HOW CITIZENS RESPOND TO COMBAT CASUALTIES
THE DIFFERENTIAL IMPACT OF LOCAL CASUALTIES
ON SUPPORT FOR THE WAR IN AFGHANISTAN

DOUGLAS L. KRINER*
FRANCIS X. SHEN

Abstract Scholars have long analyzed the influence of combat casualties on public support for war. However, the mechanisms through which casualties—particularly local casualties—affect wartime opinion formation have received much less attention. We employ a novel survey experiment to test three mechanisms that might explain previously observed cleavages in war support between residents of high- and low-casualty communities. We find that subjects who read a news story concerning a casualty from their home state were significantly more likely to oppose the war in Afghanistan than were subjects who read an identically worded news story in which the fallen soldier was not identified as being from the respondent’s home state. Moreover, this difference emerged regardless of whether the story followed the coverage patterns and emphasis typical of national or local media reporting. We conclude that the local connections triggered by learning of a home-state casualty, not the emotionally charged nature of local media reporting, is most responsible for generating opinion cleavages observed in previous research.

International relations scholarship, from Kant’s (1983 [1795]) theory of perpetual peace to contemporary analyses of the importance of ballot box constraints in understanding state conflict behavior (see Russett 1990; Bueno de Mesquita and Lalman 1992; Reiter and Stam 1998; Bueno de Mesquita et al. 2003), has long emphasized the political importance of domestic public opinion. Most analyses of wartime opinion formation have conceptualized the process by which citizens decide whether or not to support a war as a cost-benefit
calculation (see Page, Shapiro, and Dempsey 1987; Gartner and Segura 1998; Gelpi, Feaver, and Reifler 2009). And, in the low-mobilization wars waged since World War II, casualties have been the primary way in which most Americans see a conflict’s costs (Aldrich et al. 2006; Gartner 2008). Across a range of military actions, from Vietnam and Korea, to more minor missions in Panama and the Persian Gulf, to recent conflicts in Afghanistan and Iraq, scholars have shown that public support declines as casualties accumulate (e.g., Mueller 1973; Larson 1996; Mueller 1994; Eichenberg, Stoll, and Lebo 2006; Jacobson 2010).

However, recent scholarship also finds that casualties are far from uniformly distributed across the country. This unequal exposure to casualties, in turn, has produced significant cleavages in policy opinions and political behaviors between Americans who live in communities that have suffered high versus low numbers of casualties. For example, in both the Vietnam and Iraq wars, residents of high-casualty communities were more likely to believe each war was a mistake and to favor an early withdrawal than demographically identical residents of communities that had experienced substantially lower casualty rates (Gartner, Segura, and Wilkening 1997; Hayes and Myers 2009; Kriner and Shen 2010; Althaus, Bramlett, and Gimpel 2011). Moreover, these cleavages reappeared at the ballot box; state and county casualties strongly influenced both House and Senate races during the Vietnam era (Gartner, Segura, and Barratt 2004; Kriner and Shen 2010), as well as the 2004 presidential election (Karol and Miguel 2007) and House and Senate races during the 2006 midterms (Kriner and Shen 2007; Grose and Oppenheimer 2007; Gartner and Segura 2008).

Although these political consequences are well established, existing scholarship tells us significantly less about the mechanisms through which local casualties generate these political effects. How, precisely, do local casualties affect citizens’ cost-benefit calculations when forming their wartime policy preferences? Are residents of high-casualty communities simply more aware of the human costs of war than residents of low-casualty communities? Are local casualties covered differently in the media in ways that disproportionately sway public opinion? Or do local casualties cause citizens to update their cost-benefit calculations differently than information about national casualties? The answers to these questions may compel us to fundamentally reexamine how citizens respond to war and its human costs.

