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Abstract

A Principal seeks to design a mechanism for an agent (privately informed re-

garding production cost with a continuous distribution) and a supervisor/intermediary

(with a noisy signal of the agent’s cost) that collude ex ante, i.e., on both par-

ticipation and reporting decisions. Collusion is ‘weak’ in the sense that neither

colluding party can commit to how they would behave if they fail to mutually

agree to a side-contract. We provide conditions under which the Principal’s

problem reduces to selecting weak collusion-proof (WCP) allocations. We char-

acterize WCP allocations, and use this to show that it is always valuable to

employ the supervisor. Delegation is optimal, but only if supplemented by an

appeal/dispute settlement mechanism mediated by the Principal, which serves

as an outside option for coalitional bargaining. Changes in bargaining power

within the coalition have no effect, while altruism of the supervisor towards

the agent makes the Principal worse off.
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1 Introduction

The potential for collusion is widely acknowledged to be a serious problem for a Prin-

cipal who relies on information provided by an expert intermediary or supervisor to

design a contract for an agent. Examples of such contexts abound: an investor that

relies on an investment bank or rating agency for information necessary to decide on

financing an entrepreneur; shareholders that rely on outside directors of a company

to supervise its CEO; an owner or CEO that relies on a product manager for informa-

tion needed to set production targets and compensation for workers or suppliers; or a

government that relies on a regulator to advise on rates for a public utility. In these

settings the supervisor is typically better informed about the agent’s productivity or

cost than the Principal, but less informed than the agent. Eliciting the supervisor’s

information becomes problematic when he is willing to misreport information in ex-

change for suitable side payments with the agent, which cannot be observed by the

Principal.

The severity of the collusion problem depends sensitively on precise institutional

details. Early literature on the mechanism design problem with collusion (e.g., Tirole

(1986), Laffont and Tirole (1993)) was based on the assumption of hard information

(where the supervisor cannot lie, and can only withhold information), and exogenous

transaction costs of collusion. Subsequent literature has considered contexts where

the collusion problem is harder to control, owing to soft information (which allows

the supervisor to report anything) and absence of exogenous transaction costs of

collusion. A large part of the literature considers only the possibility of interim

collusion, where supervisor and agent can collude over reporting decisions, but not

whether to participate in the mechanism (e.g., Laffont and Martimort (1997, 2000),

Faure-Grimaud, Laffont and Martimort (2003), Che and Kim (2006), Celik (2009)).

In the context of auctions or team production, a number of authors have studied the

consequences of ex ante collusion where agents collude over participation decisions

as well (e.g., Mookherjee and Tsumagari (2004), Dequiedt (2007), Pavlov (2008) and
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Che and Kim (2009)). How this affects the design of mechanisms in contexts of

hierarchical supervision has however not been previously studied in the literature.

Given the critical role of participation decisions in determining the magnitude of

information rents, ex ante collusion obviously has more severe consequences for what

the Principal can achieve. Its importance is undeniable in contexts where colluding

agents have pre-existing relationships and communication opportunities with one

another, before they are approached by the Principal.

This paper studies consequences of a version of ex ante collusion for design of

hierarchical supervision mechanisms. We consider a setting where an agent produces

a divisible good at a constant unit cost whose realization is known to him privately,

and the Principal and the supervisor have a prior over this cost which is continuously

distributed over some interval. The supervisor costlessly updates this prior on the

basis of a noisy signal of the agent’s cost. The signal is only partially informative:

it can take a finite number of possible realizations. The agent also observes the

realization of this signal. The supervisor and agent can enter into a side-contract

which coordinates on respective participation and cost/signal reports to the Principal,

as well as a private side payment, conditioned on a private cost report made by the

agent to the supervisor. The side contract is designed and offered by the supervisor

to the agent, though we subsequently show that our results extend to contexts where

they are designed instead by a third party that maximizes a weighted sum of their

interim payoffs. The side contract and the internal communication and transfers

within the coalition are unobserved by the Principal. We study a specific version of

this problem, referred to as weak ex ante collusion, where neither colluding party can

commit to how they will behave in the event that they fail to agree on a side-contract.5

The solution concept we employ requires that an allocation designed by the Prin-

5The literature on collusion in auctions has considered both (strong and weak) forms of ex

ante collusion, where colluding parties respectively can and cannot make such commitments. We

postpone the study of strong ex ante collusion to a future paper.
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cipal should (besides meeting interim participation constraints) leave no room for

design of a non-null side contract (and selection of a weak Perfect Bayesian Equilib-

rium of the resulting continuation game) which is Pareto improving for the colluding

parties, and generates a strict improvement for the designer of the side contract.6

Our principal results are the following. These pertain to a context where the Prin-

cipal’s benefit function is strictly concave and satisfies Inada conditions, so optimal

allocations are always interior. We mention how they are modified in the case of a

linear benefit function with a capacity constraint.

(a) Delegation to the supervisor (DS), where the Principal contracts only with the

supervisor and delegates to her the authority to contract with the agent, is

strictly dominated by not appointing any supervisor (NS).7 Hence delegation

cannot be rationalized as an optimal response of the Principal to weak ex ante

collusion. This can be contrasted to the optimality of delegation with interim

collusion, when there are two possible types of the agent and two possible signals

of the supervisor (Faure-Grimaud, Laffont and Martimort (2003)).8

6The Appendix shows that the Principal would not benefit from allowing collusion to occur on

the equilibrium path. Moreover, in the formulation of the side contracting problem there is no loss

of generality in restricting attention to side contracts that are always accepted by the colluding

parties, thereby addressing a problem highlighted by Celik and Peters (2011). It is also shown

that WCP allocations can alternatively be given a purely ‘noncooperative’ justification by imposing

restrictions on off-equilibrium-path beliefs, which generalize the traditional notion of ‘passive beliefs’

employed in previous papers (e.g., Laffont and Martimort (1997, 2000), Faure-Grimaud, Laffont and

Martimort (2003)), in a manner that addresses the Celik-Peters problem. This restriction essentially

amounts to requiring that beliefs be independent of the side contract offered, or whether or not it

is offered.
7If side contracts are designed by a third party that maximizes a weighted sum of the supervisor’s

and agent’s payoffs, the same result applies for delegation to the third party, as long as the third

party assigns a positive welfare weight to the supervisor’s payoff. When the supervisor is assigned

a zero welfare weight, DS turns out to be equivalent to NS.
8An important reason for the difference in results is that ex ante collusion makes it much harder
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(b) Centralized contracting with the supervisor and agent (CS) strictly dominates

NS, so it is valuable for the Principal to employ the supervisor and induce full

revelation of information, despite ex ante collusion.

(c) Sufficient conditions are provided for collusion to be costly for the Principal: the

support of the conditional cost distribution is independent of the supervisor’s

signal, conditional distributions satisfy suitable monotonicity and monotone

likelihood properties, and the Principal’s gross benefit function exhibits suffi-

cient curvature. However, in contexts where the Principal’s benefit function

is linear (analogous to the context of an auction), there are cases where the

second-best can be achieved (and also others where it cannot).

(d) Any allocation that is implementable with weak collusion can be implemented

by a modified form of delegation, in which the Principal communicates and

transacts with only the supervisor on the equilibrium path.9 The mechanism

leaves open the room for the agent to trigger a switch to a centralized mechanism

(the grand contract) where both agent and supervisor make independent reports

to the Principal. This may be thought of as an ‘appeals’ or ‘dispute settlement’

for the Principal to extract rents from the supervisor. In fact, it turns out that with weak ex ante

collusion in the two-type-two-signal case, the Principal never benefits from appointing a supervisor

(this result is not provided in this paper, and is available on request). As subsequently explained in

more detail, ex ante collusion effectively allows the supervisor to postpone participation decisions

until after learning the agent’s true type. Delegation is then associated with the classic problem

of ‘double marginalization of rents’ wherein both the agent and the supervisor earn information

rents. It is thereby inferior to not hiring a supervisor at all, where the rents of the supervisor can

be eliminated.
9This corresponds to a hierarchical delegation arrangement where the Principal asks the super-

visor to initially communicate and transact with the agent, and then submit a joint participation

decision and cost-cum-signal report to the Principal on behalf of the coalition. These reports de-

termine an output target and aggregate payment for the coalition made by the Principal to the

supervisor, who subsequently relays the output target and makes a corresponding out-of-pocket

payment to the agent.
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procedure mediated by the Principal, which is not activated in equilibrium but

plays a key role by determining outside options for coalition partners when

they negotiate a side-contract. The reverse pattern of delegation — where the

Principal communicates only with the agent on the equilibrium path, while

reserving the right to consult the supervisor depending on the agent’s reports

— is also capable of implementing the optimal WCP allocation.

(e) Given the outside options determined by the grand contract set by the Principal,

the allocation of bargaining power (i.e., allocation of welfare weights) within

the coalition does not affect the set of implementable allocations with weak

collusion.10 Optimal mechanisms are no different if the agent makes a take-it-

or-leave-it offer of a side contract to the supervisor, or if there is a third-party

that mediates the collusion. This is an implication of weak collusion, where

outside options are independent of bargaining power.11

(f) Appointing a supervisor exhibiting some altruism with respect to the agent, or

an increase in the degree of such altruism, makes the Principal worse off.

These results offer interesting implications for organizational design in varied set-

tings. Our theory rationalizes the widespread prevalence of supervisors, despite the

potential for collusion. Moreover, collusion is typically costly for the Principal, in-

cluding those where interim collusion can be overcome via mechanisms of the sort

constructed by Motta (2009). Our theory does not rationalize unconditional delega-

tion of authority to the supervisor; instead, delegation needs to be supplemented by

scope for agents to ‘appeal’ and trigger direct communications with the Principal.

10An analogous result for the case of interim collusion is obtained by Faure-Grimaud, Laffont and

Martimort (2003).
11In strong collusion (Quesada (2004), Dequiedt (2007), Che and Kim (2009)) where the side

contract designer can commit to playing the subsequent grand contract in suitable ways, outside

options depend on the allocation of bargaining power, which thereby affects the set of implementable

allocations.
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Such appeals do not arise in equilibrium. But the scope for such appeals indirectly

promote the agent’s bargaining power with the supervisor (by altering outside options

in coalitional bargaining), which reduces the severity of the double-marginalization-

of-rents (DMR) problem and thus ends up benefitting the Principal. Within firms, it

explains the role of worker rights to appeal the evaluations reported by their managers

to higher level managers or an ombudsman appointed for this purpose. This echoes

Williamson’s (1975) view of such dispute settlement procedures as an advantage of

hierarchies over market relationships. It is also similar to Hirschman’s (1970) view of

organizations as including exit and voice options, in contrast to market relationships

which involve only exit.

Result (e) states that with weak collusion, direct changes in bargaining power

(represented by welfare weights in coalitional bargaining) make no difference. This

has implications for the way that supervisors and agents are matched, e.g., whether

an agent should be allowed to select an auditor on a competitive market, or whether

the Principal should appoint the auditor instead. This result is however likely to

be sensitive to the collusion concept which does not allow either colluding partner

to make commitments regarding how it will report to the Principal should collusion

negotiations break down. When such commitments are possible, the notion of weak

collusion is not suitable, and should be replaced by a suitable notion of ‘strong’

collusion. We hope to explore this extension in future research.

Result (f) above implies that the Principal ought to appoint ‘outside’ self-interested

supervisors rather than ‘insiders’ likely to be altruistic towards the agent. In the con-

text of corporate governance, for instance, this is an argument in favor of appointing

‘outsiders’ rather than ‘insiders’ to a company’s Board of Directors.12 In the context

of regulation, it confirms the normal intuition in favor of preventing any direct con-

flict of interest for the supervisor (e.g., who should not have a financial stake in the

12See Harris and Raviv (2008) for a model based on incomplete contracts where this result may

not hold in some settings.

7



agent’s fortunes, nor have any social or personal connections with the agent). This

result is not entirely obvious as altruism has some benefits for the Principal: it limits

the inclination of the supervisor to extract rents from the agent that is the source of

the DMR problem.

The paper is organized as follows. Section 2 describes relation to existing lit-

erature in more detail. Section 3 introduces the model, followed by definition and

characterization of WCP allocations. The main results concerning properties of opti-

mal weak-collusion-proof mechanisms are presented in Section 4 for the polar model,

where optimal allocations are always interior and the supervisor has all the bargain-

ing power within the coalition. Section 5 then considers a number of extensions:

where (a) the Principal can implement the optimal WCP allocation by a modified

delegation arrangement; (b) alternative allocations of bargaining power within the

coalition, wherein side contracts are designed and offered by a third party maximiz-

ing a weighted sum of supervisor and agent’s payoffs; (c) the supervisor may exhibit

altruism towards the agent, and (d) the Principal’s gross benefit function is linear

(whereby optimal allocations are never interior). Finally, Section 6 concludes with a

summary and directions for future work.

2 Relation to Existing Literature

The literature on mechanism design with collusion can be classified by the context

(auctions, team production or supervision), the nature of collusion (ex ante or in-

terim, weak or strong collusion), and whether type spaces are discrete or continuous.

Auctions and team production involve multiple privately informed agents and no

supervisor. For auctions, Dequiedt (2007) considers strong ex ante collusion with

binary agent types and shows that efficient collusion is possible, implying that the

second-best cannot be implemented. In contrast, Pavlov (2008) considers a model

with continuous types where the second-best can be implemented with weak ex ante
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collusion, and Che and Kim (2009) find the same result with either weak or strong

ex ante collusion with continuous types.

Team production with binary types is studied by Laffont and Martimort (1997),

who show the second best can be implemented with weak interim collusion; this

analysis is extended to a public goods context in Laffont and Martimort (2000) where

the role of correlation of types is explored. Che and Kim (2006) show how second-

best allocations can be implemented in a team production context with continuous

types in the presence of weak interim collusion. Quesada (2004) on the other hand

shows strong ex ante collusion is costly in a team production model with binary

types. Mookherjee and Tsumagari (2004) show delegation to one of the agents is

worse than centralized contracting in the presence of weak ex ante collusion. The

logic of this result is similar to that underlying our result that delegation to the

supervisor is worse than not appointing a supervisor. Their paper also considers

delegation to a supervisor who is perfectly informed about the costs of each agent, and

show that its value relative to centralized contracting depends on complementarity

or substitutability between inputs supplied by different agents. The current paper

differs insofar as there is only one agent, and there is asymmetric information within

the supervisor-agent coalition owing to the supervisor receiving a noisy signal of the

agent’s cost. This friction in coalitional bargaining plays a key role in the current

paper.

In the context of collusion between a supervisor and agent, existing models (with

the exception of Mookherjee-Tsumagari (2004)) have explored interim collusion only.

Faure-Grimaud, Laffont and Martimort (2003) consider a model with binary types

and signals (with full support for conditional distributions), a risk-averse supervisor

where collusion is costly, where (unconditional) delegation turns out to be an optimal

response to collusion. Celik (2009) considers a model with three types and two

signals (where the support of conditional distributions depends on the signal), and

risk neutral supervisor and agent, in which unconditional delegation is dominated by
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no supervision, which in turn is dominated strictly by centralized contracting with

supervision. Celik’s results are similar to ours, but he considers interim rather than

ex ante collusion. Our results can be viewed as finding that the results he derived in

the context of interim collusion with a special information structure happen to obtain

quite generally with ex ante collusion and continuous types. The need to examine

ex ante rather than interim collusion is highlighted by Motta (2009) who shows that

collusion can be rendered costless in models with discrete type and signal spaces and

interim collusion, by using mechanisms where the Principal offers a menu of contracts

to the agent which the latter must respond to before colluding with the supervisor.

3 Model

3.1 Environment

We consider an organization composed of a principal (P), an agent (A) and a su-

pervisor (S). P can hire A who delivers an output q ≥ 0 at a personal cost of θq.

P’s return from q is V (q) where V (q) is twice continuously differentiable, increasing

and strictly concave satisfying limq→0 V
′
(q) = +∞, limq→+∞ V

′
(q) = 0 and V (0) = 0.

These conditions imply that q∗(θ) ≡ argq maxV (q)−θq is continuously differentiable,

positive on θ ∈ [0,∞) and strictly decreasing. In Section 5.4 we shall describe how

the results are modified when V is linear and subject to a capacity constraint.

We use θ to denote a random variable whose realization is privately observed by

A. It is common knowledge that everybody shares a common prior F (θ) over θ on

the interval Θ ≡ [θ, θ̄] ⊂ <+. F has a density function f(θ) which is continuously

differentiable and everywhere positive on its support. The ‘virtual cost’ H(θ) ≡

θ + F (θ)
f(θ)

is assumed to be strictly increasing in θ.

The supervisor S plays no role in production, and costlessly acquires an informa-

tive signal η about A’s cost θ. The set of possible realizations of η is Π, a finite set

with #Π ≥ 2. It is common knowledge that the realization of η is observed by both
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S and A. a(η | θ) ∈ [0, 1] denotes the likelihood function of η conditional on θ, which

is common knowledge among all agents. a(η | θ) is continuously differentiable and

positive on Θ(η), where Θ(η) denotes the set of values of θ for which signal η can arise

with positive probability. We assume Θ(η) is an interval, for every η ∈ Π. Define

θ(η) ≡ inf Θ(η) and θ̄(η) ≡ sup Θ(η). We assume that for any η ∈ Π, a(η | θ) is not

a constant function on Θ, and there are some portions of θ with positive measure

such that a(η | θ) 6= a(η
′ | θ) for any η, η

′ ∈ Π. In this sense each possible signal

realization conveys information about the agent’s cost. The information conveyed is

partial, since Π is finite.

The conditional density function and the conditional distribution function are

respectively denoted by f(θ | η) ≡ f(θ)a(η | θ)/p(η) (where p(η) ≡
∫ θ̄(η)

θ(η)
f(θ̃)a(η |

θ̃)dθ̃) and F (θ | η) ≡
∫ θ
θ(η)

f(θ̃ | η)dθ̃. The ‘virtual’ cost conditional on the signal η

is h(θ | η) ≡ θ + F (θ|η)
f(θ|η)

. We do not impose any monotonicity assumption for h(θ | η).

Let ĥ(θ | η) be constructed from h(θ | η) and F (θ | η) by the ironing procedure

introduced by Myerson (1981).

All players are risk neutral. P’s objective is to maximize the expected value of

V (q), less expected payment to A and S, represented by XA and XS respectively. S’s

objective is to maximize expected transfers XS − t where t is a transfer from S to

A. A seeks to maximize expected transfers received, less expected production costs,

XA + t− θq. Both A and S have outside options equal to 0.

In this environment, a feasible (deterministic) allocation is represented by (uA, uS, q) =

{(uA(θ, η), uS(θ, η), q(θ, η)) ∈ <2 × <+ | (θ, η) ∈ K} where K ≡ {(θ, η) | η ∈ Π, θ ∈

Θ(η)}, uS, uA denotes S and A’s payoff respectively, and q represents the production

level. P’s payoff equals uP = V (q)− uS − uA − θq. These payoffs relate to transfers

and productions as follows: uA ≡ XA + t− θq;uS ≡ XS − t;uP ≡ V (q)−XS −XA.
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3.2 Mechanism in the Absence of Collusion

Consider as a benchmark the case where A and S do not collude, and P designs

contracts for both. We call this organization NC (no collusion). Owing to risk-

neutrality of all parties and concavity of V , P can restrict attention to a deterministic

grand contract:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA (resp. MS) is a message set for A (resp. S). This mechanism assigns

a deterministic allocation, i.e. transfers XS, XA and output q, for any message

(mA,mS) ∈ MA ×MS. MA includes A’s exit option eA ∈ MA, with the property

that mA = eA implies XA = q = 0 for any mS ∈ MS. Similarly MS includes S’s exit

option eS ∈ MS, where mS = eS implies XS = 0 for any mA ∈ MA. The set of all

possible deterministic grand contracts is denoted by GC.

