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Abstract

A Principal seeks to design a mechanism for an agent (privately in-
formed regarding production cost with a continuous distribution) and
a supervisor/intermediary (with a noisy signal of the agent’s cost)
that collude ex ante, i.e., on both participation and reporting deci-
sions. ‘Weak’ collusion means neither supervisor nor agent can com-
mit to how they would behave should bargaining over the side-contract
break down. We provide conditions under which the Principal’s prob-
lem reduces to selecting weak collusion-proof (WCP) allocations that
satisfy interim participation constraints. We characterize WCP al-
locations, and use this to show that it is always valuable to employ
the supervisor. Delegation is optimal, but only if supplemented by
an appeal/dispute settlement mechanism mediated by the Principal,
which serves as an outside option for coalitional bargaining. Changes
in welfare weights within the coalition have no effect, while altruism
of the supervisor towards the agent makes the Principal worse off.
Applications to the organization of firms and regulatory institutions
are discussed.
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1 Introduction

The potential for collusion is widely acknowledged to be a serious problem
for a Principal who relies on information provided by an expert intermediary
or supervisor to design a contract for an agent. Examples of such contexts
abound: an investor that relies on an investment bank or rating agency for
information necessary to decide on financing an entrepreneur; shareholders
that rely on outside directors of a company to supervise its CEO; an owner or
CEO that relies on a product manager for information needed to set produc-
tion targets and compensation for workers or suppliers; or a government that
relies on a regulator to advise on rates for a public utility. In these settings
the supervisor is typically better informed about the agent’s productivity or
cost than the Principal, but less informed than the agent. Eliciting the su-
pervisor’s information becomes problematic when he is willing to misreport
information in exchange for suitable side payments with the agent, which
cannot be observed by the Principal.

The severity of the collusion problem depends sensitively on precise in-
stitutional details. Early literature on the mechanism design problem with
collusion (e.g., Tirole (1986), Laffont and Tirole (1993)) was based on the
assumption of hard information (where the supervisor cannot lie, and can
only withhold information), and exogenous transaction costs of collusion.
Subsequent literature has considered contexts where the collusion problem is
harder to control, owing to soft information (which allow the supervisor to
report anything) and absence of exogenous transaction costs of collusion. A
large part of the literature considers only the possibility of interim collusion,
where supervisor and agent can collude over reporting decisions, but not
whether to participate in the mechanism (e.g., Laffont and Martimort (1997,
2000), Faure-Grimaud, Laffont and Martimort (2003), Che and Kim (2006),
Celik (2009)). In the context of auctions or team production, a number of
authors have studied the consequences of ex ante collusion where agents col-
lude over participation decisions as well (e.g., Mookherjee and Tsumagari
(2004), Dequiedt (2007), Pavlov (2008) and Che and Kim (2009)). Given
the critical role of participation decisions in determining the magnitude of
information rents, ex ante collusion obviously has more severe consequences
for what the Principal can achieve. Its importance is undeniable in contexts
where colluding agents have pre-existing relationships and communication
opportunities with one another, before they are approached by the Princi-
pal. This is frequently the case for relationships between rating agencies
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and firms or entrepreneurs that seek financing, between outside Directors
and top managers, between managers and workers within firms, and between
regulators and regulated firms. How this affects the design of mechanisms in
contexts of hierarchical supervision has however not been previously studied
in the literature.