Three Potential Mechanisms
Most prior analyses of the political effects of local casualties emphasize the greater exposure to the human costs of war that residents of high-casualty communities receive versus their peers in low-casualty communities. We term this the differential exposure mechanism. Given the absence of mass mobilization
in America’s post–World War II conflicts and the widespread lack of information concerning casualty totals observed in the Iraq War (Berinsky 2007; Myers and Hayes 2010), there are at least three reasons that residents of high-casualty communities may be more likely to hear about casualties than other Americans. First, Gartner, Segura, and Wilkening (1997, p. 670) argue that “interpersonal and community-based information networks” make local casualties “better known” to citizens. Second, residents of high-casualty communities may receive significantly more elite cues critical of the war than residents of low-casualty communities (Kriner and Shen 2010). Third, media scholars continue to find that a large percentage of Americans rely on local news outlets for their information on international affairs (Gilliam and Iyengar 2000), and that local news outlets give significantly more attention to local casualties than they do to casualties from other communities (Gartner 2004).

Alternatively, Americans may simply respond differently to casualties suffered in their communities than to casualties with whom they share no local connection. We term this the differential processing mechanism, as it implies that citizens may weight information about local casualties differently than nonlocal casualties when forming their policy judgments and preferences. This mechanism is suggested in Gartner, Segura, and Wilkening’s (1997, p. 670) argument that local war deaths are not only “better known” but also more “highly salient” in citizens’ decision calculus. In a similar vein, in an analysis of Gallup polling data from the Iraq War, Kriner and Shen (2010) found that respondents from high-casualty states were significantly more likely to report that they personally knew a soldier killed or wounded in Iraq than were respondents from low-casualty communities. And those who perceived a personal connection were significantly more likely to oppose the war and support withdrawal than were respondents who did not.

A third possibility, a hybrid of the differential exposure and differential processing mechanisms, emphasizes the key role played by the local media. Local media outlets do more than simply report on casualties in their coverage areas; they provide a certain type of coverage that may be particularly suited to triggering the personal, emotive connections that influence public opinion. Even a cursory comparative review of casualty coverage in national and local news outlets reveals that the two report on casualties in dramatically different ways. With some exceptions, most coverage mentioning casualties in national news outlets does so within the frame of a larger story concerning the battle or incident in which the casualties occurred and what that incident reveals about the overall strategy in the theater. Local media coverage of casualties, by contrast, is often intensely personal. It routinely features interviews with surviving family members, friends, neighbors, high school teachers, and athletic coaches. The details emphasized are not of the firefight and what the battle tells us about the larger strategy; rather, the emphasis is on personal details of the fallen soldier and the effects of his or her death on family, friends, and neighbors left behind. In short, local media coverage appears designed to
produce the emotional reaction and sense of connection with a fallen soldier that might lead readers to weight local war deaths disproportionately in their cost-benefit calculations.

As a result, residents of high-casualty communities may become more critical of a war than their peers—not because of a shared local connection with fallen soldiers, but because they receive more emotionally charged media coverage that personalizes a war’s human costs. We label this the emotional news coverage mechanism.

Experimental Design

Traditional observational methods are ill suited to testing between these three competing mechanisms. However, by manipulating the information respondents receive, a survey experiment allows us to assess the influence of both whether or not a casualty is “local” and the nature of media coverage of that casualty on respondents’ support for war.

In summer 2010, 849 subjects were recruited to take an online survey via Mechanical Turk. Although the sample is not nationally representative, it is considerably more diverse than are undergraduate samples routinely used in many international relations studies of public opinion (e.g., Gaines et al. 2007; Gartner 2008; Nyhan and Reifler 2010). Moreover, recent research by Berinsky, Huber, and Lenz (2012) demonstrates that replicating experiments on samples recruited in this way yields very similar results to previously published studies with nationally representative samples. Thus, while the nature of our sample provides some barriers to generalizability, we believe that the observed results are reflective of how a large segment of the American public would respond to the experimental stimuli. Summary statistics for the sample’s demographics are presented in the online appendix.