A grand contract induces a Bayesian game of incomplete information between A

and S. Let p(η) denote a set of beliefs held by S regarding the distribution of θ, in

states where signal η has been realized. The posterior beliefs of S based on Bayesian

updating of prior beliefs on the basis of observation of η alone are denoted by p∅(η).

Definition 1 A Bayesian equilibrium of the game played by A and S in state η

relative to beliefs p(η) is a set of functions c ≡ (mA(θ, η);mS(η)) (where mA maps K

into MA, while mS maps Π into MS) such that the following conditions are satisfied

for all θ ∈ [θ(η), θ̄(η)]:

mA(θ, η) ∈ arg maxmA∈MA
[XA(mA,mS(η))− θq(mA,mS(η))] (1)

mS(η) ∈ arg maxmS∈MS
Ep(η)[XS(mA(θ, η),mS)] (2)

where Ep(η) denotes expectation taken with respect to beliefs p(η). C(p(η); η) denotes

the set of Bayesian equilibria corresponding to the beliefs p(η) in state η.

The timing of events in NC is as follows.
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(NC1) A observes θ and η, S observes η.

(NC2) P offers the grand contract GC ∈ GC, and for any η ∈ Π recommends

a Bayesian equilibrium c(p∅(η); η) relative to posterior beliefs p∅(η) based on

Bayesian updating by S on the basis of observation of η alone.

(NC3) A and S play the recommended Bayesian equilibrium.

The order of the timing between (NC1) and (NC2) can be interchanged without

altering any of the results. If P offers a null contract to S (defined by the property that

MS is the empty set and XS = 0), this is an organization without a supervisor, which

we will denote by NS. Such an organization obviously leaves no scope for collusion

between A and S.

It is well-known that in NC the Principal can restrict attention to direct reve-

lation games, where MA and MS reduce to reports of private information, besides

participation decisions. Define the second-best allocation (uSBA , uSBS , qSB) as follows:

uSBA (θ, η) =

∫ θ̄(η)

θ

qSB(y, η)dy,

E[uSBS (θ, η) | η] = 0

and

qSB(θ, η) ≡ q∗(ĥ(θ | η)) = arg max
q

[V (q)− ĥ(θ | η)q]

where ĥ(θ | η) is constructed from h(θ | η) and F (θ | η) by the ironing procedure. It

is well-known that this is the optimal allocation in NC, where P observes η directly.

It turns out that in NC it is possible for the second-best to be implemented as a

unique Bayesian equilibrium.13

3.3 Mechanism with Weak Ex Ante Collusion

Now we describe the game played with weak ex ante collusion. The ‘ex ante’ feature

refers to the assumption that collusion takes the form of communication and side-

13A proof is available on request.
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contracting between A and S, which takes place before they respond to P’s offer of

the grand contract (including participation decisions). This is distinguished from

(interim) collusion where they do not collude on their participation decisions, but

collude on the reports they send to P and enter into side payments in the event of

joint participation. The ‘weak’ adjective additionally refers to the lack of commitment

power of either colluding partner with respect to how they would behave (i.e., play

the grand contract) in the event that they fail to agree on the side contract. In this

event they would play the grand contract noncooperatively (relative to beliefs formed

subsequent to the breakdown of the side contract).

The game with weak ex ante collusion is different from the game without collusion

following stage NC2. At that point, A and S can enter into a side-contract in which A

sends a message to S following which they jointly decide on participation, reporting

and side-payments. The side-contract is unobserved by P. As in existing literature,

we assume the side-contract is costlessly enforceable. Moreover we assume S has

all the bargaining power vis-a-vis A: S can make a take-it-or-leave-it offer of a side-

contract. This assumption turns out to be inessential: Section 5.2 explains how the

same results obtain with side contracts offered by an uninformed third party that

assigns arbitrary welfare weights to the supervisor and agent. After S offers the side

contract, A retains the option of rejecting it; given that A’s true cost is not known

to S, this still enables A to earn some rents. This information friction within the

coalition plays a key role in our analysis.

The game replaces (NC3) above (while (NC1) and (NC2) are unchanged) by the

following three-stage subgame (conditional on any η ∈ Π):

(i) S offers a side-contract SC which determines for any θ̃ ∈ Θ(η) to be privately

reported by A to S, a probability distribution over joint messages (mA,mS) ∈

MA×MS, and a side payment from S to A.14 Formally, it is a pair of functions

14The option of randomizing over possible messages is useful for technical reasons. Owing to

quasilinearity of payoffs, there is no need to randomize over side transfers.
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{m̃(θ̃, η), t(θ̃, η)} where m̃(θ, η) : Θ(η) × {η} −→ ∆(MA × MS), the set of

probability measures over MA × MS, and t : Θ(η) × {η} −→ <. The case

where S does not offer a side contract is represented by a null side-contract

(NSC) with zero side payments (t(θ, η) ≡ 0), and (deterministic) messages

(mA(θ, η);mS(η)) the same as those in the Bayesian equilibrium of the grand

contract recommended by the Principal. We abuse terminology slightly and

refer to the situation where no side contract is offered as one where NSC is

offered.

(ii) A either accepts or rejects the SC offered, and the game continues as follows.

(iii) If A accepts the offered SC, he sends a private report θ
′ ∈ Θ(η) to S, following

which the SC is executed. If A rejects SC, S updates his beliefs to p(SC; η)

which is restricted to be p∅(η) if NSC was offered in stage (i) above.15 A and

S then play a Bayesian equilibrium c of the grand contract relative to beliefs

p(SC; η).

We now introduce the notion of weak collusion proofness. A justification for this

solution concept is provided in Section 3.5 below.

Informally, an allocation is weakly collusion proof if the supervisor cannot benefit

from offering a non-null side contract when the Principal selects a grand contract

based on the associated direct revelation mechanism (i.e., when agent and supervisor

make consistent reports about the state, the allocation corresponding to that state

is chosen). This requires the null side contract to be the optimal side contract for S,

when the outside option of A corresponds to his payoff resulting from the allocation.

Before proceeding to the formal definition, note that a deterministic allocation

can be represented by payoff functions (uA(θ, η), uS(θ, η)) of the true state (θ, η)

combined with the output function q(θ, η), as these determine the Principal’s pay-

15This ensures that it is immaterial whether or not NSC was accepted or rejected, since in either

case they play the grand contract non-cooperatively with prior beliefs.
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off function uP (θ, η) ≡ V (q(θ, η))− uS(θ, η)− uA(θ, η)− θq(θ, η), and the aggregate

net transfers of S (equals uS(θ, η)) and A (equals uA(θ, η) + θq(θ, η)). For techni-

cal convenience we consider randomized allocations, though it will turn out they

will never actually need to be used on the equilibrium path. In a randomized al-

location, (uA(θ, η), uS(θ, η), q(θ, η)) denotes the expected payoffs of A, S and the

expected output, conditional on the state (θ, η). For (conditional expected) alloca-

tion (uA(θ, η), uS(θ, η), q(θ, η)), define functions (X̂(m), q̂(m)) on domain m ∈ M̂ ≡

K ∪ {e} (where K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π}) as follows:

(X̂(θ, η), q̂(θ, η)) = (uA(θ, η) + θq(θ, η) + uS(θ, η), q(θ, η))

(X̂(e), q̂(e)) = (0, 0)

(X̂(θ, η), q̂(θ, η)) denote corresponding expected values of the sum of payments XS +

XA made by the principal, and the output delivered, in state (θ, η). Also, let ∆(M̂)

denote the set of the probability measures on M̂ , and use m̃ ∈ ∆(M̂) to denote a

randomized message submitted by the coalition to P. With a slight abuse of notation,

we shall denote the corresponding conditional expected allocation by (X̂(m̃), q̂(m̃)),

which is defined on ∆(M̂). m̃ = (θ, η) or e will be used to denote the probability

measure concentrated at (θ, η) or e respectively.

S’s choice of an optimal (randomized) side-contract can be formally posed as

follows. Given a grand contract and a noncooperative equilibrium recommended by

P, let the corresponding conditional expected allocation as defined above be denoted

by (uA(θ, η), uS(θ, η), q(θ, η)) and (X̂(m̃), q̂(m̃)). For any η ∈ Π, the associated side-

contracting problem P (η) is to select (m̃(θ | η), ũA(θ, η)) to maximize S’s expected

payoff

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))
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for any θ, θ
′ ∈ Θ(η), and

ũA(θ, η) ≥ uA(θ, η)

for all θ ∈ Θ(η). The first constraint states truthful revelation of the agent’s true

cost to S is consistent with the agent’s incentives, and the second constraint requires

A to attain a payoff at least as large as what he would expect to attain by playing

the grand contract noncooperatively.

Let the maximum payoff of S in the side contracting problem in state η be denoted

by W (η).

Definition 2 The (conditional expected) allocation (uA(θ, η), uS(θ, η), q(θ, η)) : K →

<2 × <+ is weakly collusion proof (WCP ) if for every η ∈ Π: (m̃(θ | η), ũA(θ, η)) =

((θ, η), uA(θ, η)) solves problem P (η) in which S achieves a maximum payoff of W (η) =

E[uS(θ, η) | η].

3.4 Characterization of WCP Allocations

We now characterize WCP allocations. This requires us to define a family of ‘mod-

ified’ virtual cost functions, representing the effective cost incurred by the coalition

in delivering a unit of output to P, following selection of an optimal side-contract.

Definition 3 For any η ∈ Π, Y (η) is a collection of coalitional shadow cost

(CSC) functions π(· | η) : Θ(η) → < which satisfy the following property. For

any function in this collection, there exists a real-valued function Λ(θ|η) which is

non-decreasing in θ ∈ Θ(η) with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1, such that

π(θ|η) ≡ θ +
F (θ | η)− Λ(θ | η)

f(θ | η)
(3)

Equation (3) modifies the usual expression for virtual cost h(θ|η) ≡ θ + F (θ|η)
f(θ|η)

by

subtracting from it the non-negative term Λ(θ|η)
f(θ|η)

. Intuitively, with collusion between S

and A, it is as if P procures the good from a single entity, consisting of the coalition of
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S and A. If A’s outside option payoff in the side-contracting problem were 0 instead

of uA(θ, η), S would incur a cost of h(θ|η) in arranging for delivery of one unit of

the good. P’s problem of procuring the good would then reduce to contracting with

a single agent with an unknown cost of h(θ|η). This is worse for P compared with

the situation where there is no supervisor at all — in the latter context, P would be

contracting with A alone who incurs a cost of θ rather than h(θ|η). This is the well-

known problem of double marginalization of rents (DMR), arising due to exercise of

monopsony power by S in side-contracting with A. As elaborated later, this is why

delegating the right to contract (with A) to S cannot result in any improvement for

P compared to the situation where no S is employed.

To limit DMR, P contracts with both S and A, and provides A with an outside

option (of uA(θ, η)) that effectively raises his bargaining power vis-a-vis S while ne-

gotiating the side contract. Meeting a larger outside option for A effectively induces

S to deliver a higher output to P: this is what paying a higher rent to A necessitates.

The extent of DMR is then curbed: the shadow cost for the coalition in delivering a

unit of output to P is lowered. This lowering of the virtual cost is represented by the

subtraction of the term Λ(θ|η)
f(θ|η)

from what it would have been (h(θ|η)) under delegated

contracting. The derivative of Λ(θ | η) represents the Kuhn-Tucker multiplier on A’s

(type θ) participation constraint in S’s problem of selecting an optimal side contract.

Since the multiplier is non-negative, the Λ(θ | η) function is non-decreasing.

However, π(θ|η) is not the correct expression for the shadow cost of output for

the coalition, if it is non-monotone in θ. In that case, it has to be replaced by its

‘ironed’ version (Myerson (1981)), using the distribution function F (θ|η). Let the

corresponding ironed version of π(θ|η) be denoted by z(θ|η): we call this a coalitional

virtual cost function.

Definition 4 For any η ∈ Π, the set of coalitional virtual cost (CVC) functions

is the set

Z(η) ≡ {z(· | η) is the ironed version of some π(· | η) ∈ Y (η)}.
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of functions obtained by applying the ironing procedure to the set Y (η) of CSC func-

tions.16 Denote by Θ(π(· | η), η) the corresponding pooling region of θ where π(·|η) is

flattened by the ironing procedure.

As the next result shows, every WCP allocation satisfies coalitional participa-

tion and incentive constraints corresponding to some coalitional virtual cost function

z. Combined with an individual incentive compatibility constraint for A, and a

constraint that output must be constant over regions where the ironing procedure

flattens the underlying CSC function, these coalitional constraints characterize WCP

allocations.

Proposition 1 The allocation (uA, uS, q) is WCP if and only if the following condi-

tions hold for every η. There exists a CVC function z(·|η) ∈ Z(η) such that

(i) For every (θ, η), (θ
′
, η
′
) ∈ K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π},

X(θ, η)− z(θ | η)q(θ, η) ≥ X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X(θ, η)− z(θ | η)q(θ, η) ≥ 0

where

X(θ, η) ≡ uA(θ, η) + uS(θ, η) + θq(θ, η)

(ii) For any θ, θ
′ ∈ Θ(η),

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

(iii) q(θ, η) is constant on any interval of θ which is a subset of the corresponding

pooling region of the CVC function z.

Condition (i) represents the coalitional incentive and participation constraints

corresponding to contracting with a single agent with a unit cost of z. Condition (ii)

is the individual incentive compatibility constraint for A. Condition (iii) states that

the output must be constant over every interval in the pooling region.

16The ironing procedure ensures these functions are continuous and non-decreasing.
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3.5 Justification for WCP Allocations

In this section, we provide a justification for focusing attention on WCP allocations.

The notion of Weak Perfect Bayesian Equilibrium (WPBE) of the game with

collusion requires beliefs and continuation strategies to be specified corresponding to

all information sets of the game.17 As there are typically multiple WPBEs of the

continuation game following any given GC offer, we need to specify how these might

be selected.

If the mechanism design problem is stated as selection of an allocation by the

Principal subject to the constraint that it can be implemented as the outcome of

some WPBE following a choice of a grand contract, it is presumed that the Principal

is free to select continuation beliefs and strategies for noncooperative play of the

grand contract following off-equilibrium path rejections of offered side contracts by

S to A. It can be shown that in such a setting the problem of collusion can be

completely overcome by the Principal, with appropriate selection of off-equilibrium-

path continuations. This is formally shown in the working paper version of this paper

(Mookherjee et al. (2014)). A heuristic description of how the second-best payoff can

be achieved by the Principal as a WPBE is as follows. P selects a grand contract and

recommends a noncooperative equilibrium of this contract in which (i) conditional

on participation by S, noncooperative play results in the second-best allocation; (ii)

S is paid nothing; and (iii) if S does not participate, P offers A a ‘gilded’ contract

providing the latter a high payoff in all states. On the equilibrium path S always

offers a null side contract. If A rejects any offer of a non-null side-contract, they

mutually believe that subsequently S will not participate in the grand contract, and

A will receive the gilded contract. This forms a WPBE as rejection of any non-null

side contract is sequentially rational for A given A’s belief that S will exit following

any rejection. And exit is sequentially rational for S given his belief that A will reject

the side contract and they will subsequently play the grand contract noncooperatively

17For definition of WPBE, see Mas-Colell, Whinston and Green (1995, p.285).
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where S will be paid nothing.

Collusion is overcome by the Principal here by exploiting a lack of coordination

among A and S over continuation beliefs and play of the side contracting game. This

denies the essence of collusive activity, which involves coordination by the colluding

parties ‘behind the Principal’s back’. It is therefore reasonable to insist that S and

A can collectively coordinate on the choice of side-contracting equilibria that are

Pareto-undominated (for the coalition). Specifically, this rules out WPBE outcomes

for which (following some realization of η) there exists some side-contract offer and a

PBE of the subsequent continuation game played by S and A which generates a higher

expected payoff for S, without lowering the expected payoff of any type of A. Appendix

A provides an alternative noncooperative justification for WCP allocations in terms

of a restriction on off-equilibrium-path beliefs which generalizes the assumption of

‘passive’ beliefs which has been employed by many previous authors.

Definition 5 Following the selection of a grand contract by P, a WPBE(wc) is a

Weak Perfect Bayesian Equilibrium (WPBE) of the subsequent game with the fol-

lowing property. There does not exist some signal realization η, and some deviating

side-contract offer SC(η) for which there is a Perfect Bayesian Equilibrium (PBE)

of the subsequent continuation game in which (conditional on η) S’s payoff is strictly

higher and A’s payoff not lower for any type.

Definition 6 An allocation (uA, uS, q) is implementable in the weak collusion game

if there exists a grand contract and a WPBE(wc) of the subsequent game which results

in this allocation.

We now show that the WPBE(wc) refinement corresponds to WCP allocations

that satisfy interim participation constraints. Note that the WPBE(wc) notion allows

for collusion to occur (i.e., a non-null side contract to be offered and accepted by

some types of A), and also for side-contract offers to be rejected by some types of A.

Hence the WCP notion does not rest on any arbitrary restrictions on side contract
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outcomes, e.g., which rule out the possibility of equilibrium-path rejections by A

of the side contract offered by S. The problem discussed by Celik and Peters (2011)

therefore does not apply to this setting. Moreover, the restriction to WCP allocations

which correspond to equilibrium outcomes in which collusion does not occur on the

equilibrium path, is also without loss of generality.

Proposition 2 An allocation (uA, uS, q) is implementable in the weak collusion game,

if and only if it is a WCP allocation satisfying interim participation constraints

E[uS(θ, η)|η] ≥ 0 for all η (4)

uA(θ, η) ≥ 0 for all (θ, η) (5)

4 Main Results

We are now in a position to present our main results. In this section we will compare

the following organizational alternatives:

(a) No Supervisor (NS): where P does not employ S and contracts with A alone

on the basis of his own prior information F over A’s cost θ. This is a special

case of the preceding model where XS ≡ 0,MS ≡ ∅ in the grand contract. It

is well known that P attains an expected profit of E[V (qNS(θ))−H(θ)qNS(θ)]

where qNS(θ) is defined by the property V ′(qNS(θ)) = H(θ). We shall denote

this profit by ΠNS.

(b) Delegated Supervision (DS): Here P contracts with S alone, and delegates to S

the authority to contract with A and make production decisions. It is a special

case of the preceding model where XA ≡ 0,MA ≡ ∅ in the grand contract. S

enters into a side-contract with A, and then responds to P’s contract offer with

a message regarding the joint realization of θ and η, or some summary of the

two variables. Here A has no outside option of rejecting the side contract and
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participating in the grand contract, which increases the bargaining power of S

with A. We shall denote the resulting profit of P by ΠDS.

(c) Centralized Supervision (CS): This is the unrestricted version of the model con-

sidered so far, where P offers a grand contract involving both S and A. A now

has an outside option of rejecting the side contract offered by S and partici-

pating in the grand contract noncooperatively. We shall denote the resulting

profit of P by ΠCS.