This paper studies consequences of a version of ex ante collusion for design
of hierarchical supervision mechanisms. We consider a setting where an agent
produces a divisible good at a constant unit cost whose realization is known
to him privately, and the Principal and the supervisor have a prior over this
cost which is continuously distributed over some interval. The supervisor
costlessly updates this prior on the basis of a noisy signal of the agent’s
cost. The signal is only partially informative: it can take a finite number of
possible realizations. The agent also observes the realization of this signal.
The supervisor and agent can enter into a side-contract which coordinates
on respective participation and cost/signal reports to the Principal, as well
as a private side payment, conditioned on a private cost report made by
the agent to the supervisor. The side contract is designed and offered by
the supervisor to the agent, though we subsequently show that our results
extend to contexts where they are designed instead by a third party that
maximizes a weighted sum of their interim payoffs. The side contract and
the internal communication and transfers within the coalition are unobserved
by the Principal. We study a specific version of this problem, referred to as
weak ex ante collusion, where neither colluding party can commit to how
they will behave in the event that they fail to agree on a side-contract.3

The solution concept we employ requires that an allocation designed by
the Principal should (besides meeting interim participation constraints) leave
no room for design of a non-null side contract (and selection of a weak Perfect
Bayesian Equilibrium of the resulting continuation game) which is Pareto
improving for the colluding parties, and generates a strict improvement for
the designer of the side contract.4

3The literature on collusion in auctions has considered both (strong and weak) forms
of ex ante collusion, where colluding parties respectively can and cannot make such com-
mitments. We postpone the study of strong ex ante collusion to a future paper.

4The Appendix shows that the Principal would not benefit from allowing collusion
to occur on the equilibrium path. Moreover, in the formulation of the side contracting
problem there is no loss of generality in restricting attention to side contracts that are
always accepted by the colluding parties, thereby addressing a problem highlighted by
Celik and Peters (2011). It is also shown that WCP allocations can alternatively be given
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Our principal results are the following.

(a) Delegation to the supervisor (DS), where the Principal contracts only
with the supervisor and delegates to her the authority to contract with
the agent, is strictly dominated by not appointing any supervisor (NS).5

Hence delegation cannot be rationalized as an optimal response of the
Principal to weak ex ante collusion. This can be contrasted to the
optimality of delegation with interim collusion, when there are two
possible types of the agent and two possible signals of the supervisor
(Faure-Grimaud, Laffont and Martimort (2003)).6

(b) Centralized contracting with the supervisor and agent (CS) strictly dom-
inates NS, so it is valuable for the Principal to employ the supervisor
and induce full revelation of information, despite ex ante collusion.

(c) Sufficient conditions are provided for collusion to be costly for the Prin-
cipal: the support of the conditional cost distribution is independent of
the supervisor’s signal, conditional distributions satisfy suitable mono-
tonicity and monotone likelihood properties, and the Principal’s gross
benefit function exhibits sufficient curvature. However, in contexts
where the Principal’s benefit function is linear (analogous to the context

a purely ‘noncooperative’ justification by imposing restrictions on off-equilibrium-path
beliefs, which generalize the traditional notion of ‘passive beliefs’ employed in previous
papers (e.g., Laffont and Martimort (1997, 2000), Faure-Grimaud, Laffont and Martimort
(2003)), in a manner that addresses the Celik-Peters problem. This restriction essentially
amounts to requiring that beliefs be independent of the side contract offered, or whether
or not it is offered.

5If side contracts are designed by a third party that maximizes a weighted sum of the
supervisor’s and agent’s payoffs, the same result applies for delegation to the third party,
as long as the third party assigns a positive welfare weight to the supervisor’s payoff.
When the supervisor is assigned a zero welfare weight, DS turns out to be equivalent to
NS.

6An important reason for the difference in results is that ex ante collusion makes it much
harder for the Principal to extract rents from the supervisor. In fact, it turns out that
with weak ex ante collusion in the two-type-two-signal case, the Principal never benefits
from appointing a supervisor (this result is not provided in this paper, and is available on
request). As subsequently explained in more detail, ex ante collusion effectively allows the
supervisor to postpone participation decisions until after learning the agent’s true type.
Delegation is then associated with the classic problem of ‘double marginalization of rents’
wherein both the agent and the supervisor earn information rents. It is thereby inferior
to not hiring a supervisor at all, where the rents of the supervisor can be eliminated.
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of an auction), there are cases where the second-best can be achieved
(and also others where it cannot).