The survey began by asking subjects several basic demographic questions, including their gender, age, highest level of educational attainment, and the state in which they currently reside. Respondents then received a number of...
unrelated questions before being asked to read a short news story about the war in Afghanistan, which discussed the death of a hypothetical soldier, “Corporal Jeremy Smith.” Respondents were randomly assigned to one of four versions of the news story, which varied along two dimensions: whether the news story followed the form of “national” media coverage of war casualties or of “local” news coverage of casualties, and whether the fallen soldier was identified as hailing from the subject’s self-reported home state. The resulting 2x2 matrix of treatments is summarized in table 1.

Treatments 1 and 2 both presented subjects with a news story typical of national media coverage of war casualties. This “national” news story led with the information that Corporal Smith was killed in a firefight with Taliban forces outside Kandahar. It then proceeded to describe the specifics of the attack and to connect this battle with the military’s larger strategy of trying to stabilize Kandahar province in southern Afghanistan. In treatment 1, Corporal Smith was identified as hailing from the subject’s home state. In treatment 2, no home state was reported for Corporal Smith.

Treatments 3 and 4 both presented subjects with a news story typical of local media coverage of war deaths. This “local” news story also led with the specific details of Corporal Smith’s death in Afghanistan. However, the remainder of the article focused on those Corporal Smith left behind, and the article reported reflections from family and friends. In treatment 3, Corporal Smith was identified as hailing from the subject’s home state. In treatment 4, Corporal Smith was identified as hailing from a different state, assigned at random. The full text of the local and national story variants are presented in the online appendix.

After reading the story, all subjects were asked the same question (on a five-point Likert scale): “Do you support or oppose the U.S. war in Afghanistan?” For the initial analysis, we collapse “strongly oppose” and “oppose” answers to generate a percentage opposing the war in each of the four treatments.

Comparing levels of war support across the four treatment groups allows us to assess the three mechanisms posited previously. If the differential exposure mechanism alone is driving previously observed cleavages in war opinions between high- and low-casualty residents, then we would not expect to see any differences in responses across the four treatments. In our experiment, all

<table>
<thead>
<tr>
<th>Experimental Design</th>
<th>National story</th>
<th>Local story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home state</td>
<td>Treatment 1</td>
<td>Treatment 3</td>
</tr>
<tr>
<td>Non-home state</td>
<td>Treatment 2</td>
<td>Treatment 4</td>
</tr>
</tbody>
</table>

Note.—The two rows indicate whether or not the story identified the fallen soldier as hailing from the respondent’s home state. The two columns denote the type of coverage in the treatment story—whether the experimental treatment presented information in the format characteristic of national media outlet reporting or local news reporting of Afghanistan casualties.
subjects received the same basic information concerning an American soldier killed in Afghanistan.

By contrast, if home-state casualties resonate more with Americans than those from beyond the state lines, as posited by the differential processing mechanism, we would expect to see the most opposition to the war in the national and local home-state treatments (1 and 3). If the emotional and personal nature of local media coverage is more important than whether the casualty is actually from a respondent’s home state—as posited by the emotional news coverage mechanism—we would expect to see the most war opposition in the two local news treatments (3 and 4), regardless of whether or not the casualty is identified as from the respondent’s state of residence. Finally, if both of these latter mechanisms matter, then we should see the highest level of war opposition in the local home-state story treatment (3) and the lowest level of war opposition in the national non-home-state treatment (2).

Two additional features of the experiment merit notice. First, to mitigate external validity concerns, our experimental stimuli involve an ongoing war, instead of a hypothetical military venture. Second, the use of Afghanistan substantially reduces the probability that any of our treatments will have a significant effect on public opinion, as attitudes toward the war should have calcified over the preceding nine years.