We will also assess these relative to the benchmark of no collusion, which is

associated with the second-best allocation defined previously. The associated profit

will be denoted ΠSB. Since S has access to information about A’s cost that is valuable

in contracting with A, it is obvious that ΠNS < ΠSB, i.e., hiring S is valuable if there

is no collusion. We now compare the three alternatives above against one another,

and will subsequently assess them relative to the second-best.

Proposition 3 ΠDS < ΠNS: delegated supervision is worse for the Principal com-

pared to hiring no supervisor.

The result of Faure-Grimaud, Laffont and Martimort (2003) therefore does not ex-

tend to the setting of our model with ex ante collusion, risk neutrality and continuous

types. The intuitive reason is simple. Ex ante collusion implies that in contracting

with P, the supervisor is subject to an ex post participation constraint: he can accept

or reject the contract offered by P after he has learnt the realization of A’s cost θ.

This results in double marginalization of rents (DMR): A earns rents owing to his

private information regarding θ with respect to S, and then S earns rents owing to

his private information regarding his costs of procuring from A (which depend on

the realizations of θ and η). In DS, the Principal effectively contracts with a single

agent whose unit cost equals ĥ(θ|η) which is the ironed version of h(θ|η) ≡ θ+ F (θ|η)
f(θ|η)

,

who can decide whether to participate after observing the realization of his unit cost.
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Since h(θ|η) > θ almost everywhere (which implies the same is true for its ironed

version ĥ(θ|η)), delegated supervision amounts to contracting with a single supplier

whose cost is uniformly higher, compared to contracting with the agent alone in the

absence of the supervisor. While it is relatively easy to show that DS cannot domi-

nate NS, the proof establishes the stronger result that DS is strictly dominated by

NS.18

Proposition 4 ΠNS < ΠCS: the Principal is strictly better off hiring S and con-

tracting directly with both S and A, compared to hiring no supervisor.

This states that P always benefits from hiring S despite the presence of ex ante

collusion between S and A. Combining with the previous result, it follows that S

is valuable only provided P does not delegate authority to S: it is essential that P

contracts simultaneously with A as well, thus providing A an outside option which

raises A’s bargaining power within the coalition. This limits the DMR problem by

countervailing S’s tendency to behave monopsonistically with respect to A. By raising

A’s outside option, the coalitional virtual cost z is reduced, allowing an increase in

output delivered, and raising P’s expected payoff.

This helps explain how contracting directly with both S and A helps reduce the

DMR problem inherent in DS which rendered it inferior to NS. However, it does not

help explain why it manages to do so sufficiently that CS ends up being superior

to NS. The explanation for this is more subtle, arising from P’s ability to profitably

utilize S’s superior information concerning the agent’s cost with a simple mechanism.

This arises ultimately from the discrepancy between relative likelihoods of different

cost states by P and S, which they use to weight different states in computing their

respective payoffs.

18The proof of strict domination is also straightforward in the case that h(θ|η) is continuous and

nondecreasing in θ over a common support [θ, θ̄] for every η. In that case an argument based on

Proposition 1 in Mookherjee and Tsumagari (2004) can be applied. In the general case there are a

number of additional technical complications, but the result still goes through.
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It may help to outline the WCP allocation that can be used by P. Starting with the

optimal allocation in NS (which corresponds to the special case of CS where Λ(θ | η)

is chosen equal to F (θ | η), ensuring that the CSC and CVC functions both reduce

to the identity function (π(θ|η) = z(θ|η) = θ)), P can construct a small variation in

the CVC function z in some state η∗, raising it above θ for some interval ΘH and

lowering it for some other interval ΘL, both of which have positive probability given

η∗. The corresponding quantity procured q(θ, η∗) is set equal to qNS(z(θ|η∗)), the

quantity procured in NS when the agent reported a cost of z(θ|η∗). This corresponds

to raising the quantity procured from the coalition over ΘL and lowering it over

ΘH . Payments to the coalition are set analogously at XNS(z(θ|η∗)), what the agent

would have been paid in NS following such a cost report.19 The agent is offered

the associated rent: uA(θ, η∗) =
∫ θ̄
θ
qNS(z(y|η∗))dy. By construction, this allocation

satisfies the agent’s incentive and participation constraints, as well as the coalitional

incentive constraint.20

Proposition 1 ensures such an allocation is WCP, provided S’s interim partici-

pation constraint is satisfied. The variation over ΘL lowers rents earned by S, and

over ΘH raises them. Since S does not earn any rents to start with (i.e, in NS), it is

necessary to construct the variation such that S’s expected rents in state η∗ do not

go down. The rate at which S’s rents vary locally in state θ with the quantity pro-

cured equals F (θ|η∗)
f(θ|η∗) .21 Intuitively this is the saving that can be pocketed by S when

procuring one less unit of the good from A. Maintaining S’s expected rent therefore

19Specifically, XNS(z(θ|η)) = z(θ|η)qNS(z(θ|η)) +
∫ θ̄
z(θ|η)

qNS(y)dy.
20This requires checking that there exists a CSC function π(θ|η) corresponding to some function

Λ(· | η) on [θ(η), θ̄(η)] satisfying the requirements in the definition of a CSC function, such that

z(θ | η) is the ironed version of π(θ | η). This is true, since we can select Λ(θ | η) = (θ − z(θ |

η))f(θ | η) + F (θ | η), which is strictly increasing over ΘL and ΘH for a sufficiently small variation

of z from the identity function. Then Λ(· | η) is a function which satisfies the required properties

and generates π(θ|η) = z(θ | η), since z(θ | η) is a non-decreasing function.
21S’s interim rent in state η equals the expected value conditional on η of XNS(z(θ|η)) −

uA(z(θ|η))− θqNS(z(θ|η)), i.e., equals E[{z(θ|η)− h(θ|η)}qNS(z(θ|η))−
∫ θ̄
z(θ|η)

qNS(z)dz|η].
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implies a marginal rate of substitution between output variations over ΘL and ΘH

that equals the ratio of the (average) conditional inverse hazard rates F (θ|η∗)
f(θ|η∗) over

these two intervals respectively.

On the other hand, P’s benefit from a small expansion in output delivered in state

θ equals V ′(qNS(θ)) − θ, where qNS(θ) denotes the optimal allocation in NS.22 This

allocation satisfies V ′(qNS(θ)) = H(θ) ≡ θ + F (θ)
f(θ)

, the virtual cost of procurement

without conditioning on information regarding η. Hence P’s marginal benefit from

output expansion in state θ equals the unconditional inverse hazard rate F (θ)
f(θ)

. This

implies that P’s marginal rate of substitution between output variations over ΘL and

ΘH equals the ratio of the (average) unconditional inverse hazard rates F (θ)
f(θ)

over

these two intervals. The informativeness of S’s signals implies that P’s marginal rate

of substitution differs from S’s in some state η∗ over some pair of intervals ΘL,ΘH .

Hence there exist variations of the type described above which raise P’s expected

payoff, while preserving the expected payoff of S.

One may wonder whether the gains achieved by the Principal from hiring S are

marginal rather than substantial. Section 5.4 shows that the second-best payoff is

achievable for some cases in the context of variants of the model where the Principal’s

benefit function is linear. This is consistent with results of Pavlov (2008) and Che

and Kim (2009) in the case of auctions (where the indivisibility of the object being

auctioned renders the context analogous to a linear benefit function). In the context

of nonlinear benefit functions, the following result shows that the second-best is not

achievable provided the benefit function exhibits sufficient curvature (besides some

standard restrictions on the information structure).

Proposition 5 ΠCS < ΠSB: P cannot attain the second-best payoff in CS if the

following conditions hold:

(i) The support of θ does not vary with the signal: Θ(η) = Θ for any η ∈ Π;

22This follows from the fact that ∂XNS(z)
∂z = zqNS

′
(z), implying that the marginal increase in

payment evaluated at z = θ equals θ times the marginal output change.
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(ii) there exists η∗ ∈ Π such that f(θ|η∗) and f(θ|η∗)
f(θ|η)

are both strictly decreasing in θ

for any η 6= η∗; and

(iii) V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
for any q ≥ 0.

Condition (i) states that the support of θ does not vary with η, while (ii) is a form

of a monotone likelihood property: there is a signal realization η∗ which is ‘better’

news about θ than any other realization, in the sense of shifting weight in favor of

low realizations of θ. It additionally requires that the conditional density f(θ|η∗) is

strictly decreasing in θ, i.e., higher realizations of θ are less likely than low realizations

when η = η∗. (ii) is satisfied for instance when θ has a uniform prior and there

are just two possible signal values satisfying the standard monotone likelihood ratio

property. Condition (iii) is satisfied if V is exponential (V = 1 − exp(−rq), r > 0).

It corresponds to the assumption of ‘non-increasing absolute risk aversion’ of the

Principal’s benefit function.

The proof develops necessary conditions for implementation of the second best

given the distributional properties (i) and (ii). If the outputs are second-best, they

must be a monotone decreasing function of the (ironed) virtual cost ĥ(θ | η) in the

second-best setting. If they also satisfy the coalitional incentive constraints, they

must be monotone in CVC z(θ | η). These conditions imply the existence of a

monotone transformation from ĥ to z, and enable S’s ex post rent to be expressed

as a function of ĥ alone. Condition (iii) is used to show that this rent function is

strictly convex which in turn is used to show that the expected rents of S must be

strictly higher in state η∗ than any other state.
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5 Extensions

5.1 Implementation via Modified Delegation

We now show that the optimal allocation can be implemented by a modified form

of delegation, where P communicates and transacts only with S on the equilibrium

path. In this arrangement, S is ‘normally’ expected to contract on behalf of the

coalition {S,A} with P, sending a joint participation decision and report of the state

(θ, η) to P after having entered into a side contract with A. However A has the option

of circumventing this ‘normal’ procedure and asking P to activate a grand contract

in which A and S will send independent reports and participation decisions to P.

The presence of this option ensures that A has sufficient bargaining power within the

coalition; it does not have to be ‘actually’ used, i.e., on the equilibrium path. This

mechanism can implement any implementable allocation as a WPBE(wc) outcome.

The argument is as follows (we omit a formal proof). Take any WCP alloca-

tion (uS(θ, η), uA(θ, η), q(θ, η)) defined on K which satisfies interim participation con-

straints, and let aggregate payments to the coalition be X(θ, η) = uA(θ, η)+uS(θ, η)+

θq(θ, η). Let the associated grand contract be denoted as follows. The message spaces

are M̃S, M̃A, where M̃S = Π∪{eS} and M̃A = K ∪{eA}. Both S and A report η, and

A additionally reports θ. P cross-checks the two η reports, and conditional on these

agreeing with one another, transfers are set in the obvious way corresponding to the

allocation (uS(θ, η), uA(θ, η), q(θ, η)), e.g., when neither party exits, both report η

and A reports θ, X̃S(θ, η) = uS(θ, η), X̃A(θ, η) = uA(θ, η) + θq(θ, η), q̃(θ, η) = q(θ, η),

otherwise these are all zero.

This ‘original’ grand contract can be augmented as follows. A is offered a message

space MA = M̃A ∪ {∅}, while S is offered MS = M̃S ∪K ∪ {e}. The interpretation is

that if mA = ∅, A decides not to communicate directly with P. And if mS ∈ K ∪{e},

S decides to submit a joint report (θ, η) (or else communicates a joint shutdown

decision e) to P on behalf of the coalition. The choice of mA = ∅,mS ∈ K ∪ {e} will
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correspond to the ‘normal’ delegation mode.

When the normal delegation mode is in operation, i.e., mA = ∅,mS ∈ K ∪ {e}, P

will communicate and transact with S alone. Hence transfers and output assignments

in the augmented mechanism are defined as follows: (XS, XA, q) equals (X̃S, X̃A, q̃)

on M̃S×M̃A, (0, X(mS), q(mS)) if mA = ∅,mS ∈ K∪{e}, and (−T,−T, 0) otherwise

where T is a large positive number. The last feature ensures that A and S will always

coordinate on either the normal delegation mode, or the grand contract.

It is easy to check that this augmented mechanism has a WPBE(wc) where both S

and A opt for the normal delegation mode, S offers A a side contract with mS(θ, η) =

(θ, η) ∈ K and u∗A(θ, η) = uA(θ, η) for all (θ, η), which A accepts. To see this note first

that if S and A play this augmented grand contract noncooperatively, A will never

select mA = ∅, since this results in a negative payoff for A no matter what S does. If

mA = ∅,mS ∈ K ∪ {e}, A is committed to producing a positive quantity while not

getting paid anything, while mA = ∅,mS ∈ M̃S implies XA = −T, q = 0. And given

that A does not select mA = ∅, neither will S select mS in K∪{e}, owing to the large

penalty T for mis-coordination. Rejection of a side contract will effectively result in

noncooperative play of the original grand contract.

Hence A has an outside option of earning uA(θ, η) by rejecting any side contract

offered by S. This (along with the fact that the allocation is WCP) implies that

the side contract offered by S in equilibrium is optimal for S. The reason is that

the outcome of any feasible side contract in the normal delegation mode was also

attainable as the outcome of some feasible side contract in the original mechanism.

Proposition 6 Any implementable allocation with weak collusion can be implemented

as a WPBE(wc) outcome of the modified delegation mechanism described above, where

P communicates and transacts with S alone on the equilibrium path.

The reverse pattern of modified delegation, where P communicates only with A

on the equilibrium path, also happens to be an alternative way of implementing an

29



optimal WCP allocation. We do not present a formal statement or proof for this

result. It implies that the model does not provide any argument for superiority of

either form of modified delegation over the other. In the context of legal procedures,

this suggests the equivalence of plea bargaining arrangements (where the judge seeks

a report from accused party and reserves the right to go to trial should a ‘not-guilty’

plea be made) with the reverse system where the judge seeks a report from a public

prosecutor initially and then decides whether or not to go to trial based on this

report. If we were to extend our model to include fixed costs of communication of

the Principal with either the supervisor or the agent (but not both), it would provide

a way of discriminating between the two alternatives. If for instance communication

with S is costless while with A is costly, modified delegation to S will be optimal and

will dominate modified delegation to A.

5.2 Side Contracts Designed by a Third Party, and Alterna-

tive Allocations of Bargaining Power

We now explain how the preceding results extend when the side contract is designed

not by S, but instead by a third-party that manages the coalition and assigns arbitrary

welfare weights to the payoffs of S and A respectively. Such a formulation has been

used by a number of authors to model collusion, such as Laffont and Martimort (1997,

2000), Dequiedt (2006) and Celik and Peters (2011). An advantage of this approach

is that it allows an evaluation of the effects of varying the allocation of bargaining

power between colluding partners.

Our results extend to such a setting, under the following formulation of side

contracts designed by a third party. We assume the third-party’s objective is to

maximize a weighted sum of S and A’s interim payoffs. The third party designs the

side contract after learning the realization of η.23 Both S and A have the option to

23This assumption can be dropped without affecting the results, since it can be shown the third-

party can use cross-reporting of η by S and A to learn its true value.
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reject the side contract, in which case they play the grand contract noncooperatively.

The notion of WCP allocations is extended as follows. Letting α ∈ [0, 1] denote

the welfare weight assigned by the third-party to A’s payoff, the side contract design

problem reduces to selecting randomized message m̃(θ | η) and A’s payoff ũA(θ, η) to

(using the same notation for the formulation P (η) of side contracts in Section 3.3):

maxE[(1− α){X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)}+ αũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ uA(θ, η)

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η] ≥ E[uS(θ, η) | η].

Besides modifying the objective function, this formulation adds a participation con-

straint for S. We refer to this as problem TP (η;α). The definition of WCP can be

extended to WCP(α) by requiring the null side contract to be optimal in TP (η;α)

for every η.

In Appendix B, we explain how WCP(α) allocations can continue to be justified

by a suitable extension of the WPBE(wc) concept to this setting. In order to ad-

dress the Celik-Peters (2011) problem, side contracts consist of two stages: an initial

collusion-participation stage, followed by a reporting or execution stage in the event

of both parties agreeing to participate at the first stage. The collusion-participation

stage enlarges a dichotomous (exit-participate) message set for each party to a larger

message set which includes auxiliary messages for A. At the end of the first stage, S

and A observe their respective first stage messages; conditional on both agreeing to

participate, they communicate type reports to P at the second stage. The auxiliary

first-stage messages enable A to communicate more information to S than is possible

with a dichotomous participation decision, and replicate outcomes achievable when
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side contract offers are rejected by some types of A. This enables attention to be

restricted to side contracts which are always accepted on the equilibrium path.

In this setting, the WPBE(wc) notion is extended in the obvious manner: it should

never be possible for the third party to deviate to some alternative side-contract

whose subsequent continuation game has a PBE which generates a higher payoff for

the third-party, without lowering the payoff of S or any type of A. In Appendix B we

show that allocations implementable as WPBE(wc) outcomes coincide with the set

of WCP(α) allocations.

We now claim that the set of WCP(α) allocations is independent of α. This

implies that all our preceding results extend to side contracts designed by a third

party.24

Proposition 7 The set of WCP(α) allocations is independent of α ∈ [0, 1].

The reasoning is straightforward, so we omit a formal proof. The WCP criterion

amounts to the absence of incentive compatible deviations that are Pareto improv-

ing for the coalition: this property does not vary with the precise welfare weights.

Consider any α ∈ (0, 1). A given allocation is WCP(α) if and only if there is no

other allocation attainable by some non-null side contract which satisfies the incen-

tive constraint for A, and which Pareto-dominates it (for A and S) with at least one of

them strictly better off. The same characterization applies to any interior α′ ∈ (0, 1),

implying that the set of WCP(α) allocations is independent of α ∈ (0, 1). The trans-

ferability of utility can then be used to show that the set of WCP allocations for

interior welfare weights are also the same at the boundary.25

24Faure Grimaud et al. (2003) provide an analogous result for the case of interim collusion.
25If an allocation is WCP(1) but not WCP(α) for some interior α, there must exist a non-null side

contract SC∗ which allows S to attain a strictly higher payoff, which leaves A’s payoff unchanged.

Then there exists another feasible non-null side-contract which gives A a slightly higher payoff in

all states, which meets S’s participation constraint. Hence it is possible to design a feasible side

contract that raises A’s expected payoff, so the original allocation could not have been WCP(1).
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5.3 Altruistic Supervisors

Now consider a different variant, where S offers a side-contract to A, but S is altruistic

towards A rather than just concerned with his own income. Suppose S’s payoff is

uS = XS + t+ α[XA − t− θq], where α ∈ [0, 1] is the weight he places on A’s payoff.

A on the other hand is concerned with only his own income: uA = XA − t− θq.

Our analysis extends as follows. It is easy to check that the expression for coali-

tional shadow cost is now modified to

πα(θ|η) ≡ θ + (1− α)
F (θ | η)− Λ(θ | η)

f(θ | η)

instead of π(θ|η) in Definition 3. In DS, the corresponding expression for the cost of

procuring one unit from S is modified from h(θ | η) to hα(θ | η) = θ + (1− α)F (θ|η)
f(θ|η)

.

As long as α < 1, this is strictly higher than θ, so DS will still continue to result in

a lower profit than NS. The proof that CS dominates NS also goes through in toto.

It is interesting to examine the effect of changes in the degree of altruism on P’s

payoffs. An increase in α lowers S’s shadow cost of output in DS hα(θ | η), which

benefits P. This is intuitive: the DMR problem becomes less acute with a more

altruistic supervisor. Note that with perfect altruism α = 1, and the DMR problem

disappears: DS then becomes equivalent to NS.