(d) Any allocation that is implementable with weak collusion can be imple-
mented by a modified form of delegation, in which the Principal com-
municates and transacts with only the supervisor on the equilibrium
path.7 The mechanism leaves open the room for the agent to trigger
a switch to a centralized mechanism (the grand contract) where both
agent and supervisor make independent reports to the Principal. This
may be thought of as an ‘appeals’ or ‘dispute settlement’ procedure
mediated by the Principal, which is not activated in equilibrium but
plays a key role by determining outside options for coalition partners
when they negotiate a side-contract. The reverse pattern of delega-
tion — where the Principal communicates only with the agent on the
equilibrium path, while reserving the right to consult the supervisor
depending on the agent’s reports — is also capable of implementing
the optimal WCP allocation.

(e) Given the outside options determined by the grand contract set by the
Principal, the allocation of bargaining power (i.e., allocation of welfare
weights) within the coalition does not affect the set of implementable
allocations with weak collusion.8 Optimal mechanisms are no different
if the agent makes a take-it-or-leave-it offer of a side contract to the su-
pervisor, or if there is a third-party that mediates the collusion. This is
an implication of weak collusion, where outside options are independent
of bargaining power.9

(f) Appointing a supervisor exhibiting some altruism with respect to the

7This corresponds to a hierarchical delegation arrangement where the Principal asks
the supervisor to initially communicate and transact with the agent, and then submit
a joint participation decision and cost-cum-signal report to the Principal on behalf of
the coalition. These reports determine an output target and aggregate payment for the
coalition made by the Principal to the supervisor, who subsequently relays the output
target and makes a corresponding out-of-pocket payment to the agent.

8An analogous result for the case of interim collusion is obtained by Faure-Grimaud,
Laffont and Martimort (2003).

9In strong collusion (Quesada (2004), Dequiedt (2007), Che and Kim (2009)) where the
side contract designer can commit to playing the subsequent grand contract in suitable
ways, outside options depend on the allocation of bargaining power, which thereby affects
the set of implementable allocations.
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agent, or an increase in the degree of such altruism, makes the Principal
worse off.

These results interesting implications for organizational design in varied
settings. Our theory rationalizes the widespread prevalence of supervisors,
despite the potential for collusion. Moreover, collusion is typically costly for
the Principal, including those where interim collusion can be overcome via
mechanisms of the sort constructed by Motta (2009). Our theory does not
rationalize unconditional delegation of authority to the supervisor; instead,
delegation needs to be supplemented by scope for agents to ‘appeal’ and trig-
ger direct communications with the Principal. Such appeals do not arise in
equilibrium. But the scope for such appeals indirectly promote the agent’s
bargaining power with the supervisor (by altering outside options in coali-
tional bargaining), which reduces the severity of the double-marginalization-
of-rents (DMR) problem and thus ends up benefitting the Principal. Within
firms, it explains the role of worker rights to appeal the evaluations reported
by their managers to higher level managers or an ombudsman appointed for
this purpose. This echoes Williamson’s (1975) view of such dispute settle-
ment procedures as an advantage of hierarchies over market relationships.
It is also similar to Hirschman’s (1970) view of organizations as including
exit and voice options, in contrast to market relationships which involve only
exit.

Result (e) states that with weak collusion, direct changes in bargaining
power (represented by welfare weights in coalitional bargaining) make no
difference. This has implications for the way that supervisors and agents are
matched, e.g., whether an agent should be allowed to select an auditor on
a competitive market, or whether the Principal should appoint the auditor
instead. This result is however likely to be sensitive to the collusion concept
which does not allow either colluding partner to make commitments regarding
how it will report to the Principal should collusion negotiations break down.
When such commitments are possible, the notion of weak collusion is not
suitable, and should be replaced by a suitable notion of ‘strong’ collusion.
We hope to explore this extension in future research.