Results

Table 2 presents the results. Each cell displays the percentage of subjects who said they opposed the war in Afghanistan. The high levels of war opposition in each of the four cells echo results from contemporary national surveys showing a majority of Americans opposed to the war. Nevertheless, we do see significantly different levels of opposition across the treatment conditions. Only 53 percent of subjects who read the baseline national news story in which no home state was given for the fallen soldier opposed the war. However, among subjects who read an identical story with one exception—Corporal Smith was identified as hailing from the respondent’s home state—that figure increased dramatically to 62 percent. The near 10-percent increase in war opposition is particularly striking because the difference between the two stories was so minimal. The home-state version of the “national” news story did not provide any additional detail about Corporal Smith, his family, or the broader effects of his death on others. Rather, the only difference is that it identified Corporal Smith as being from the subject’s home state. This local connection between the subject and the casualty mentioned in the story, alone, significantly increased the probability of that subject opposing the war in Afghanistan. This result is evidence for the differential processing mechanism.

The “local” news treatments also yielded somewhat surprising results. Subjects in treatment 4 read a newspaper article patterned after typical local
news coverage of Afghanistan war casualties—coverage that emphasized the
toll the soldier’s death had exacted on family, friends, and the greater community. However, this story identified Corporal Smith as hailing from a different
state than the subject. In this treatment, 50 percent of respondents answered
that they opposed the war in Afghanistan. Interestingly, this percentage is even lower than (though not statistically different from) the percentage of respondents opposing the Afghan War in the national non-home-state story treatment. In sharp contrast to expectations derived from the emotional news coverage
mechanism, the humanizing details and emotional tone of the local news story
did not heighten opposition to the conflict.

When the soldier in the local news story is identified as hailing from the subject’s home state, the percentage of respondents opposing the war soars to 62 percent. Yet, this percentage is exactly the same as that observed in the home-state national story treatment. Surprisingly, the additional personal
details and interviews with family members and friends had no additional
impact on increasing war opposition beyond that generated by identifying the soldier as from a respondent’s home state. Thus, strongly consistent with the
differential processing mechanism, the local connection triggered by learning
about a soldier from one’s home state—not the nature of the coverage of that casualty—appears to have the greatest effect on Americans’ evaluations of the war in Afghanistan.

As a robustness check, we also estimated an ordered logit model that used the dependent variable’s full five-point scale and controlled for respondents’
demographic characteristics. These results, discussed in the online appendix,
are virtually identical to those presented in table 2. Reading a story about
a casualty from one’s home state significantly increased the probability of that subject opposing the war in Afghanistan, regardless of whether the mock
news article reflected local or national casualty coverage. By contrast, the
nature of the coverage—whether it mimicked “national” or “local” coverage norms—had no impact on war support. The local ties evoked by reading
about a fallen soldier from the subject’s home state were the only experimentally manipulated factor that significantly affected a subject’s probability of opposing the war.

Table 2. Influence of Home State Connection vs. Local Media
Coverage on Opposition to the War in Afghanistan

<table>
<thead>
<tr>
<th></th>
<th>National story</th>
<th>Local story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home state</td>
<td>62%</td>
<td>62%</td>
</tr>
<tr>
<td>Non-home state</td>
<td>53%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Note.—The differences between the home-state and non-home-state treatments in both the national story and local story categories are statistically significant, $p < .05$, one-tailed test. Neither of the differences across rows is statistically significant.
Conclusion

A significant lacuna in the wartime opinion literature involves the mechanisms by which casualties—particularly local casualties—influence support for war. Employing a novel survey experiment, we show that an important component within the proverbial “black box” is the local connection that citizens feel when “one of their own” falls on a foreign battlefield. Holding all other details about the death constant, reading about a fallen soldier from one’s own state makes one significantly more likely to oppose the war effort. Although this local connection has been alluded to in previous scholarship, it has not been isolated from other plausible mechanisms. Our survey experiment demonstrates that the local connection to a casualty, not the emotional tenor characteristic of local media coverage, has the greatest influence on opinion formation.

Additional experimental and observational work on causal mechanisms is needed to further our understanding of the nuanced ways in which a soldier’s death on a distant battlefield is communicated to, and understood by, U.S. citizens. How these mechanisms operate, in turn, significantly influences the extent to which battlefield deaths translate into political pressure brought to bear on policymakers in Washington.

Supplementary Data

Supplementary data are freely available online at http://poq.oxfordjournals.org/.

References