On the other hand, an increase in altruism cannot benefit P in CS. The set of

WCP allocations can be shown to be non-increasing in α. Take any WCP allocation

corresponding to α: the following argument shows that it is a WCP allocation corre-

sponding to any α
′
< α. Let z(θ | η) be the CVC function that is associated with the

allocation at α, i.e., it is the ironed version of πα(θ|η) corresponding to some function

Λα(·|η) satisfying the stipulated requirements in the definition of CSC functions on

[θ(η), θ̄(η)]. We can then select

Λα′ (θ | η) =
α− α′

1− α′
F (θ | η) +

1− α
1− α′

Λα(θ | η)

when the altruism parameter is α
′
, which satisfies the stipulated requirements since

α > α
′
. This ensures that the same CSC and CVC function is available when
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the altruism parameter is α
′
, since by construction πα(θ|η) = πα′ (θ|η). Hence the

allocation satisfies the sufficient condition for WCP when the altruism parameter is

α
′
.

Finally, if α = 1, the CSC function πα coincides with the identity function θ, the

cost of the agent in NS. We thus obtain

Proposition 8 In CS, P’s optimal payoff is non-increasing in α. In DS, P’s optimal

payoff is increasing in α. When α = 1, P’s optimal payoffs in DS, NS and CS

coincide.

5.4 Linear Benefit Function

So far we have assumed that V is strictly concave, satisfying Inada conditions so

as to guarantee interior allocations. We now briefly describe how preceding results

are modified when V is linear upto some capacity limit, and the supervisor’s infor-

mation is represented by a partition. This simple context also helps provide better

understanding of the nature of the mechanism design problem and how it can be

solved. We present numerical computation of third-best allocations in the case of

uniformly distributed costs and a binary information structure, which helps assess

the magnitude of benefits from hiring a supervisor despite the presence of collusion.

Let V (q) = V q with V ∈ (θ, θ̄) and q ∈ [0, 1]. For simplicity we focus on the case

of a binary signal η ∈ {η1, η2} where S’s information is represented by a partition:

η = η1 represents information that cost is ‘low’, in which case the true θ lies in the

interval [θ1, θ̄1] = [0, c] for some c ∈ (0, 1). And η = η2 reveals that cost is ‘high’:

that it lies in [c, 1]. Then the conditional distribution functions are F (θ | η1) = F (θ)
F (c)

on [0, c] and F (θ | η2) = F (θ)−F (c)
1−F (c)

on [c, 1]. We continue to assume the density f(θ) is

well-defined, continuous and positive everywhere on [0, 1]. Define hi(θ) and li(θ) as

hi(θ) ≡ θ + F (θ|ηi)
f(θ|ηi) and li(θ) ≡ θ + F (θ|ηi)−1

f(θ|ηi) for i ∈ {1, 2}. These are upper and lower

bounds for coalitional virtual costs, corresponding to the lowest and highest possible
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values of the multiplier associated with the agent’s outside option when bargaining

over the side contract with the supervisor. These reduce to h1(θ) = θ + F (θ)
f(θ)

, l1(θ) =

θ + F (θ)−F (c)
f(θ)

, h2(θ) = θ + F (θ)−F (c)
f(θ)

and l2(θ) = θ + F (θ)−1
f(θ)

. To avoid technical

problems associated with the need to iron the coalitional virtual cost functions, we

confine attention to the case where H(θ) ≡ θ + F (θ)
f(θ)

is increasing in θ on [0, 1], and

hi(θ) and li(θ) are strictly increasing in θ on [θi, θ̄i] for any i ∈ {1, 2} where θ1 = 0,

θ̄1 = θ2 = c and θ̄2 = 1. This assumption is automatically satisfied in the case of

the uniform distribution F (θ) = θ. We also confine attention to mechanisms not

involving any randomization.26

Using the general characterization of feasible mechanisms established earlier in

the paper, it is easy to show that the Principal’s choice reduces to selecting: (i) a

total payment X0 to the coalition in the event that the good is not delivered; (ii) an

additional bonus b when it is delivered; and (iii) cost thresholds θi, i = 1, 2 where

θ1 ∈ [0, c] and θ2 ∈ [c, 1] where the agent delivers the good in state ηi if and only

if θ < θi. Let p1 denote F (c), and p2 denote 1 − F (c). P’s maximization problem

reduces to

max[V − b][p1F (θ1 | η1) + p2F (θ2 | η2)]−X0

subject to

X0 ≥ F (θi | ηi)[θi − b] for i ∈ {1, 2} (6)

X0 ≥ 0 (7)

and (θ1, θ2, b) satisfies

If θi ∈ (θi, θ̄i), li(θi) ≤ b ≤ hi(θi) (8)

If θi = θi, b ≤ θi (9)

26In the case where V is strictly concave, this assumption entails no loss of generality. We are not

sure whether the same is true in this context as well.
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If θi = θ̄i, b ≥ θ̄i. (10)

The cost threshold θi ends up being the ‘price’ that S offers to A for supplying the

good, following signal ηi. Hence (6) represents S’s participation constraint in this

state, requiring that the fixed payment X0 must be sufficient to cover the expected

‘net’ cost of paying A (after taking into account the bonus received from P for deliv-

ering the good). Condition (7) represents the constraint that collusion is ex ante. If

it were not satisfied, the coalition would choose to exit in the event that A reported a

cost above the offered price θi. In the case of interim collusion, this condition would

not be imposed: S would have to commit to participating before hearing a cost report

from A, whence (6) would suffice to ensure S’s participation. Hence ex ante collusion

represents a kind of ‘limited liability’ constraint.

The remaining three conditions (8, 9, 10) represent coalitional incentive con-

straints: it must be in S’s interest to offer the price θi upon observing ηi.
27 All that

is needed (for an ‘interior’ price) is that the bonus b lie somewhere in-between the

upper and lower bounds on coalitional virtual cost (modified in an obvious way for

non-interior prices). As shown previously, any price offer lying within these bounds

can be induced by P by offering suitable outside options to A.

The case of unconditional delegation corresponds to constraining b to equal the

upper bound hi(θi). This is dominated by P contracting with A in the absence of the

supervisor, whence b is constrained to equal θi. When P contracts with both S and

A, b can be lowered further, up to li(θi). Figure 1 provides an illustration of a feasible

mechanism where hi(θi) > θi > b for i = 1, 2, in which a given bonus b allows a higher

probability of supply in each state than would result with unconditional delegation,

27We use here the fact that coalition incentive compatibility requires that the good will be delivered

in state ηi if and only if the bonus b exceeds z(θ|ηi), where z(θ|ηi) = θ + F (θ|ηi)−Λ(θ|ηi)
f(θ|ηi) is the

coalitional virtual cost function, where Λ(θ | ηi) is a non-decreasing function taking value 0 and 1

at the endpoints θi and θ̄i respectively. Hence conditions (8, 9, 10) are necessary. Conversely, given

these three conditions, we can find a coalitional virtual cost function satisfying coalition incentive

compatibility.
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Figure 1: An illustration of a feasible mechanism.

or if P were to not hire S. Of course, raising θi above b comes at a cost: a positive

fixed payment X0 has to be made to ensure S’s participation constraint (6).

We first examine in this context whether hiring a supervisor is strictly valuable.

It makes sense to exclude cases where V ≤ c, where hiring S is not valuable even in

the absence of collusion.28 Hence we focus on the case where V > c, where hiring S

is strictly valuable in the absence of collusion.29

Proposition 9 Suppose V > c, so hiring S is strictly valuable in the second-best

situation. In the presence of weak ex ante collusion, there exists an interval (V1, V2)

with V1 ≥ c, such that hiring S is strictly valuable if and only if V ∈ (V1, V2). V1 > c

if and only if H(max{0, l2(c)}) > c, while V2 ≥ H(1).

28If V ≤ c, the second-best with a honest supervisor involves zero probability of procurement in

state η2, and offering A a price of θSB1 which satisfies V = H(θSB1 ) = h1(θSB1 ) in state η1. This can

be implemented by P offering A a price of θSB1 irrespective of ηi; hence S is not needed.
29With V > c, P will procure with positive probability in state η2 and the second-best price

offered to A will necessarily differ between the two states η1, η2, since the price offered in state η1

will not exceed c while it will exceed it in state η2. Hence S is valuable in the second-best situation.
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This result shows that in contrast to previous Sections with divisible quantities

and a strictly concave benefit function, collusion may destroy the value of supervision

in some circumstances.30 This can happen for instance when P’s benefit from the

good V is very large, so she ends up procuring with probability one in either state

ηi in the third-best outcome. This is only possible if P offers to pay the maximum

cost of 1 for delivery in either state ηi.
31 Owing to collusion, it is no longer possible

to offer a lower price in state η1 and still guarantee delivery.

For lower values of V where the good may not be delivered with positive probabil-

ity, the result is less obvious. Proposition 9 states that the conditionH(max{0, l2(c)}) ≤

c is sufficient to ensure hiring S is strictly valuable for all values of V slightly above c.

This can be explained as follows. In the absence of S, P would offer a price θNS below

c, if V lies between c and H(c). Then P would procure the good with zero probability

in state η2. This corresponds to the allocation θ1 = θNS = b, θ2 = c,X0 = 0. Upon

hiring S, P can offer the following allocation which would generate a strict improve-

ment. θ1 could be left unchanged at θNS, while θ
′
2 could be raised slightly above c. See

Figure 2. This enables the delivery probability to be increased in state η2 and left un-

changed in state η1. For θ
′
2 close enough to c, it is true that F (θ

′
2 | η2) < F (θNS | η1).

Hence a contract (X
′
0, b

′
) can be chosen to satisfy

X
′
0 = F (θNS | η1)(θNS − b′) = F (θ

′
2 | η2)(θ

′
2 − b

′
).

where the bonus b
′
is now slightly lower than before, satisfying the following condition,

max{l1(θNS), l2(θ
′
2)} ≤ b

′
< θNS. Given that H(max{0, l2(c)}) ≤ c < V (= H(θNS))

implies l2(c) < θNS then for θ
′
2 close enough to c, l2(θ

′
2) < θNS, making this choice

of b
′

possible. Then P benefits as S continues to earn zero rent in either state, while

moving the allocation closer to the second-best.

The condition H(max{0, l2(c)}) ≤ c turns out to also be necessary to ensure

30It can be shown that if the participation constraint (6) for S is strengthened to hold ex post

rather than interim, then supervision ceases to be valuable. This is in contrast to the case where

the benefit function is strictly concave, whence it may be possible in some circumstances to hire a
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Figure 2: Value of Supervisor.

a strict value of supervision for values of V slightly above c. The proof of this is

somewhat involved (see the Appendix), but the underlying idea is the following.

Suppose H(max{0, l2(c)}) > c, implying l2(c) > θNS for V close enough to c. An

improvement over no-supervision would require P to procure with positive probability

in state θ2. This requires raising the bonus b
′

above l2(c), which is higher than

b = θNS. Correspondingly, the optimal θ1 also needs to be raised discontinuously,

which lowers profits of P in state η1. If V is sufficiently close to c, the increased

profits in state η2 are negligible, and cannot outweight the losses in state η1.

Part of the reason that the value of supervision is lower in the linear benefit case

is that the set of controls available to P are limited: e.g., there is no scope for varying

the level of provision. On the other hand, with linear benefits we can show that there

exist a range of parameter values where the benefits of hiring S are substantial: the

second-best payoff can be achieved.

supervisor even with ex post participation constraints.
31If θi = θ̄i, condition (10) requires b ≥ θ̄i. Hence b = 1.
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Proposition 10 Suppose that V > c. The second-best payoff can be achieved by P

in the presence of collusion if and only if F (θSB1 | η1) > F (θSB2 | η2) and

max{l1(θSB1 ), l2(θSB2 )} ≤ θSB1 F (θSB1 | η1)− θSB2 F (θSB2 | η2)

F (θSB1 | η1)− F (θSB2 | η2)
. (11)

where θSBi denotes the second-best solution. In the case of a uniform distribution

F (θ) = θ and c = 1/2, this condition reduces to 1/2 < V ≤ 3/4.

The underlying argument is straightforward. Implementation of the second-best

allocation entails setting θi = θSBi , and ensuring that S earns zero rent in each state.

This requires existence of X0, b such that

X0 = F (θSB1 | η1)[θSB1 − b] = F (θSB2 | η2)[θSB2 − b] ≥ 0 (12)

for which it is necessary that F (θSB1 | η1) > F (θSB2 | η2), and b is set equal to the

right-hand-side of (11). Since θSBi ≥ b, this allocation is feasible if condition (11) is

satisfied.

This argument indicates, however, that implementation of the second-best will be

generically impossible if there are three or more possible signals observed by S. For

example, with three signals, in order to ensure S earns zero rent for all ηi, there must

exist b such that

F (θSB1 | η1)[θSB1 − b] = F (θSB2 | η2)[θSB2 − b] = F (θSB3 | η3)[θSB3 − b] ≥ 0.

which requires

B(θSB1 , θSB2 ) = B(θSB2 , θSB3 )

where

B(θi, θj) ≡
θiF (θi | ηi)− θjF (θj | ηj)
F (θi | ηi)− F (θj | ηj)

.

This condition will not hold generically.

In the case of strictly concave V (q), our result concerning the impossibility of

the second best allocation under suitable conditions was based on a different kind of
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Figure 3: Comparing Optimal Collusion-Proof, Second-Best and No Supervision Al-

locations, with uniformly distributed cost and c = 1
2

argument, relying on the continuity of the second best output schedule. With linear

benefits, such arguments do not apply as the second best output schedule qSB jumps

discontinuously from 1 to 0 at certain points.

It is interesting to note an implication of Proposition 10: second-best implemen-

tation requires the good not be procured with positive probability in states η1 and η2,

which in turn requires V to not be too large. This is similar to the result of Pavlov

(2008) and Che and Kim (2009) in the context of auctions, whence second-best im-

plementation requires trade to not occur with positive probability.

With a uniform distribution and c = 1/2, we can numerically compute optimal

allocations under the second-best, third-best and no-supervision respectively. The

results are shown in Figure 3. As shown above, the second best allocation can be

implemented in the case 1/2 < V ≤ 3/4. Hiring S is valuable if V is between 3/4

and 2. Compared to the second-best, we see that for some intervals of V between
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3/4 and 2 the probability of procurement decreases, especially in state η2.

6 Concluding Comments

We have analyzed implications of weak ex ante collusion between a supervisor and

agent, where collusion arises with regard to both participation and reporting deci-

sions, and outside option payoffs in coalitional bargaining are determined by nonco-

operative equilibria of a grand contract designed by the Principal. We showed in such

settings that the Principal can still benefit from employing the supervisor. This re-

quires the Principal to design a grand contract involving both the supervisor and the

agent, rather than delegating authority over contracting with the agent to the super-

visor in an unconditional manner. It is essential for the Principal to give both parties

suitable outside option payoffs by designing such a grand contract judiciously. The

presence of such a centralized safeguard as an option then allows optimal outcomes

to be implemented by delegating authority to the supervisor. These results are con-

sistent with the widespread prevalence of delegation to information intermediaries,

and highlight the importance of centralized oversight mechanisms that are needed to

mitigate their ‘abuse of power’. While the commonsense justification for such mech-

anism is typically based on considerations of fair treatment of agents, our analysis

shows how such mechanisms are essential to prevent inefficient output contractions

and loss of profits of the Principal owing to monopsonistic behavior by intermediaries

to whom authority is delegated.

In future research, we plan to explore implications of various notions of strong

collusion, where one or more of the colluding partners are ‘powerful’ in the sense of

being able to commit how they would behave in the event that someone vetoes a

coalitional proposal.
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Appendix A: Justification for WCP Allocations in

Terms of Belief Restrictions

In the text we provided a justification of WCP allocations in terms of the equilibrium

refinement WPBE(wc), which incorporated a notion of collusion wherein S and A can

collectively coordinate on choice of a PBE following any given side-contract. We now

provide an alternative ‘noncooperative’ justification, in terms of restrictions on off-

equilibrium-path beliefs alone. This generalizes the assumption of passive beliefs often

made in the literature (e.g., Faure-Grimaud, Laffont and Martimort (2003)). The

‘passive beliefs’ assumption requires beliefs following rejection of side-contract offers

to not vary with the side-contract offered. Such a restriction rules out implementation

of the second-best along the argument in Section 3.5.

Faure-Grimaud, Laffont and Martimort (2003), however, restrict attention to side

contracts offered that are always accepted by A on the equilibrium path. Celik and

Peters (2011) have shown in the context of a model of a two-firm cartel that this

restriction may entail a loss of generality. In contrast to a standard principal-agent

setting where agent outside options are exogenous, the consequences of rejection of a

side-contract subsequently results in A and S playing a noncooperative game and are

thus endogenous. Rejection of a side contract by some types of A can communicate

information to S about A’s type, affecting subsequent play and resulting payoffs in

the noncooperative game. Celik and Peters demonstrate collusive allocations amongst

cartel members which can only be supported by side-contract offers which are rejected

with positive probability on the equilibrium path.

To address this problem, we allow for side contract offers that might be rejected

by some types of A and accepted by others. This is combined with the following

restriction on beliefs.

Definition 7 A WPBE(w) is a Weak Perfect Bayesian Equilibrium (WPBE) sat-

isfying the following restriction on beliefs (conditional on realization of any η): (a)

45



there is a pair of beliefs p(η) and Bayesian equilibrium c(η) ∈ C(p(η); η) which results

in the noncooperative play of the grand contract following rejection of any non-null

side contract offered by S, where (b) (p(η), c(η)) = (p∅(η), c∅(η)) if S offers a null

side-contract on the equilibrium path.

Criterion (a) imposes the restriction that there is a common continuation belief

and Bayesian equilibrium of the grand contract, following rejection of any non-null

side-contract.32 Criterion (b) additionally requires this continuation to be the same

as the continuation that results when S offers a null side-contract on the equilibrium

path.33 In this case, the consequences of rejection are independent of the side contract

offered, and are taken as given by the Principal.

One could argue that it would be reasonable to expand the scope of (b) and also

require (p(η), c(η)) = (p∅(η), c∅(η)) whenever a non-null SC is offered and accepted

by all types of A on the equilibrium path. Evidently, the definition of WPBE(w)

is consistent with this stronger version of (b). However, it is not needed for the

results that follow. The Faure-Grimaud, Laffont and Martimort (2003) assumption of

passive beliefs (where rejection of any offered SC is followed by beliefs (p∅(η), c∅(η)))

is therefore consistent with WPBE(w). Their approach can be rationalized by an

underlying restriction to side contract offers that are either accepted by all types,

or rejected by all types. So WPBE(w) may be viewed as a generalization of the

assumption of passive beliefs, when one allows rejection of SCs by some types on the

equilibrium path.

We now show that with this restriction on beliefs, there is no loss of generality

in confining attention to side-contract offers that are accepted by all types on the

32This is irrespective of whether or not rejection occurs on the equilibrium path. If it does, whereby

subsequent continuation beliefs are determined by Bayes Rule, (a) requires the same beliefs to ensue

from rejection of some other non-null SC.
33Criterion (a) by itself is insufficient to allow collusion to have any bite, since the construction

used in the argument of Section 3.5 satisfied (a). Hence part (b) is additionally required to avoid

its conclusion.
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equilibrium path.

Lemma 1 Given any grand contract, and any allocation resulting from a WPBE(w)

in which S’s side contract offer is rejected with positive probability on the equilibrium

path, there exists another WPBE(w) resulting in the same allocation in which the

side contract offered by S is accepted by all types of A on the equilibrium path.

