 denoted by PID2 and
PID3 each.

The simulation results demonstrate that workload balance
has a strong effect on execution time for a multiprocessor
system. Case H is the best case in terms of workload bal-
ance and as a result, the total amount of cycles is the small-
est. Compare case J with case L. L has more communica-
tion channels than case J . Nonetheless process 3 in L spends
less time waiting than process 3 in J , which implies that the
memory traffic of L is lighter than that of J due to synchro-
nization between process 1 and process 3. Compare K with
L. Their topologies are the same, but the process execution
order differs. As a result, the completion times are different.
Similar conclusions can be drawn for M and N .

We can draw several conclusions from these results.First,
apparently small changes in the functional topology can ac-
tually have dramatic effects on execution time. Secondly, the

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

(T-1) (T-2) (T-3)

P Q

(A)

P Q

P Q

(B)

P Q

P Q

(D)

P Q

P Q

(E)

P Q

P Q

(F)

P Q

P Q

(G)

PID1

P Q

(C)

<2-process>

<1-process>

P Q

P Q

(I)

P Q

P Q

(J)

P Q

P Q

(K)

P Q

P Q

(M)

P Q

P Q

(L)

P Q

P Q

(N)

P Q

P Q

(H)

<3-process>

Pn Qn

Qn-1Pn-1

Pn Qn

Qn-1Pn-1

Pn Qn

Qn-1Pn-1

PID1

PID2

PID1 PID2

PID1

PID2

PID1

PID2

PID1

PID2

PID1

PID2

PID1 PID2

PID3

PID1 PID2

PID3

PID1 PID2

PID3

PID1 PID2

PID3

PID1

PID2

PID3

PID1 PID2

PID3 PID3

PID1 PID2

Figure 16. Candidates of Functional Topology
Mappings

breakdown of overall execution time is important to examine
for these types of applications. Finally, METROPOLIS was
able to perform efficient functional design space exploration
with ease and with only minor changes to the functional and
mapping models.

5.4.1 Optimal FIFO Size

In the second set of experiments we took a look at the ef-
fect of FIFO length. Figure 18 shows execution cycle counts
of three cases: C, F and I when the length of a FIFO be-
tween filter processes changes (N in Figure 15). The results
show the optimal length in terms of minimum cycle counts.
Changing the length of a FIFO does not have an effect on the
total cycle count, but rather on the cycle counts of individual
processes.

Table 2 breaks down the performance further. Total clock
cycle counts (second column) and the optimal FIFO length,
which is the smallest with the lowest clock cycle counts
(third column), and resource cost are shown. Resource cost

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

A B C D E F G H I J K L M N

1 filter process

2 filter processes

3 filter processes

C
 y

 c
l e

 C
 o

 u
 n

 t s

Functional Topologies

Best
Performance

Execution Order Effects

Waiting Communication Computation

Synchronization Effects

Figure 17. Metropolis Simulation Results for
All Candidates

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 5 6 8
1

6 1 2 4 5 6 8
1

6 1 2
1

6 1 2
1

6 1 2 4 5 6 8
1

6 1 2 4 5 6 8
1

6 1 2 4 5 6 8
1

6

PID1 PID2 PID1 PID2 PID1 PID2 PID3

C F I

Waiting

Communication

Computation

C
 y

c l
 e

 C
 o

 u
 n

 t

Functional Topologies

FIFO length

Process ID

Optimal Length

No FIFO Length Effect

Figure 18. Metropolis Simulation Results for
Various FIFO Sizes

is program binary code size (4th, 5th and 6th column for each
process) and PQ is the result given by combining P and Q

computational blocks. In the case where FIFO length does
not make any difference for the counts, the optimal length is
set to 1.

This simulation demonstrates that users can make a de-
cision regarding the optimal functional model based on pa-
rameters related to performance and cost such as total cycle
counts (workload balance), communication overhead, mem-
ory traffic, FIFO length, shared memory size, the number of
processors, program code size, context switching overhead,
register, cache, dedicated hardware logic size, and so forth.
Again, METROPOLIS provides a easy-to-use framework for
this type of functional exploration.