Proof of Lemma 1: Suppose on the equilibrium path S offers a side contract SC∗

in some state η ∈ Π which is rejected by a set Tr ⊆ Θ(η) of types of A with positive

measure conditional on η. Let the continuation beliefs following rejection of SC∗ be

denoted p∗, and the Bayesian equilibrium of the grand contract thereafter is denoted

c∗ ∈ C(p∗) (here we are suppressing η in the notation for expositional convenience).

Now suppose S offers an alternative side contract S̃C, which agrees with SC∗ if

A reports θ ∈ Θ(η)\Tr to S, i.e., results in the same coordinated report to P and the

same side-payment as stipulated by SC∗. If instead A reports θ ∈ Tr, S proposes

the same joint report (θ, η) they would have made independently in c∗, with no side-

payment. If S̃C is rejected by A, they play according to (p∗, c∗) in the grand contract.

This ensures consistency with criteria (a) and (b) in the definition of WPBE(w).

If all types of A accept S̃C and report truthfully, it results in the same allocation

as in SC∗. Rejecting it results in the same continuation play of the grand contract

that resulted from rejecting SC∗. Conditional on accepting S̃C, no type θ of A can

benefit from deviating from truthful-reporting. Otherwise, if θ ∈ Θ(η)\Tr benefitted

from deviating, this would imply they would have had a profitable deviation from

their equilibrium response to SC∗. If θ ∈ Tr benefits by deviating, this type would

have benefitted earlier also, either by accepting SC∗, or rejecting it and then deviating

to the strategy played by some other type of A while playing the Bayesian equilibrium

of the grand contract.

Owing to restriction (a) of Definition 7, rejection of any other side-contract offer

SC ′ will also result in the same continuation outcomes in the grand contract. Hence
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the consequences of S deviating to some other side contract offer remain unchanged.

The consequences of not offering a side contract have not changed. So it is optimal

for S to offer S̃C.

The argument resembles the standard one underlying the Revelation Principle:

offering a new side-contract S̃C which mimics the outcomes resulting from rejection

of an original side-contract (SC), can result in acceptance by all types of A and the

same resulting allocation. How can this be reconciled with the Celik-Peters (2011)

demonstration of a collusive allocation for a two-firm cartel which is the outcome

of a side-contract that is rejected with positive probability in equilibrium, which

cannot be achieved by some other side contract that is not rejected on the equilibrium

path? There are two main differences between our respective formulations of side-

contracting. First, in our model S rather than some third-party offers the side-

contract. In the latter case, a participation constraint for S has to be respected.

In our model S offers the SC, so there is no need to incorporate a participation

constraint for S. However this difference would disappear in the version of our model

to be considered in Section 5.2, where side contracts are designed and offered by

a third party. The second reason is the WPBE(w) restriction we have imposed.

The construction of the example in Celik-Peters (2011, Section 2) hinges on beliefs

following rejection that vary with the side-contract in question, contrary to what

WPBE(w) requires.34

34To elaborate further, their example rests on the following feature. Rejection of the side con-

tract analogous to our S̃C (by the uninformed party) results in coalition members playing the

grand contract noncooperatively with beliefs p∅, which differs from beliefs following rejection of the

equilibrium side contract. If the two side contracts were associated with the same post-rejection

continuation beliefs, the argument underlying Lemma 1 would apply, implying that the S̃C contract

would support the same allocation as the equilibrium side-contract. Their construction is based on

the implicit assumption that the designer of the side-contract will disclose information regarding

the type reported by the other party for some side contracts (e.g., the equilibrium side contract),

and not others (e.g., S̃C) when a given party is the only one to reject the side contract.
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The next step is to observe that the collusion-proofness principle — that P can

without loss of generality restrict attention to noncooperative equilibria of grand

contracts that do not provide S with an incentive to offer a non-null side contract —

also holds for WPBE(w) allocations.

Lemma 2 An allocation (uA, uS, q) is a WPBE(w) outcome if and only if there exists

a grand contract GC satisfying the following two properties:

(i) In any state η ∈ Π: participation and truthful reporting by all types of S and A

constitutes a Bayesian equilibrium relative to beliefs p∅(η) obtained by updating

on η alone, which results in state-η allocation: (uA(·, η), uS(·, η), q(·, η));

(ii) there is a WPBE(w) of the resulting side-contracting game in which S offers no

side-contract for any η ∈ Π.

The argument is straightforward. Lemma 1 ensures that without loss of generality

attention can be focused on WPBE(w) in which the equilibrium side contract, if

offered in any state η, is not rejected by any type of A. Then there is no room

for further coordination by S and A which improves the expected payoff of S while

meeting A’s acceptance and incentive constraint. If the resulting allocation were

offered directly in the grand contract, there would be no scope for S to benefit from

any further side-contract.

Lemma 2 implies that allocations achieved as WPBE(w) outcomes following any

grand contract coincide with WCP allocations satisfying interim participation con-

straints for both A and S.

Proposition 11 An allocation (uA, uS, q) is a WPBE(w) outcome following some

grand contract, if and only if it is a WCP allocation satisfying interim participation

constraints

E[uS(θ, η)|η] ≥ 0 for all η (13)

uA(θ, η) ≥ 0 for all (θ, η) (14)
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Proof of Proposition 11:

Necessity follows straightforwardly from Lemmas 1 and 2. To show sufficiency,

consider a WCP allocation satisfying participation constraints. Let P offer the fol-

lowing revelation mechanism in the grand contract: XS = XA = q = 0 if mA = eA

or mS = eS. If mA 6= eA and mS 6= eS, and A reports (θ, ηA) while S reports

ηS, q((θ, ηA), ηS) = q(θ, ηS), XS((θ, ηA), ηS) = uS(θ, ηA), XA((θ, ηA), ηS) = θq(θ, ηS) +

uA(θ, ηS) − T (ηS, ηA) where T equals zero if ηA = ηS and (θ, ηA) ∈ K, and a large

negative number otherwise. We first show property (i) of Lemma 2 holds. Consider

any η. Conditional on both S and A participating, it is optimal for S to report ηS = η

since S’s payoff does not depend on ηS. Given that S is reporting truthfully, it is opti-

mal for A to report ηA = η. WCP implies that the null side contract is feasible in the

side contracting problem for every η, hence it is optimal for A to report θ truthfully,

given that η is being reported truthfully. Given that both S and A report truthfully

conditional on participation, the interim participation constraints imply it is optimal

for them to always participate.

Let this equilibrium be denoted c∗. We claim that there is a WPBE(w) in which

S always offers a null side contract, whose outcome is c∗. The WPBE(w) restriction

implies c∗ must be the consequence of rejection by A of any offered non-null side

contract. Hence uA(θ, η) is the outside option of A which S takes as given while

selecting a side contract. Since the allocation resulting from c∗ is WCP, S cannot

benefit from offering any non-null side contract.
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Appendix B: Justification for WCP Allocations when

Side-Contracts are Designed by a Third Party

Here we explain how WCP allocations can continue to be justified when side contracts

are offered by a third party, extending the ‘cooperative’ refinement used in the text

for the case where they are offered by S. To address the problem highlighted by Celik

and Peters (2011), the side-contract is now modelled as a two stage game played

by S and A. The first stage is a ‘participation’ stage where they communicate their

participation decisions in the side contract, in addition to some auxiliary messages in

the event of agreeing to participate. The role of these messages is to allow A to signal

information about his type while agreeing to participate, which can help replicate

whatever information is communicated by side-contract rejection in a setting where

communication concerning participation decisions is dichotomous. A and S observe

the messages sent by each other at the end of the first stage. At the second stage,

A and S submit type reports, conditional on having agreed to participate at the first

stage.

Let (Dp
A, D

p
S) denote the message sets of A and S at the participation stage (or

p-stage). eA ∈ Dp
A and eS ∈ Dp

S are the exit options of A and S respectively.

What occurs at the second stage (‘execution’ or e-stage) depends on dp = (dpA, d
p
S)

chosen at the first stage.

• If dpA 6= eA and dpS 6= eS, A and S select (deA, d
e
S) ∈ De

A(dp)×De
S(dp) respectively.

The report to P is selected according to m̃(dp, de) ∈ ∆(MA ×MS), associated

with the transfers to A and S, tA(dp, de) and tS(dp, de) respectively. Owing to

wealth constraint of the third party, these are constrained to satisfy tA(dp, de)+

tS(dp, de) ≤ 0.

• If either dpA = eA or dpS = eS, A and S play GC non-cooperatively.

Given GC and η, the third party decides whether to offer a side-contract SC(η)
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or not (i.e., offer a null side-contract NSC). If a non-null side-contract is offered, A

and S play a game denoted by GC ◦ SC(η) with two stages as described above. On

the other hand, if the third party offers a null side-contract NSC at the first stage,

A and S play GC non-cooperatively based on prior beliefs p0(η). The third-party’s

objective is to maximize E[αuA(θ, η) + (1− α)uS(θ, η) | η] in state η.

The refinement WPBE(wc) introduced in the text for the case where the side

contract is offered by S, can now be extended as follows.

Definition 8 Following the selection of a grand contract by P, a WPBE(wc) is a

Weak Perfect Bayesian Equilibrium (WPBE) of the subsequent game in which side-

contracts are designed by a third party, which has the following property. There does

not exist some η, and some deviating side-contract offer SC(η) for which there is a

Perfect Bayesian Equilibrium (PBE) of the subsequent continuation game in which

(conditional on η) the third-party’s payoff is strictly higher, while the payoffs of S and

every type of A is not lower.

Definition 9 An allocation (uA, uS, q) is implementable in the weak collusion game

with side contracts designed by a third party assigning welfare weight α to A, if there

exists a grand contract and a WPBE(wc) of the subsequent side contract game which

results in this allocation.

Lemma 3 An allocation (uA, uS, q) is implementable in the weak collusion game with

side contracts designed by a third party assigning welfare weight α to A, if and only if

it is a WCP(α) allocation satisfying the interim participation constraints uA(θ, η) ≥ 0

and E[uS(θ, η) | η] ≥ 0.

Proof of Lemma 3

Proof of Necessity

For some GC, suppose that allocation (uA, uS, q) is implemented in the game with

weak collusion. Suppose the allocation is achieved as the outcome of a WPBE(wc)
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in which a non-null side contract SC∗(η) is offered on the equilibrium path in some

state η, which is rejected by some types of A. We show it can also be achieved as the

outcome of a WPBE(wc) in which a non-null side contract is offered in state η and

accepted by all types of A. Let Θr be the set of types who reject SC∗(η). Following

A’s rejection (dpA = eA), suppose that A and S play the grand contract GC based on

S’s updated belief p(· | Θr, η). Since we are using the PBE as the solution concept,

these beliefs do not depend on S’s participation decision. Similarly in the event that

A accepts, but S rejects SC∗(η), A and S play the grand contract GC based on S’s

updated belief conditioned on the observation of dpA 6= eA. Let dp∗A (θ, η) denote A’s

decision (on the equilibrium path) at the participation stage. Denoting these beliefs

by p(dpA) ≡ p(· | dp∗A (θ, η) = dpA, η), S’s expected payoff from rejecting SC∗(η) is

E[uS(θ, η, c(p(dp∗A (θ, η)))) | η]

where uS(θ, η, c) ≡ XS(mA(θ, η),mS(η)) for c = (mA(θ, η),mS(η)).

Now construct a new side-contract S̃C(η) which differs from SC∗(η) only in that

A’s message set at the participation stage is Dp
A∪{d̃

p
A} instead of Dp

A, and A’s choice

of d̃pA results in A and S playing of c(p(eA)) in GC without any transfers. It is easily

verified that the continuation game GC ◦ S̃C(η) has a PBE where no type of A

rejects the side-contract, realizing the same allocation (uA, uS, q) in an equilibrium.

In this equilibrium, type θ ∈ Θr reports dpA = d̃pA instead of dpA = eA. In the off-

equilibrium-path event that A rejects S̃C(η), A and S play the grand contract based

on the belief p(· | Θr, η). Since S receives the same information from A’s decision

about dpA, he does not have an incentive to change his decision at the second stage;

this in turn implies he has no incentive to change his decision at the participation

stage. Since the original equilibrium was a WPBE(wc), so is the newly constructed

equilibrium.

Next we show that if allocation (uA, uS, q) is realized in a WPBE (wc) in which

side contracts are not rejected on the equilibrium path, it must be a WCP(α) al-

location. Suppose not: the allocation resulting from some non-null side contract
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(ũ∗A(θ, η), m̃∗(θ, η)) 6= (uA(θ, η), (θ, η)) solves the problem TP (η;α) for some η. De-

fine ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− ũ∗A(θ, η). It is evident that

E[αũ∗A(θ, η) + (1− α)ũ∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η],

ũ∗A(θ, η) ≥ uA(θ, η)

and

E[ũ∗S(θ, η) | η] ≥ E[uS(θ, η) | η].

We can find mc(θ, η) ∈ ∆(MA ×MS) for GC such that

(XA(mc(θ, η)) +XS(mc(θ, η)), q(mc(θ, η))) = (X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))).

Now construct a new side-contract SC(η) which realizes

(ũ∗A(θ, η), ũ∗S(θ, η), q̂(m̃∗(θ | η)))

as a PBE outcome of the game GC ◦ SC(η), contradicting the hypothesis that

(uA, uS, q) is realized in a WPBE (wc), since by construction the interim partici-

pation constraints are satisfied. SC(η) is specified as follows:

• Dp ≡ Dp∗ where Dp∗ = (Dp∗
A , D

p∗
S ) are A and S’s message sets at the participa-

tion stage of the original equilibrium side-contract SC∗(η).

• De
A = Θ(η) and De

S = {φ}

• A’s choice of deA = θ ∈ Θ(η) generates the report to P according to mc(θ, η),

associated with the transfers to A and P respectively:

tA(θ, η) = ũ∗A(θ, η)− [XA(mc(θ, η))− θq(mc(θ, η))]

and

tS(θ, η) = ũ∗S(θ, η)−XS(mc(θ, η)).
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For this side-contract SC(η), we claim the following is a PBE of the game GC◦SC(η).

Given any (dpA, d
p
S) with dpA 6= eA and dpS 6= eS at the participation stage, A always

selects deA = θ, since θ
′
= θ maximizes

XA(mc(θ
′
, η))− θq(mc(θ

′
, η)) + tA(θ

′
, η) = ũ∗A(θ

′
, η) + (θ

′ − θ)q̂(m̃∗(θ | η)).

At the participation stage, A is indifferent among any dpA ∈ D
p
A\{eA} as the optimal

response to dpS 6= eS, since the same outcome is realized in the continuation for any

of these choices. Therefore it is optimal for A to choose the same d∗A(θ, η) as in the

original equilibrium. It implies that S’s rejection induces non-cooperative play of

GC based on the same updated beliefs as in the original equilibrium. E[ũ∗S(θ, η) |

η] ≥ E[uS(θ, η) | η] guarantees S’s participation. On the other hand, specify that A’s

choice of dpA = eA induces non-cooperative play of GC based on the same beliefs as

in the original equilibrium. It guarantees A’s participation dpA 6= eA. Hence this is a

PBE resulting in (ũ∗A(θ, η), ũ∗S(θ, η)), completing the argument. This completes the

proof of the necessity.

Proof of Sufficiency

Take an allocation which is WCP(α) and satisfies the interim participation con-

straints. To show that it is implementable as a WPBE(wc) outcome, consider the

grand contract GC:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where

MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.
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• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS)) for ηA =

ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6= ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T for ηS 6=

ηA

where T > 0 is sufficiently large. The WCP(α) property implies that uA(θ, η) ≥

uA(θ
′
, η) + (θ

′ − θ)q(θ
′
, η). The interim participation constraints imply that this

grand contract has a non-cooperative pure strategy equilibrium

(m∗A(θ, η),m∗S(η)) = ((θ, η), η)

based on prior beliefs. For this grand contract, we claim there exists a WPBE(wc)

resulting in (m∗A(θ, η),m∗S(η)) = ((θ, η), η). This requires us to check that there is no

alternative SC(η) in any state η with an associated PBE of the continuation game

which generates a higher expected payoff for the third party, without making S or any

type of A worse off. With sufficiently large T > 0, the third party never benefits from

a side-contract which instructs the coalition to submit a report to P with ηA 6= ηS.

Then the WCP(α) property implies that the third party does not benefit from any

manipulation of the report to P, while guaranteeing E[uS(θ, η) | η] to S and uA(θ, η)

to A.
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Appendix C: Proofs of Results in the Text

Proof of Proposition 1: Consider the necessity part. Suppose the allocation

(uA, uS, q) is WCP. Then the null side contract is optimal for S for every η, so must

be feasible in P (η). This implies (uA(θ, η), q(θ, η)) satisfies A’s incentive compatibility

condition. Now consider the problem P (η). The incentive constraint

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

is equivalent to

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy

and q̂(m̃(θ | η)) is non-increasing in θ. Then the problem can be rewritten as

maxE[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂) where M̂ ≡ K ∪ {e},

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy ≥ uA(θ, η)

and q̂(m̃(θ | η)) non-increasing in θ. Since randomized side contracts can be chosen,

the objective function is concave and the feasible set is convex. So the solution

maximizes (subject to the constraint q̂(m̃(θ | η)) is non-increasing in θ) the following

Lagrangian expression corresponding to some non-decreasing function Λ̃(θ | η):

L ≡ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)|η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ̃(θ | η)

where X̂(m̃), q̂(m̃) denote expected values of X̂(m), q̂(m) taken with respect to prob-

ability measure m̃ over m ∈ M̂ . Note that without loss of generality, ũA(θ, η) is a

deterministic function.
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A’s incentive constraint implies ũA(θ, η) is continuous on Θ(η). Hence integration

by parts yields:∫
[θ(η),θ̄(η)]

ũA(θ, η)dΛ̃(θ | η) = Λ̃(θ̄(η) | η)ũA(θ̄(η), η)− Λ̃(θ(η) | η)ũA(θ(η), η)

+

∫
[θ(η),θ̄(η)]

Λ̃(θ | η)q̂(m̃(θ | η))dθ

= [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]ũA(θ̄(η), η)

+

∫
[θ(η),θ̄(η)]

[Λ̃(θ | η)− Λ̃(θ(η) | η)]q̂(m̃(θ | η))dθ.

The second equality comes from

ũA(θ(η), η) = ũA(θ̄(η), η) +

∫
[θ(η),θ̄(η)]

q̂(m̃(y | η))dy.

Next consider the effect of raising uniformly A’s outside option function from

uA(θ, η) to uA(θ, η) + ∆ where ∆ is an arbitrary positive scalar. It is evident that

the solution is unchanged, except that ũA(θ, η) is raised uniformly by ∆. Hence the

maximized payoff of S must fall by ∆, implying that∫
[θ(η),θ̄(η)]

∆dΛ̃(θ | η) = [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]∆ = ∆,

and so Λ̃(θ̄(η) | η) − Λ̃(θ(η) | η) = 1 in the optimal solution. Now define Λ(θ | η) ≡

Λ̃(θ | η)− Λ̃(θ(η) | η). Then Λ(θ | η) is non-decreasing in θ with Λ(θ(η) | η) = 0 and

Λ(θ̄(η) | η) = 1.