5.4.2 Simulation Accuracy

All of the previous results are meaningless unless
METROPOLIS simulation accurately correlates to the ac-
tual implementation. Figure 19 illustrates how closely
METROPOLIS’ simulation compares to experimental results.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

Table 2. Performance and Cost Results
Topology Counts Length Proc1 Proc2 Proc3
A 94021 1 PQ - -
B 50188 1 PQ PQ -
C 58839 5 P Q -
D 54505 1 PQ PQ -
E 60124 1 PQ PQ -
F 67981 1 PQ Q -
G 76182 6 PQ P -
H 43932 1 P Q Q
I 60215 5 P Q P
J 52031 3 P Q PQ
K 52971 1 P Q PQ
L 50780 1 P Q PQ
M 58941 6 P Q PQ
N 61190 6 P Q PQ

Binary Data Size PQ: 47.9KB; P: 47.0KB; Q: 45.9KB

Each design was implemented on a Xilinx ML310 design
board and the execution time was measured. The maximum
difference between implementation and simulation is 7.3%.
This is a high correlation while maintaining a high level of
abstraction in the Metropolis models. In addition, it con-
firms that H has the lowest cycle count of any design
and demonstrates that making an absolute design decision
based on Metropolis simulation would have been the correct
choice.

0

10000

20000

30000

40000

50000

60000

70000

B C D H L M

Metropolis Simulation

Xilinx Experimental

1.30%

3.64%

7.33%

4.99%

3.26%

0.36%

Cycle
Count

Functional Topologies

Simulation/Implementation
Accuracy

Figure 19. Metropolis Accuracy versus FPGA
Implementation

6 Conclusions

This paper presented a methodology for performing func-
tional design exploration with the goal of obtaining an effi-
cient implementation on a given platform that was appropri-
ately characterized in terms of performance. Beginning with
an operational description of the function to be implemented,
we use algebraic operators to obtain an efficient representa-
tion that is then manipulated using composition and decom-
position laws to generate alternatives quickly. These alterna-
tives are correct by construction as they are all functionally
equivalent to the original description.

This procedure can be used to yield a method to transform

a sequentially structured program in a multimedia applica-
tion domain into a set of concurrent processes. Once this
decomposition had been carried out, we proposed a mapping
methodology to partition this design and assign those parti-
tions to architectural resources. Finally, this entire process
was demonstrated in the METROPOLIS design environment.
The results of our H.264 deblocking filter example showed
that not only do small changes in the functional topology
result in nonintuitive, dramatic results, but also that with
METROPOLIS, we are able to explore a number of design
axis with a very high accuracy.

Balancing the structure of an application with the struc-
ture of an implementation architecture will be increasingly
important as both functionality and available architectures
grow in complexity. Using solid methods to explore the de-
sign space within the limits posed by the implementation
platform, will give a strong push towards high-value system
level design tools.

References

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. Sangiovanni-Vincentelli. Metropolis: An Integrated
Electronic System Design Environment. IEEE Computer,
36(4):45– 52, Apr. 2003.

[2] D. Densmore. Metropolis Architecture Refinement Styles and
Methodology. Technical Report UCB/ERL M04/36, Univer-
sity of California, Berkeley, CA 94720, September 14, 2004.

[3] D. Densmore, A. Donlin, and A. L. Sangiovanni-Vincentelli.
FPGA Architecture Characterization for System Level Perfor-
mance Analysis. In DATE, March 2006.

[4] D. Densmore, S. Rekhi, and A. L. Sangiovanni-Vincentelli.
Microarchitecture Development via Metropolis Successive
Platform Refinement. In DATE, pages 346–351, 2004.

[5] Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification. (ITU-T Rec. H.264 —
ISO/IEC 14496-10 AVC).

[6] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro.
H.264/AVC Baseline Profile Decoder Complexity Analysis.
IEEE Trans. Circuits Syst. Video Techn, 13(7):704–716, 2003.

[7] A. Jantsch. Modeling Embedded Systems and SOC’s. Morgan
Kaufmann Publishers, 2004.

[8] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System Level Design: Or-
thogonolization of Concerns and Platform-Based Design.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12), December 2000.

[9] B. Kienhuis. Matparser: An Array Dataflow Analysis Com-
piler. Technical Report UCB/ERL M00/9, University of Cali-
fornia, Berkeley, CA 94720, April 27th, 2000.

[10] MPEG4 AVC Reference Software JM92.
http://www.m4if.org/index.php, MPEG Industry Forum.

[11] J. A. Webb. Steps Toward Architecture-Independent Image
Processing. IEEE Computer, 25(2):21–31, 1992.

[12] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra.
Overview of the H.264/AVC Video Coding Standard. IEEE
Trans. Circuits Syst. Video Techn, 13(7):560–576, 2003.

[13] Xilinx. http://www.xilinx.com.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