This implies

L ≡
∫

[θ(η),θ̄(η)]

[X̂(m̃(θ | η))− π(θ | η)q̂(m̃(θ | η))]dF (θ | η)

−
∫

(θ(η),θ̄(η)]

uA(θ, η)dΛ(θ | η) (15)

where π(θ | η) ≡ θ+ F (θ|η)−Λ(θ|η)
f(θ|η)

. This has to be maximized subject to the constraint

that q̂(m̃(θ | η)) is non-increasing in θ. This reduces to the unconstrained maximiza-

tion of the corresponding expression where the CSC function π(· | η) is replaced by
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the corresponding CVC function z(· | η) using the ironing procedure relative to the

cdf F (θ | η).

If m̃∗(θ | η) is optimal in problem P (η), there exists π(· | η) ∈ Y (η) so that the

optimal side contract m̃ = m̃∗(θ | η) maximizes

X̂(m̃(θ | η))− z(θ | η)q̂(m̃(θ | η))

where z(θ | η) ≡ z(θ | π(· | η), η). Moreover q̂(m̃∗(θ | η)) must be non-increasing in θ

and flat on any interval of θ which is a subset of Θ(π(· | η), η).

If the optimal side contract is degenerate and concentrated at (θ, η), it must be

the case that

X̂(θ, η)− z(θ | η)q̂(θ, η) ≥ X̂(m̃
′
)− z(θ | η)q̂(m̃

′
)

for any m̃
′ ∈ ∆(M̂). This implies

X̂(θ, η)− z(θ | η)q(θ, η) ≥ X̂(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X̂(θ, η)− z(θ | η)q(θ, η) ≥ 0

for any (θ, η), (θ
′
, η
′
), implying (i) in the proposition. Obviously q(θ, η) must be non-

increasing in θ and must be flat on any interval of θ which is a subset of Θ(π(· | η), η)

(implying (iii) in the proposition).

Now consider the sufficiency part. Consider any state η. Suppose there is a

CSC function π(· | η) ∈ Y (η) which is ironed to yield the CVC function z(·|η) such

that (uS(θ, η), uA(θ, η), q(θ, η)) satisfies all the conditions in the proposition. Define

(X̂(m), q̂(m)) on M̂ ≡ K ∪ {e} such that

(X̂(θ, η), q̂(θ, η)) = (uS(θ, η) + uA(θ, η) + θq(θ, η), q(θ, η))

and

(X̂(e), q̂(e)) = (0, 0).

and extend this to (X̂(m̃), q̂(m̃)) on ∆(M̂) in the obvious manner. Consider the

problem P (η) as selection of m̃(θ|η), ũA(θ, η) to maximize

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]
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subject to

ũA(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

for any θ, θ
′ ∈ Θ(η). For ũA(θ, η) which satisfies constraints of the problem, we have∫

[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) ≥ 0.

Then

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

≤ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η).

Now consider the problem of maximizing the right hand side of this inequality, subject

to the constraint that q̂(m̃(θ | η)) is non-increasing in θ. Using the same steps in the

proof of the necessity part, this can be expressed as a problem of selecting m̃(θ|η)

to maximize the Lagrangean (15) subject to the constraint that q̂(m̃(θ | η)) is non-

increasing in θ. Conditions (i)-(iii) imply that the right-hand-side is maximized at

m̃(θ | η) = (θ, η) and ũA(θ, η) = uA(θ, η). Since∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) = 0

when ũA(θ, η) = uA(θ, η), this shows that the left hand side of the above inequality

is also maximized at m̃(θ | η) = (θ, η) and ũA(θ, η) = uA(θ, η). Hence (m̃(θ |

η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves P (η).

Proof of Proposition 2:

Proof of Necessity
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Suppose (uA, uS, q) is implementable in the weak collusion game. It is evident that

it satisfies interim participation constraints of A and S. Here we show that it is

also a WCP allocation. Suppose not. Then there exists η ∈ Π such that (m̃(θ |

η), ũA(θ, η)) = ((θ, η), uA(θ, η)) does not solve the side-contracting problem P (η).

Suppose that (m̃∗(θ | η), ũ∗A(θ, η)) is the solution of P (η). Defining

ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− ũ∗A(θ, η),

we have

E[ũ∗S(θ, η) | η] > E[uS(θ, η) | η]

and

ũ∗A(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η). Since (uA, uS, q) is implementable in the weak collusion game,

there exists a grand contract GC and an associated WPBE(wc) which results in

this allocation. From the property of WPBE(wc), there exists belief p(η) and non-

cooperative equilibrium c(η) of GC based on the belief p(η) such that A’s payoff is

not better than uA(θ, η) for any θ ∈ Θ(η).

For m̃∗(θ | η) ∈ ∆(K ∪ e), there exists m̃c(θ, η) ∈ ∆(MA ×MS) such that

(X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))) = (XA(m̃c(θ, η)) +XS(m̃c(θ, η)), q(m̃c(θ, η))).

Given GC and η, suppose that S offers the side-contract SCc(η) such that the re-

port to P is selected according to m̃c(θ
′
, η) on the basis of A’s report of θ

′ ∈ Θ(η),

associated with the transfer to A:

tcA(θ
′
, η) = ũ∗A(θ

′
, η)− [XA(m̃c(θ

′
, η))− θ′q(m̃c(θ

′
, η)))].

Now construct a Perfect Bayesian Equilibrium (PBE) in the game induced by GC

and SCc(η), as follows. It is evident that if A accepts this side-contract, it is optimal

for him to truthfully report θ ∈ Θ(η), generating payoffs ũ∗A(θ, η) and ũ∗S(θ, η) for A

and S respectively. If A rejects the side-contract, A and S play c(η) based on the
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belief p(η) specified above. Since ũ∗A(θ, η) ≥ uA(θ, η), all types of A participate in

the side-contract, given this choice of non-cooperative equilibrium in the event that

A rejects the side-contract. The argument shows that (ũ∗A(θ, η), ũ∗S(θ, η)) is realized

as a PBE outcome. Since S is better off without making any type of A worse off, it

contradicts the fact that (uA, uS, q) is realized as the outcome of a WPBE(wc).

Proof of Sufficiency

Suppose that (uA, uS, q) is a WCP allocation satisfying interim participation con-

straints of A and S. We show that there exists a grand contract which realizes

(uA, uS, q) as a WPBE(wc) outcome. Consider the following grand contract, cor-

responding to T > 0 chosen sufficiently large:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where

MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS)) for ηA =

ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6= ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T for ηS 6=

ηA

WCP implies that uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η) for any θ, θ
′ ∈ Θ(η). Then

together with interim participation constraints of A and S, this grand contract has

a non-cooperative truthful equilibrium (m∗A(θ, η),m∗S(η)) = ((θ, η), η) based on prior

beliefs. Then there exists a WPBE where S offers the null side-contract on the
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equilibrium path for any η ∈ Π. In this WPBE, for any non-null side-contract, A’s

rejection always induces the truthful equilibrium based on prior beliefs. Then since

(uA, uS, q) is WCP, S cannot benefit from any non-null side-contract. This equilibrium

also satisfies the robustness criterion in WPBE(wc), since there is no room for S to

achieve a higher payoff, while leaving a payoff of at least uA(θ, η) to all types of A.

Therefore (uA, uS, q) is a WPBE(wc) outcome, given GC.

Proof of Proposition 3:

At the first step, note that the optimal side contract problem for S in DS involves

an outside option for A which is identically zero. This reduces to a standard problem

of contracting with a single agent with adverse selection and an outside option of

zero, where the principal has a prior distribution F (θ|η) over the agent’s cost θ in

state η. The CSC function equals h(θ|η), and the CVC function z(θ|η) reduces to

ĥ(θ|η) obtained by applying the ironing rule to h(θ|η) and distribution F (θ|η).

Given this, P’s contract with S in DS is effectively a contracting problem for P

with a single supplier whose unit supply cost is ĥ(θ|η). P’s prior over this supplier’s

cost is given by distribution function

G(h) ≡ Pr((θ, η) | ĥ(θ | η) ≤ h)

for h ≥ θ and G(h) = 0 for h < θ. Let G(h | η) denote the cumulative distribution

function of h = ĥ(θ | η) conditional on η:

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η)

for h ≥ ĥ(θ(η) | η)(= θ(η)) and G(h | η) = 0 for h < θ(η). Then G(h) =

Ση∈Πp(η)G(h | η). Since ĥ(θ | η) is continuous on Θ(η), G(h | η) is strictly increasing

in h on [θ(η), ĥ(θ̄(η) | η)]. However, G(h | η) may fail to be left-continuous.

Hence P’s problem in DS reduces to

maxEh[V (q(h))−X(h)]
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subject to

X(h)− hq(h) ≥ X(h
′
)− hq(h′)

for any h, h
′ ∈ [θ, h̄] and

X(h)− hq(h) ≥ 0

for any h ∈ [θ, h̄] where the distribution function of h is G(h) and h̄ ≡ maxη∈Π ĥ(θ̄(η) |

η). The corresponding problem in NS is

maxEθ[V (q(θ))−X(θ)]

subject to

X(θ)− θq(θ) ≥ X(θ
′
)− θq(θ′)

for any θ, θ
′ ∈ Θ and

X(θ)− θq(θ) ≥ 0

for any θ ∈ Θ. The two problems differ only in the underlying cost distributions of

P: G(h) in the case of DS and F (θ) in the case of NS. Since θ < ĥ(θ | η) for θ > θ(η),

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) < Pr(θ | θ ≤ h, η) = F (h | η)

for h ∈ (θ(η), ĥ(θ̄(η) | η)), implying

G(h) = Ση∈Πp(η)G(h | η) < Ση∈Πp(η)F (h | η) = F (h)

for any h ∈ (θ, h̄). Therefore the distribution of h in DS (strictly) dominates that of

θ in NS in the first order stochastic sense.

It remains to show that this implies that P must earn a lower profit in DS. We

prove the following general statement. Consider two contracting problems with a

single supplier which differ only in regard to the cost distributions G1 and G2, where

G1(h) < G2(h) for any h ∈ (h, h̄). Let the maximized profit of P with distribution G

be denoted W (G). We will show W (G1) < W (G2).

Let q1(h) denote the optimal solution of the problem based on G1(h).
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(i) First we show that V
′
(q1(h)) < h does not hold for any h. Suppose otherwise

that there exists some interval over which V
′
(q1(h)) < h. Then we can replace the

portion of q1(h) with V
′
(q1(h)) < h by q∗(h) with V

′
(q∗(h)) = h, without violating

the constraint that q(h) is non-increasing. It raises the value of the objective function,

since V (q1(h))− hq1(h) < V (q∗1(h))− hq∗1(h) for h where q1(h) is replaced by q∗(h),

and
∫ h̄
h
q(y)dy decreases with this replacement. This is a contradiction.

(ii) Next we show that for any h
′ ∈ [h, h̄), there exists a subinterval of [h

′
, h̄) over

which V
′
(q1(h)) > h. Otherwise, there exists h

′ ∈ [h, h̄) such that q1(h) = q∗(h)

almost everywhere on [h
′
, h̄). Then for any h ∈ [h

′
, h̄),

V (q∗(h))− hq∗(h)−
∫ h̄

h

q∗(y)dy = V (q∗(h̄))− h̄q∗(h̄),

since V (q∗(h)) − hq∗(h) =
∫ h̄
h
q∗(y)dy + V (q∗(h̄)) − h̄q∗(h̄) (which follows from the

Envelope Theorem: d[V (q∗(h))− hq∗(h)]/dh = −q∗(h)). Then

W (G1) = (1−G1(h
′
))[V (q∗(h̄))− h̄q∗(h̄)]

+ G1(h
′
)E[V (q1(h))− hq1(h)−

∫ h
′

h

q1(y)dy | h ≤ h
′
]−G1(h

′
)

∫ h̄

h′
q∗(y)dy.

Now consider output schedule q(h) such that q(h) = q1(h) for h ≤ h
′
and q(h) = q∗(h̄)

for h > h
′
. It is evident that q(h) is non-increasing in h and generates a higher value

of the objective function, since
∫ h̄
h′ q
∗(y)dy >

∫ h̄
h′ q
∗(h̄)dy. This is a contradiction.

(iii) We show there does not exist q such that q1(h) = q almost everywhere.

Otherwise, q1(h) = q almost everywhere for some q. Then

V (q)− hq −
∫ h̄

h

qdy = V (q)− h̄q,

which is not larger than V (q∗(h̄)) − h̄q∗(h̄) which equals maxq̃[V (q̃) − h̄q̃]. We can

show that the value of the objective function is increased by choosing the following

output schedule q̃(h):

q̃(h) =

 q∗(h̄) h ∈ [h∗, h̄]

q∗(h̄) + ε h ∈ [h, h∗]
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where h∗ is any element of (h, h̄), and ε > 0 is chosen so that V (q∗(h̄)+ε)−V (q∗(h̄)) >

εh∗. This is possible since limε→0
V (q∗(h̄)+ε)−V (q∗(h̄))

ε
= V

′
(q∗(h̄)) = h̄, implying exis-

tence of ε > 0 such that V (q∗(h̄) + ε)− V (q∗(h̄)) > εh∗ for any h∗ < h̄.

Then we obtain a contradiction, since

V (q∗(h̄))− h̄q∗(h̄)

< (1−G1(h∗))[V (q∗(h̄))− h̄q∗(h̄)] +G1(h∗)[V (q∗(h̄) + ε)− h̄q∗(h̄)− εh∗]

=

∫ h̄

h

[V (q̃(h))− hq̃(h)−
∫ h̄

h

q̃(y)dy]dG1(h).

(iv) Define

Φ(h) ≡ V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy.

We claim that Φ(h) is left-continuous and bounded. First we show that q1(h) is

left-continuous. Otherwise, there exists h
′ ∈ (h, h̄) such that q1(h

′−) > q1(h
′
). Now

consider q̃1(h) (which is left-continuous at h
′
) such that q̃1(h

′
) = q1(h

′−) and q̃1(h) =

q1(h) for any h 6= h
′
. Defining Φ̃(h) ≡ V (q̃1(h)) − hq̃1(h) −

∫ h̄
h
q̃1(y)dy, observe that

Φ̃(h) = Φ(h) for h 6= h
′

and Φ̃(h) > Φ(h) when h = h
′
. Then∫

[h,h̄]

Φ̃(h)dG(h) =

∫
[h,h̄]\h′

Φ̃(h)dG(h) + Φ̃(h
′
)[G(h

′
+)−G(h

′−)]

≥
∫

[h,h̄]\h′
Φ̃(h)dG(h) + Φ(h

′
)[G(h

′
+)−G(h

′−)] =

∫
[h,h̄]

Φ(h)dG(h)

with strict inequality if G(h) is discontinuous at h = h
′
. This is a contradiction. This

implies in turn that Φ(h) is also left-continuous. Moreover, Φ(h) is bounded, since

Φ(h) ≤ Φ(h) ≤ V (q1(h))− hq1(h) ≤ V (q∗(h))− hq∗(h) <∞

because of h > 0, and

Φ(h) ≥ Φ(h̄) = V (q1(h̄))− h̄q1(h̄) ≥ 0

because of V
′
(q) > V

′
(q1(h̄)) ≥ h̄ for q < q1(h̄) and V (0) = 0.
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(v) We claim that Φ(h) is non-increasing in h and is not constant on (h, h̄). To

show the former, note that for any h, we have

lim
ε→0+

Φ(h+ ε)− Φ(h)

ε

= lim
ε→0+

(1/ε)[V (q1(h+ ε))− (h+ ε)q1(h+ ε)−
∫ h̄

h+ε

q1(y)dy

− [V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy]]

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

− q1(h+) + lim
ε→0+

(1/ε)

∫ h+ε

h

q1(y)dy

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

for some q̂(h) ∈ [q1(h+), q1(h)]. This is non-positive since V
′
(q̂(h)) ≤ V

′
(q1(h+)) ≤ h

and limε→0+
q1(h+ε)−q1(h)

ε
≤ 0. Because of left-continuity of Φ(h), it implies that Φ(h)

is non-increasing in h.

Next we show that Φ(h) is not constant on (h, h̄). First we consider the case that

there exists h ∈ (h, h̄) such that q1(h+) < q1(h−). Then

Φ(h+)

= V (q1(h+))− hq1(h+)−
∫ h̄

h

q1(y)dy]

< V (q1(h−))− hq1(h−)−
∫ h̄

h

q1(y)dy = Φ(h−)

The inequality follows from V
′
(q1(h+)) > V

′
(q1(h−)) ≥ V

′
(q∗(h)) = h. Therefore

Φ(h) decreases discontinuously at h, implying that Φ(h) is not constant on (h, h̄).

Second we consider the case that q(h) is continuous on (h, h̄). Then from (ii) and

(iii) above, there exists an interval (h−, h+) with the positive measure such that

q1(h) is strictly decreasing and V
′
(q1(h)) > h on (h−, h+). Φ(h) is continuous and

almost everywhere differentiable (because of monotonicity of q1(h)). At any point of

differentiability,

Φ
′
(h) = [V

′
(q1(h))− h]q

′
1(h).
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This is negative almost everywhere on (h−, h+). Hence Φ(h) is strictly decreasing in

h on (h−, h+).

(vi) Now consider the contracting problem with cost distribution G2(h). Since

q1(h) is non-increasing in h, it is feasible for P to select this output schedule when the

cost distribution isG2. HenceW (G2) ≥
∫ h̄
h

Φ(h)dG2(h). Therefore if
∫ h̄
h

Φ(h)dG2(h) >∫ h̄
h

Φ(h)dG1(h) = W (G1), it follows that W (G2) > W (G1). Since G1(h) is right-

continuous and Φ(h) is left-continuous and bounded, we can integrate by parts:∫ h̄

h

Φ(h)dG1(h) +

∫ h̄

h

G1(h)dΦ(h) = Φ(h̄)G1(h̄)− Φ(h)G1(h) = Φ(h̄).

Similarly for G2(h),∫ h̄

h

Φ(h)dG2(h) +

∫ h̄

h

G2(h)dΦ(h) = Φ(h̄)G2(h̄)− Φ(h)G2(h) = Φ(h̄).

Hence ∫ h̄

h

Φ(h)dG2(h)−
∫ h̄

h

Φ(h)dG1(h) =

∫ h̄

h

[G1(h)−G2(h)]dΦ(h).

By (iv) and G2(h) > G1(h) for h ∈ (h, h̄), this is positive.

Proof of Proposition 4:

Step 1: For any η ∈ Π and any closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), there exists δ > 0 such that z(·) ∈ Z(η) for any z(·)

satisfying the following properties:

(i) z(θ) is increasing and differentiable with |z(θ)− θ| < δ and |z′(θ)− 1| < δ for

any θ ∈ Θ(η)

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ
′′
].

Proof of Step 1

For arbitrary η ∈ Π and arbitrary closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that θ(η) <

θ
′
< θ

′′
< θ̄(η), we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)
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and

ε2 ≡ max
θ∈[θ′ ,θ′′ ]

|f ′(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive on

Θ(η), ε1 > 0, and ε2 is positive and bounded above. We choose δ > 0 such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, it is obvious that there exists z(θ) which satisfies conditions (i) and (ii) of

the statement. Define

Λ(θ | η) ≡ (θ − z(θ))f(θ | η) + F (θ | η).

Since z(θ) is differentiable on Θ(η), Λ(θ | η) is also so. It is equal to Λ(θ | η) = F (θ | η)

on θ /∈ [θ
′
, θ
′′
]. For θ ∈ [θ

′
, θ
′′
],

∂Λ(θ | η)

∂θ
= (2− z′(θ))f(θ | η) + (θ − z(θ))f

′
(θ | η) > (1− δ)f(θ | η)− δ|f ′(θ | η)|

≥ (1− δ)ε1 − δε2.

This is positive by the definition of (ε1, ε2, δ). Then Λ(θ | η) is increasing in θ on

Θ(η) with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1. Since z(θ) is increasing in θ by the

definition, it is preserved even by ironing rule. Therefore z(·) ∈ Z(η).

Step 2: There exist η ∈ Π and an interval of θ with positive measure such that

F (θ|η)
f(θ|η)

/F (θ)
f(θ)

is increasing in θ.

The proof of Step 2

Define

A(θ | η) ≡ F (θ | η)

f(θ | η)
/
F (θ)

f(θ)
≡

∫ θ
θ(η)

f(y)a(η|y)dy

a(η|θ)F (θ)
.

If the result is false, A(θ | η) is non-increasing in θ ∈ (θ(η), θ̄(η)) for all η. Then

∂A(θ | η)/∂θ =
1

F (θ)2a(η | θ)2
[F (θ)a(η | θ)2f(θ)

−
∫ θ

θ(η)

f(y)a(η | y)dy{F (θ)∂a(η | θ)/∂θ + f(θ)a(η | θ)}] ≤ 0
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holds for θ ∈ (θ(η), θ̄(η)). Equivalently

∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[1/A(θ | η)− 1]a(η | θ).

Define Π(θ) ≡ {η ∈ Π | θ ∈ (θ(η), θ̄(η))}. By Ση∈Π(θ)a(η | θ) = 1, Ση∈Π(θ)∂a(η |

θ)/∂θ = 0. This implies that

0 = Ση∈Π(θ)∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[Ση∈Π(θ)a(η | θ)/A(θ | η)− 1],

or Ση∈Π(θ)a(η | θ)/A(θ | η) ≤ 1 holds any for θ ∈ (θ, θ̄). Since 1/A is convex in A and

Ση∈Π(θ)a(η | θ)A(θ | η) = 1,

Ση∈Π(θ)a(η | θ)/A(θ | η) ≥ 1/[Ση∈Π(θ)a(η | θ)A(θ | η)] = 1

with strict inequality if there exists η ∈ Π(θ) such that A(θ | η) 6= 1. This means

that A(θ | η) = 1 must hold for any η ∈ Π(θ) and any θ ∈ Θ. Then h(θ | η) = H(θ)

for any (θ, η) ∈ K. This is a contradiction, since η is informative about θ.

Step 3:

From Step 2, we can choose η∗ ∈ Π and a closed interval [θ
′
, θ
′′
] ⊂ Θ(η∗) such that

θ(η∗) < θ
′
< θ

′′
< θ̄(η∗) and A(θ | η∗) ≡ F (θ|η∗)

f(θ|η∗) /
F (θ)
f(θ)

is increasing in θ on [θ
′
, θ
′′
].

According to the procedure in Step 1, we select δ > 0 for η∗ and [θ
′
, θ
′′
]. Then we

also choose λ > 0, closed intervals ΘL ⊂ [θ
′
, θ
′′
] and ΘH ⊂ [θ

′
, θ
′′
] ,

λ <
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘL ≡ [θL, θ̄L] ⊂ [θ
′
, θ
′′
]

λ >
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘH ≡ [θH , θ̄H ] ⊂ [θ
′
, θ
′′
]

with θ̄L < θH . These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗) > 0 for θ ∈ ΘL

and

H(θ)− (1− λ)θ − λh(θ | η∗) < 0 for θ ∈ ΘH .
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Step 4: Construction of z(θ | η)

Now let us construct z(θ | η) which satisfies the following conditions.

(A) For η 6= η∗, z(θ | η) = θ for any θ ∈ Θ(η).

(B) For η∗, z(θ | η∗) satisfies

(i) z(θ | η∗) is increasing and differentiable with |z(θ | η∗) − θ| < δ and

|z′(θ | η∗)− 1| < δ for any θ ∈ Θ(η∗)

(ii) z(θ | η∗) = θ for any θ /∈ ΘH ∪ΘL

(iii) For θ ∈ ΘL, z(θ | η∗) satisfies (a) z(θ | η∗) ≤ θ with strict inequality for

some subinterval of ΘL of positive measure, and (b) H(z)−(1−λ)z−λh(θ |

η∗) > 0 for any z ∈ [z(θ | η∗), θ].

(iv) For θ ∈ ΘH , z(θ | η∗) satisfies (a) z(θ | η∗) ≥ θ with strict inequality for

some some subinterval of ΘH of positive measure, (b) z(θ | η∗) < h(θ | η∗)

and (c) H(z)− (1− λ)z − λh(θ | η∗) < 0 for any z ∈ [θ, z(θ | η∗)].

(v) E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +
∫ θ̄(η∗)
z(θ|η∗) q

NS(z)dz | η∗] = 0.

We now argue there exists z∗(θ | η∗) which satisfies (B(i)-(v)). Step 3 guarantees

that we can select z(θ | η∗) which satisfies (B(i)-(iv)). Since

(z − h(θ | η∗))qNS(z) +

∫ θ̄(η∗)

z

qNS(y)dy

is increasing in z for z < h(θ | η∗), and

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(y)dy | η∗] = 0,

the choice of z(θ | η∗) ≤ θ on ΘL (or z(θ | η∗) ≥ θ on ΘH) reduces (or raises)

E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]
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away from zero. For any pair of parameters αH , αL lying in [0, 1], define a function

zαL,αH (θ|η∗) which equals (1−αL)z(θ|η∗) +αLθ on ΘL, equals (1−αH)z(θ|η∗) +αHθ

on ΘH and equals θ elsewhere. It is easily checked that any such function also satisfies

conditions (B(i)–(iv)). Define

Q(αL, αU) ≡ E[(zαL,αH (θ | η∗)−h(θ | η∗))qNS(zαL,αH (θ | η∗))+
∫ θ̄(η∗)

zαL,αH (θ|η∗)
qNS(z)dz | η∗].

Then Q is continuously differentiable, strictly increasing in αL and strictly decreasing

in αH . By (B(v)), Q(1, 1) = 0. The Implicit Function Theorem ensures existence of

α∗L, α
∗
H both smaller than 1 such that Q(α∗L, α

∗
H) = 0. Hence the function zα∗L,α∗H (θ|η∗)

satisfies (B(i)-(v)).

Step 5

By Step 1, z(· | η) constructed in Step 4 is in Z(η) for any η ∈ Π. Consider the

following allocation (uA, uS, q):

q(θ, η) = qNS(z(θ | η))

uA(θ, η) =

∫ θ̄

θ

qNS(z(y | η))dy

uS(θ, η) = XNS(z(θ | η))− θqNS(z(θ | η))−
∫ θ̄(η)

θ

qNS(z(y | η))dy −
∫ θ̄

θ̄(η)

qNS(y)dy.

where

XNS(z(θ | η)) ≡ z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz.

The construction of z(θ | η) implies that z(θ̄(η) | η) ≤ θ̄ for any η ∈ Π. Hence

XNS(z(θ | η))− z(θ | η)qNS(z(θ | η)) ≥ 0

for any (θ, η) ∈ K and

E[uS(θ, η) | η] = 0

from (A) and (B(v)). Then (uA, uS, q) is a WCP allocation satisfying interim PCs.

Now we show that this allocation generates a higher payoff to P than the optimal
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allocation in NS. P’s resulting expected payoff conditional on η∗ (maintaining the

expected payoff conditional on η 6= η∗ unchanged) is:

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗].

With E[uS(θ, η∗) | η∗] = 0, this is equal to

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

+ λE[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]

= E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗] | η∗]

− λ

∫ θ̄

θ̄(η∗)
qNS(z)dz

On the other hand,

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗] = 0.

P’s expected payoff conditional on η∗ in the optimal allocation in NS is:

E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

+ λE[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− [(1− λ)θ + λh(θ | η)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

− λ

∫ θ̄

θ̄(η∗)
qNS(z)dz
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The difference between two payoffs is

E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

− E[V (qNS(θ))− [(1− λ)θ + λh(θ | η∗)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[V
′
(qNS(z))− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[H(z)− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗].

The second equality uses V
′
(qNS(z)) = H(z). From the construction of z(θ | η∗)

in Step 4 and qNS
′
(z) < 0, this is positive. We have thus found an implementable

allocation generating a higher payoff to P in CS compared to the optimal allocation

in NS.

Proof of Proposition 5:

Since f(θ | η∗) is decreasing in θ, h(θ | η∗) is increasing in θ, implying h(θ | η∗) =

ĥ(θ | η∗). Since f(θ|η∗)
f(θ|η)

is strictly decreasing in θ for any η 6= η∗, f(θ
′ |η∗)

f(θ|η∗) >
f(θ
′ |η)

f(θ|η)
for

θ > θ
′
. Θ(η) = Θ(η∗) = Θ then implies

F (θ | η∗)
f(θ | η∗)

=

∫ θ

θ

f(θ
′ | η∗)

f(θ | η∗)
dθ
′
>

∫ θ

θ

f(θ
′ | η)

f(θ | η)
dθ
′
=
F (θ | η)

f(θ | η)
.

Hence h(θ | η∗) > h(θ | η) for θ ∈ (θ, θ̄] and h(θ | η∗) = h(θ | η) = θ. The ironing

procedure then ensures that ĥ(θ | η∗) > ĥ(θ | η) for any θ > θ and any η 6= η∗.

Thus ĥ(θ̄|η∗) > ĥ(θ̄|η) while ĥ(θ|η∗) = ĥ(θ|η) = θ for η 6= η∗, i.e., the range of ĥ

conditional on η∗ includes the range of ĥ conditional on η. Since h(θ | η∗) = ĥ(θ | η∗)

is strictly increasing and continuously differentiable, q∗(ĥ(θ | η∗)) is also continuously

differentiable and strictly decreasing in θ.

Suppose the result is false, and the second best allocation

(uSBA (θ, η), uSBS (θ, η), qSB(θ, η))
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is implementable with weak collusion. Then Proposition 1 implies existence of π(· |

η) ∈ Y (η) such that for any (θ, η), (θ
′
, η
′
),

qSB(θ, η) = q∗(ĥ(θ | η))

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ 0

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ XSB(θ
′
, η
′
)− z(θ | η)qSB(θ

′
, η
′
)

where z(θ | η) ≡ z(θ, π(θ | η), η) and

XSB(θ, η) ≡ uSBA (θ, η) + uSBS (θ, η) + θqSB(θ, η).

Step 1: z(θ | η) ∈ [z(θ | η∗), z(θ̄ | η∗)] holds for any (θ, η).

The proof is as follows. Since ĥ(θ | η) < ĥ(θ | η∗) for any θ > θ and η 6= η∗,

qSB(θ, η∗) = q∗(ĥ(θ | η∗)) < q∗(ĥ(θ | η)) = qSB(θ, η).

Then z(θ | η∗) ≥ z(θ | η) follows from the coalitional incentive constraints.

If on the other hand z(θ|η) < z(θ|η∗), there exists a non-degenerate interval T

of θ for which z(θ|η) ∈ (z(θ|η), z(θ|η∗)). The second-best output in either state

(θ, η) or (θ, η∗) is the first-best level q∗(θ) corresponding to cost θ. The coalitional

incentive constraints imply output must be constant over T given η, so must equal

the first-best q∗(θ) corresponding to cost θ. But ĥ(θ, η) ≥ θ for every θ ∈ T , implying

qSB(θ, η) = q∗(ĥ(θ, η)) ≤ q∗(θ) < q∗(θ), and we obtain a contradiction.

In what follows, we denote [z(θ | η∗), z(θ̄ | η∗)] by [z, z̄].

Step 2:

Now we claim that there exists φ(·) : [h, h̄]→ [z, z̄] which satisfies

(i) z(θ | η) = φ(ĥ(θ | η)).

(ii) φ(h) is continuous, and non-decreasing in h.
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(iii) h− φ(h) is non-negative and increasing in h.

First we show that for any (θ, η) and (θ
′
, η
′
) such that ĥ(θ | η) = ĥ(θ

′ | η′), z(θ | η) =

z(θ
′ | η′). Otherwise, there exists (θ

′
, η
′
) and (θ

′′
, η
′′
) such that ĥ(θ

′ | η′) = ĥ(θ
′′ | η′′)

and z(θ
′ | η′) 6= z(θ

′′ | η′′). Suppose z(θ
′ | η′) < z(θ

′′ | η′′) without loss of generality.

By Step 1 and the continuity of z(θ | η∗), there exists θ1 and θ2 (θ1 < θ2) such that

z(θ1 | η∗) = z(θ
′ | η′) < z(θ

′′ | η′′) = z(θ2 | η∗).

Since z(θ | η∗) is continuous in θ and non-decreasing in θ,

z(θ
′ | η′) ≤ z(θ | η∗) ≤ z(θ

′′ | η′′)

for any θ ∈ [θ1, θ2]. The coalitional incentive constraints imply

qSB(θ
′
, η
′
) ≥ qSB(θ, η∗) ≥ qSB(θ

′′
, η
′′
)

for any θ ∈ [θ1, θ2]. On the other hand ĥ(θ
′ | η′) = ĥ(θ

′′ | η′′) implies qSB(θ
′
, η
′
) =

qSB(θ
′′
, η
′′
). Therefore qSB(θ, η∗) = qSB(θ

′
, η
′
) = qSB(θ

′′
, η
′′
) for any θ ∈ [θ1, θ2]. This

contradicts the property that qSB(θ, η∗) must be strictly decreasing in θ.

Hence there exists a function φ(·) : [h, h̄]→ [z, z̄] such that z(θ | η) = φ(ĥ(θ | η)).

Since z(θ | η∗) and ĥ(θ | η∗) are continuous in θ, φ(h) must be continuous.

Second we show that φ(h) is non-decreasing in h. For any (θ, η) and (θ
′
, η
′
) such

that ĥ(θ | η) < ĥ(θ
′ | η′),

qSB(θ, η) = q∗(ĥ(θ | η)) > q∗(ĥ(θ
′ | η′)) = qSB(θ

′
, η
′
).

The coalitional incentive constraints then imply z(θ | η) ≤ z(θ
′ | η′).

Third we show h − φ(h) is non-negative and increasing in h. Since qSB(θ, η∗) =

q∗(ĥ(θ | η∗)) is strictly decreasing in θ, the pooling region Θ(π(· | η∗), η∗) must be

empty. Hence it must be the case that

z(θ | η∗) = θ +
F (θ | η∗)− Λ(θ | η∗)

f(θ | η∗)
,
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implying
Λ(θ | η∗)
f(θ | η∗)

= ĥ(θ | η∗)− φ(ĥ(θ | η∗)).

The LHS is non-negative and increasing in θ, since f(θ | η∗) is decreasing in θ and

Λ(θ | η∗) is non-negative and non-decreasing in θ. So h− φ(h) must be non-negative

and increasing in h ∈ [h, h̄].

Step 3:

Define R(z) ≡ max(θ̃,η̃)∈K [XSB(θ̃, η̃)− zqSB(θ̃, η̃)] for any z ∈ [z, z̄]. Then

R(z(θ | η)) = XSB(θ, η)− z(θ | η)qSB(θ, η)

and by the Envelope Theorem, R
′
(z(θ | η)) = −qSB(θ, η) = −q∗(ĥ(θ | η)). It also

implies R
′
(φ(h)) = −q∗(h). Then S’s interim payoff is

E[XSB(θ, η)− h(θ | η)qSB(θ, η) | η]

= E[XSB(θ, η)− z(θ | η)qSB(θ, η) + (z(θ | η)− h(θ | η))qSB(θ, η) | η]

= E[R(φ(ĥ(θ | η))) + (φ(ĥ(θ | η))− ĥ(θ | η))q∗(ĥ(θ | η)) | η]

with the last equality using the property of the ironing rule.

Next define

L(h) ≡ R(φ(h)) + (φ(h)− h)q∗(h).

L(h) is continuous and differentiable almost everywhere, since the monotonicity im-

plies the differentiability of φ(h) almost everywhere. If the second best allocation is

implementable with weak collusion, E[L(ĥ(θ | η)) | η] = 0 holds for any η. The first

derivative of L(h) is

L
′
(h) = (φ(h)− h)q∗

′
(h)− q∗(h).

Since q∗(h) is continuously differentiable, L
′
(h) is continuous and also differentiable

almost everywhere and

L
′′
(h) = (φ

′
(h)− 1)q∗

′
(h) + (φ(h)− h)q∗

′′
(h)− q∗′(h).
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By using V
′
(q∗(h)) = h, we can show that V

′′′
(q) ≤ 0 implies q∗

′′
(h) ≤ 0, and

0 < V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
implies q∗

′′
(h) > 0 and hq∗

′′
(h) + q∗

′
(h) < 0. By φ

′
(h)− 1 < 0

and φ(h)− h ≤ 0, it follows that L
′′
(h) > 0.

The strict convexity of L then implies L(h) > L(h
′
)−(h

′−h)L
′
(h
′
) for any h 6= h

′
.

Hence

E[L(ĥ(θ | η∗)) | η∗] = E[L(h(θ | η∗)) | η∗]

> E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η∗)]L′(ĥ(θ | η)) | η∗]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

for any η 6= η∗. L(ĥ(θ | η)) − [ĥ(θ | η) − θ]L
′
(ĥ(θ | η)) +

∫ θ̄
θ
L
′
(ĥ(y | η))dy is

non-increasing in θ, since

−[ĥ(θ | η)− θ]L′′(ĥ(θ | η)) < 0

and is strictly decreasing in θ over some interval (since the ironing rule ensures ĥ(θ | η)

is continuous with ĥ(θ | η) = θ and ĥ(θ̄ | η) > θ̄). Then property (ii) implies

F (θ | η∗) > F (θ | η) for θ ∈ (θ, θ̄) and for any η 6= η∗. A first order stochastic

dominance argument then ensures

E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

> E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η)]L
′
(ĥ(θ | η)) | η]

= E[L(ĥ(θ | η)) | η].

where the last equality utilizes a property of the ironing transformation. Therefore S

must earn a positive rent in state η∗, as E[L(h(θ | η∗)) | η∗] > E[L(ĥ(θ | η)) | η] ≥ 0.

This is a contradiction.

Proof of Propositions 6, 7, 8: sketched in the text.
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Proof of Proposition 9: We start by defining H̄(θ) on θ ≤ 1 such that H̄(θ) = 0

for θ ≤ 0 and H̄(θ) = H(θ) for θ ∈ (0, 1]. We also define l̄i(θ) and h̄i(θ) (i = 1, 2)

as l̄i(θ) = li(θ) for θ ∈ (θi, θ̄i] and l̄i(θ) = −∞ for θ = θi, and h̄i(θ) = hi(θ) for

θ ∈ [θi, θ̄i) and h̄i(θ) = +∞ for θ = θ̄i. Then conditions (8, 9, 10) reduce to

max{l̄1(θ1), l̄2(θ2)} ≤ b ≤ min{h̄1(θ1), h̄2(θ2)}.

As a first step, let us show that it is beneficial to hire S for any V ∈ (max{c, H̄(l2(c))}, H(1)).

For any V ∈ (max{c, H̄(l2(c))}, H(1)), since h1(0) = 0 < V and h2(c) = c < V ,

θSB1 > 0, θSB2 > c and θNS ∈ (0, 1) where V = H(θNS). P’s payoff without S is

ΠNS ≡ F (θNS)[V −θNS] > 0. In the third-best problem with S, ΠNS can be achieved

if we select X0 = 0, b = θ1 = θNS and θ2 = c in the case of c < V < H(c), and

X0 = 0, θ2 = b = θNS and θ1 = c in the case of H(c) ≤ V ≤ H(1).

First consider the case max{c, H̄(l2(c))} < V < H(c). Then we observe the

following relationship among the thresholds in NS and SB:

θSB1 = θNS < c < θSB2 .

Let us create a small variation from the optimal NS (X0 = 0, b = θ1 = θNS and

θ2 = c) to (θ
′
1, θ

′
2, b

′
, X

′
0) which satisfies

(i) θ
′
1 = θ1 = θNS

(ii) θ
′
2 is selected such that θ

′
2 ∈ (θ2, θ

SB
2 ) and F (θ1 | η1) > F (θ

′
2 | η2)

(iii) b
′

=
θ1F (θ1|η1)−θ′2F (θ

′
2|η2)

F (θ1|η1)−F (θ
′
2|η2)

< θ1 < θ
′
2

(iv) X
′
0 = F (θ1 | η1)(θ1 − b

′
) = F (θ

′
2 | η2)(θ

′
2 − b

′
) > 0.

With this variation, the threshold pair moves closer to the second best one, while

maintaining S’s zero information rent owing to (iv). Hence P’s payoff is strictly

improved. In order for this allocation to be implementable under weak collusion, we

need to check that

max{l1(θ1), l2(θ
′
2)} ≤ b

′ ≤ min{h1(θ1), h2(θ
′
2)}.
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It is evident that

b
′
< θ1 ≤ min{h1(θ1), h2(θ

′
2)}.

max{c, H̄(l2(c))} < V = H(θNS) implies l2(c) < θ1 = θNS. Since limθ
′
2→c

b
′

= θ1 =

θNS, we can find θ
′
2 sufficiently close to c such that

max{l1(θ1), l2(θ
′
2)} ≤ b

′
.

Next consider the case H(c) ≤ V < H(1). Then

θSB1 = c < θNS < θSB2

Construct the following small variation from the optimal NS allocation ((θ1, θ2, b,X0) =

(c, θNS, θNS, 0)) to (θ
′
1, θ

′
2, b

′
, X

′
0) which satisfies

(i) X
′
0 = F (θ

′
2 | η2)(θ

′
2 − b

′
)

(ii) θ
′
1 = θ1 = c

(iii) θ
′
2 satisfies θNS < θ

′
2 < θSB2

(iv) b
′

=
θNS−F (θ

′
2|η2)θ

′
2

(1−F (θ
′
2|η2))

< θNS.

Since b
′
< θNS < θ

′
2, X

′
0 > 0, and the coalitional participation constraint is satisfied.

b
′ ≤ min{h̄1(c), h̄2(θ

′
2)} is obviously satisfied. b

′ ≥ max{l̄1(c), l̄2(θ
′
2)} = max{c, l2(θ

′
2)}

is also satisfied for θ
′
2 sufficiently close to θNS, since limθ

′
2→θNS

b
′

= θNS and θNS >

max{c, l2(θNS)}. P’s payoff is strictly improved with this allocation, since it moves

closer to the second best, while S’s interim payoff is unchanged as (b
′ − c) + X

′
0 =

(θNS − c) in state η1 and S earns zero rent in state η2 owing to (i) above.

To proceed with the necessity part of the result, we establish the following lem-

mata which help characterize the optimal allocation.

Lemma 4 In the third-best solution, either F (θ1 | η1) > F (θ2 | η2) or (θ1, θ2) = (c, 1)

holds.
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Proof of Lemma 4

Suppose otherwise that the solution satisfies F (θ1 | η1) ≤ F (θ2 | η2) and (θ1, θ2) 6=

(c, 1). This implies that θ1 < c. The objective function of P

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)−max{0, F (θ1 | η1)(θ1 − b), F (θ2 | η2)(θ2 − b)}

is non-decreasing in b for b ≤ θ2, and is non-increasing in b for b > θ2, implying that

it is maximized at b = θ2. Feasibility requires that max{l̄1(θ1), l̄2(θ2)} ≤ θ2. Hence

b = min{θ2, h̄1(θ1), h̄2(θ2)} in the optimal solution, implying P’s payoff is:

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)− F (θ2 | η2)(θ2 − b).

But this is less than the P’s payoff in the optimal solution to NS, since

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)− F (θ2 | η2)(θ2 − b)

≤ [p1F (θ1 | η1) + p2F (θ2 | η2)](V − θ2).

< F (θNS)(V − θNS)

The first inequality comes from b ≤ θ2 and F (θ1 | η1) ≤ F (θ2 | η2). The second

inequality comes from the fact that (i) if V > θ2,

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − θ2) < [p1 + p2F (θ2 | η2)](V − θ2)

= F (θ2)(V − θ2) ≤ F (θNS)(V − θNS)

and (ii) if V ≤ θ2,

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − θ2) ≤ 0 < F (θNS)(V − θNS).

Hence we obtain a contradiction, establishing the Lemma.

For (θ1, θ2) which satisfies F (θ1 | η1) > F (θ2 | η2), let us define B(θ1, θ2) as

B(θ1, θ2) ≡ θ1F (θ1 | η1)− θ2F (θ2 | η2)

F (θ1 | η1)− F (θ2 | η2)
,
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which is the value of b which satisfies F (θ1 | η1)(θ1 − b) = F (θ2 | η2)(θ2 − b). It is

evident that B(θ1, θ2) ≤ θ1 ≤ θ2. Now let us consider the following problem (P1):

max[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)− F (θ2 | η2)(θ2 − b)

subject to

b = max{B(θ1, θ2), l1(θ1), l̄2(θ2)}

and

F (θ1 | η1) > F (θ2 | η2).

Then we can characterize the optimal allocation as follows.

Lemma 5 If the problem P1 has a solution (θ∗1, θ
∗
2), it is a pair of thresholds in the

optimal allocation associated with

b∗ = max{B(θ∗1, θ
∗
2), l1(θ∗1), l̄2(θ∗2)}

and

X∗0 = F (θ∗2 | η2)(θ∗2 − b∗).

If the problem P1 does not have a solution, (θ1, θ2, b,X0) = (c, 1, 1, 0) is the optimal

allocation.

Proof of Lemma 5

Suppose that the optimal threshold (θ∗1, θ
∗
2), which is a solution of the third-best

problem, satisfies F (θ∗1 | η1) > F (θ∗2 | η2). Then (θ∗1, θ
∗
2) must be also a solution

of the revised third-best problem where the constraint F (θ1 | η1) > F (θ2 | η2) is

added; we hereafter refer to this as problem P
′
0. Consider now the solution of P

′
0. For

(θ1, θ2) which satisfies the additional constraint F (θ1 | η1) > F (θ2 | η2), the objective

function in P
′
0:

[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)−max{0, F (θ1 | η1)(θ1 − b), F (θ2 | η2)(θ2 − b)}
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is non-decreasing in b for b < B(θ1, θ2) and is non-increasing in b for b ∈ [B(θ1, θ2), θ2]

and is non-increasing in b for b > θ2. Therefore it is maximized at b = B(θ1, θ2). Since

min{h̄1(θ1), h̄2(θ2)} > θ1 ≥ B(θ1, θ2) for any (θ1, θ2) such that F (θ1 | η1) > F (θ2 | η2),

the optimal b must satisfy

b = max{B(θ1, θ2), l̄1(θ1), l̄2(θ2)}.

Since F (θ1 | η1) > F (θ2 | η2) also implies θ1 > 0, we can replace l̄1(θ1) by l1(θ1)

without loss of generality. Since max{l̄(θ1), l̄2(θ2)} < θ2 and B(θ1, θ2) ≤ θ2, this

optimal choice of b must be in [B(θ1, θ2), θ2], implying that the optimal choice of X0

satisfies

X0 = F (θ2 | η2)(θ2 − b).

Let L denote the set of (θ1, θ2) pairs satisfying the property that l2(θ2) ≤ h1(θ1),

provided θ1 < c < θ2. Any feasible allocation must satisfy the property that (θ1, θ2) ∈

L, since conditions (8, 9, 10) require the existence of b such that b ≤ h1(θ1) and

b ≥ l2(θ2) if θ1 < c < θ2. Since l1(θ) = h2(θ) = θ + F (θ)−F (c)
f(θ)

for all θ, it follows that

l1(θ1) ≤ h2(θ2) is automatically satisfied. Hence the condition (θ1, θ2) ∈ L ensures

that there exists b such that (b, θ1, θ2) satisfies conditions (8, 9, 10).

Hence problem P
′
0 reduces to

max[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)− F (θ2 | η2)(θ2 − b)

subject to

b = max{B(θ1, θ2), l1(θ1), l̄2(θ2)}

F (θ1 | η1) > F (θ2 | η2)

and

(θ1, θ2) ∈ L.

where, by hypothesis, the optimal pair of thresholds (θ∗1, θ
∗
2), is also the solution of

this problem.
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Next we show that (θ∗1, θ
∗
2) is also the solution of the problem P1 where the last

constraint (θ1, θ2) ∈ L is dropped from the above problem. To show it by contradic-

tion, suppose that (θ∗1, θ
∗
2) is the solution of P1 with additional constraint (θ1, θ2) ∈ L,

but is not the solution of P1. Then we can find (θ
′
1, θ

′
2) /∈ L such that the objective

function of P1 can take a higher value, satisfying F (θ
′
1 | η1) > F (θ

′
2 | η2). (θ

′
1, θ

′
2) /∈ L

implies that h1(θ
′
1) < l2(θ

′
2), θ

′
2 > c and θ

′
1 < c. Then since

max{B(θ
′
1, θ

′
2), l1(θ

′
1)} < θ

′
1 ≤ h1(θ

′
1) < l2(θ

′
2),

the choice of b must be b
′
= l2(θ

′
2) ≤ θ

′
2. Since the value of the objective function

[p1F (θ
′
1 | η1) + p2F (θ

′
2 | η2)](V − l2(θ

′
2))− F (θ

′
2 | η2)(θ

′
2 − l2(θ

′
2))

is positive (as P earns a positive payoff under (θ∗1, θ
∗
2)), V > l2(θ

′
2) must be satisfied.

Now define θ
′′
1 ≡ max{θ1 | h1(θ1) ≤ l2(θ

′
2), θ1 ≤ c}, which is strictly larger than θ

′
1.

Then (θ
′′
1 , θ

′
2) ∈ L and F (θ

′′
1 | η1) > F (θ

′
2 | η2). Since

max{B(θ
′′
1 , θ

′
2), l1(θ

′′
1 )} ≤ θ

′′
1 < h1(θ

′′
1 ) ≤ l2(θ

′
2),

the choice of b is still equal to l2(θ
′
2). It is evident that this choice (θ

′′
1 , θ

′
2) generates

a higher value of the objective function:

[p1F (θ
′′
1 | η1) + p2F (θ

′
2 | η2)](V − l2(θ

′
2))− F (θ

′
2 | η2)(θ

′
2 − l2(θ

′
2))

> [p1F (θ
′
1 | η1) + p2F (θ

′
2 | η2)](V − l2(θ

′
2))− F (θ

′
2 | η2)(θ

′
2 − l2(θ

′
2)).

Since the left side hand cannot be larger than the maximum value in the problem P1

with the additional constraint (θ1, θ2) ∈ L, we obtain a contradiction. We conclude

that if (θ∗1, θ
∗
2) which is the solution of the problem P0 satisfies F (θ∗1 | η1) > F (θ∗2 | η2),

the problem P1 has a solution (θ∗1, θ
∗
2). Hence if P1 does not have a solution, the

solution of P0 does not satisfy F (θ∗1 | η1) > F (θ∗2 | η2). Then from Lemma 4,

(θ∗1, θ
∗
2) = (c, 1) is the optimal in P0.

Finally we show that if P1 has a solution, it must be always a solution of P0.

Suppose that P1 has a solution (θ
′
1, θ

′
2), but it is not a solution of P0. Then from
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Lemma 4, (θ1, θ2) = (c, 1) must be solution of P0 and the P’s payoff is V − 1. Then

with (θ
′
1, θ

′
2), the objective function in the problem P1 must take strictly lower value

than V − 1. However the value of the objective function in the problem P1 can

approximate V − 1 by selecting (θ1, θ2) which is sufficiently close to (c, 1) without

violating all the constraints. This is a contradiction.

Using these lemmata, we show that if c < H̄(l2(c)), there exists V1 such that

c < V1 ≤ H̄(l2(c)) and S is not valuable for V ∈ (c, V1] and valuable for V ∈

(V1, H̄(l2(c)). In order to show it by contradiction, suppose that the supervisor is

valuable for any V ∈ (c, H̄(l2(c))]. Then we can show that c < θ2 < 1 must hold

in the optimal allocation for any V ∈ (c,H(l2(c))]. The argument is as follows.

Consider the problem with the restriction to θ2 = c. Then B(θ1, c) = θ1 and b = θ1,

and the maximum value in the problem P1 is ΠNS under θ1 = θNS. It implies that

if S is valuable, we must have θ2 > c. With the choice of θ2 = 1, P’s possible

maximum payoff is V − 1 with the choice of θ1 = c, which is lower than ΠNS since

H̄(l2(c)) < H(1), implying θ2 < 1.

Therefore the following problem (with the additional constraint θ2 > c) has a

solution and its maximum value is larger than ΠNS for any V ∈ (c, H̄(l2(c))]:

max[p1F (θ1 | η1) + p2F (θ2 | η2)](V − b)− F (θ2 | η2)(θ2 − b)

subject to

b = max{B(θ1, θ2), l1(θ1), l2(θ2)}

and

F (θ1 | η1) > F (θ2 | η2).

θ2 > c.

Let (θ∗1, θ
∗
2) be the solution of the above problem. First we show that θ∗1 > l2(c) by

contradiction. Suppose θ∗1 ≤ l2(c). Since it implies θ∗1 < c < θ∗2,

l1(θ∗1) < θ∗1 ≤ l2(c) < l2(θ∗2)
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and

B(θ∗1, θ
∗
2) < θ∗1 ≤ l2(c) < l2(θ∗2).

It implies b∗ = l2(θ∗2). The objective function in the above problem takes a value of

[p1F (θ∗1 | η1) + p2F (θ∗2 | η2)](V − l2(θ∗2))− F (θ∗2 | η2)(θ∗2 − l2(θ∗2)).

Since this must be larger than ΠNS > 0 and θ∗2 > l2(θ∗2), V > l2(θ∗2) must hold. But

P’s payoff can be improved with the small increase in θ1 from θ∗1 without violating

all constraints of the above problem, which is a contradiction.

With b∗ = max{B(θ∗1, θ
∗
2), l1(θ∗1), l2(θ∗2)} and F (θ∗1 | η1) > F (θ∗2 | η2),

F (θ∗2 | η2)(θ∗2 − b∗) ≥ F (θ∗1 | η1)(θ∗1 − b∗).

It implies that

[p1F (θ∗1 | η1) + p2F (θ∗2 | η2)](V − b∗)− F (θ∗2 | η2)(θ∗2 − b∗)

≤ p1F (θ∗1 | η1)(V − θ∗1) + p2F (θ∗2 | η2)(V − θ∗2).

Then P’s payoff in the optimal allocation cannot be larger than the maximum value

of the problem:

max p1F (θ1 | η1)(V − θ) + p2F (θ2 | η2)(V − θ2)

subject to

θ1 ≥ l2(c)

θ2 ≥ c.

Let Π̄(V ) be the maximum value of the above problem, and ΠNS(V ) be the optimal

payoff in NS for V . It is evident that both Π̄(V ) and ΠNS(V ) are continuous in

V . By hypothesis, Π̄(V ) > ΠNS(V ) for any V ∈ (c, H̄(l2(c))]. But lim+V→c Π̄(V ) =

F (l2(c))[V − l2(c)] < lim+V→c ΠNS(V ), since θNS < l2(c) at V = c. This is the

contradiction, implying that there exists some interval of V on (c, H̄(l2(c))] such that

S is not valuable.
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Next we show that if there exists V ∈ (c, H̄(l2(c))) such that S is valuable, S is also

valuable for any V
′ ∈ (V, H̄(l2(c))]. Otherwise, suppose there exists V

′ ∈ (V, H̄(l2(c))]

such that (θ1, θ2) = (θNS(V
′
), c) is the solution of P1, even though (θ∗1, θ

∗
2), which is

the solution of P1 for V satisfies θ∗1 > l2(c) and θ∗2 > c (by the reason explained

above). It implies that

[p1F (θ∗1 | η1) + p2F (θ∗2 | η2)](V − b∗)− F (θ∗2 | η2)(θ∗2 − b∗)

> p1F (θNS(V
′
) | η1)(V − θNS(V

′
)).

and

p1F (θNS(V
′
) | η1)(V

′ − θNS(V
′
))

> [p1F (θ∗1 | η1) + p2F (θ∗2 | η2)](V
′ − b∗)− F (θ∗2 | η2)(θ∗2 − b∗).

This implies

p1F (θNS(V
′
) | η1) > p1F (θ∗1 | η1) + p2F (θ∗2 | η2).

But this is inconsistent with θNS(V
′
) < l2(c) < θ∗1 and c < θ∗2, a contradiction. This

argument guarantees the existence of a critical value V1 of V in (c, H̄(l2(c))], such

that S is not valuable (or valuable) for lower (or higher) V than V1.

Finally let us show that there exists a critical value of V , V2, with V2 ≥ H(1) such

that S is not valuable for V higher than V2. Otherwise suppose that S is valuable for

any V ≥ H(1). This implies that P1 has a solution with θ∗2 < 1 for any V ≥ H(1)

and its maximum value is higher than V − 1. Let (θ∗1, θ
∗
2, b
∗) be the solution of P1 for

V ≥ H(1). Then

[p1F (θ∗1 | η1) + p2F (θ∗2 | η2)](V − b∗)− F (θ∗2 | η2)(θ∗2 − b∗)

≤ [p1 + p2F (θ∗2 | η2)](V − l2(θ∗2))− F (θ∗2 | η2)(θ∗2 − l2(θ∗2)),

since V ≥ H(1) > l2(θ∗2), b∗ ≥ l2(θ∗2) and F (θ∗1 | η1) > F (θ∗2 | η2). By hypothesis,

there must exist θ∗2 < 1 such that

[p1 + p2F (θ∗2 | η2)](V − l2(θ∗2))− F (θ∗2 | η2)(θ∗2 − l2(θ∗2)) > V − 1
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for any V ≥ H(1). It also implies that there exists θ2 < 1 such that

1− [p1 + p2F (θ2 | η2)]l2(θ2)− F (θ2 | η2)(θ2 − l2(θ2))

p2[1− F (θ2 | η2)]
> V

for any V ≥ H(1). But this is impossible, since the left hand side is bounded above

on [c, 1], because f(θ | η2) is continuous on [c, 1] and

lim
θ2→1

1− [p1 + p2F (θ2 | η2)]l2(θ2)− F (θ2 | η2)(θ2 − l2(θ2))

p2[1− F (θ2 | η2)]
= 1 +

1

f(1)

by using l’Hopital’s rule. This is a contradiction. Therefore if V is sufficiently large,

S cannot generate any value. Finally it is easy to show that if S is not valuable for

some V ≥ H(1), the same must be true for any larger V , since we can make sure that

p1F (θ∗1 | η1) + p2F (θ∗2 | η2) is monotone for V by the same method as in the previous

paragraph. This guarantees the existence of the critical value of V2 ≥ H(1).

Proof of Proposition 10: sketched in the text.
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