Result (f) above implies that the Principal ought to appoint ‘outside’ self-
interested supervisors rather than ‘insiders’ likely to be altruistic towards the
agent. In the context of corporate governance, for instance, this is an argu-
ment in favor of appointing ‘outsiders’ rather than ‘insiders’ to a company’s
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Board of Directors.10 In the context of regulation, it confirms the normal
intuition in favor of preventing any direct conflict of interest for the supervi-
sor (e.g., who should not have a financial stake in the agent’s fortunes, nor
have any social or personal connections with the agent). This result is not
entirely obvious as altruism has some benefits for the Principal: it limits the
inclination of the supervisor to extract rents from the agent that is the source
of the DMR problem.

The paper is organized as follows. Section 2 describes relation to existing
literature in more detail. Section 3 introduces the model, followed by Sec-
tion 4 which defines and characterizes WCP allocations. The main results
concerning properties of optimal weak-collusion-proof mechanisms are pre-
sented in Section 5 for the polar model, where optimal allocations are always
interior and the supervisor has all the bargaining power within the coalition.
Section 6 then considers a number of extensions: where (a) side contracts are
designed and offered by a third party maximizing a weighted sum of super-
visor and agent’s payoffs; (b) the supervisor may exhibit altruism towards
the agent, and (c) the Principal’s gross benefit function is linear (whereby
optimal allocations are never interior), and a context (based on Celik (2009))
with a discrete type space. Finally, Section 7 concludes with a summary and
directions for future work.

2 Relation to Existing Literature

The literature on mechanism design with collusion can be classified by the
context (auctions, team production or supervision), the nature of collusion
(ex ante or interim, weak or strong collusion), and whether type spaces are
discrete or continuous. Auctions and team production involve multiple pri-
vately informed agents and no supervisor. For auctions, Dequiedt (2007)
considers strong ex ante collusion with binary agent types and shows that
efficient collusion is possible, implying that the second-best cannot be imple-
mented. In contrast, Pavlov (2008) considers a model with continuous types
where the second-best can be implemented with weak ex ante collusion, and
Che and Kim (2009) find the same result with either weak or strong ex ante
collusion with continuous types.

10See Harris and Raviv (2008) for a model based on incomplete contracts where this
result may not hold in some settings.
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Team production with binary types is studied by Laffont and Martimort
(1997), who show the second best can be implemented with weak interim
collusion; this analysis is extended to a public goods context in Laffont and
Martimort (2000) where the role of correlation of types is explored. Che and
Kim (2006) show how second-best allocations can be implemented in a team
production context with continuous types in the presence of weak interim
collusion. Quesada (2004) on the other hand shows strong ex ante collusion
is costly in a team production model with binary types. Mookherjee and
Tsumagari (2004) show delegation to one of the agents is worse than central-
ized contracting in the presence of weak ex ante collusion. The logic of this
result is similar to that underlying our result that delegation to the super-
visor is worse than not appointing a supervisor. Their paper also considers
delegation to a supervisor who is perfectly informed about the costs of each
agent, and show that its value relative to centralized contracting depends
on complementarity or substitutability between inputs supplied by different
agents. The current paper differs insofar as there is only one agent, and
there is asymmetric information within the supervisor-agent coalition owing
to the supervisor receiving a noisy signal of the agent’s cost. This friction in
coalitional bargaining plays a key role in the current paper.

In the context of collusion between a supervisor and agent, existing mod-
els (with the exception of Mookherjee-Tsumagari (2004)) have explored in-
terim collusion only. Faure-Grimaud, Laffont and Martimort (2003) consider
a model with binary types and signals (with full support for conditional
distributions), a risk-averse supervisor where collusion is costly, where (un-
conditional) delegation turns out be an optimal response to collusion. Celik
(2009) considers a model with three types and two signals (where the sup-
port of conditional distributions depends on the signal), and risk neutral
supervisor and agent, in which unconditional delegation is dominated by no
supervision, which in turn is dominated strictly by centralized contracting
with supervision. Celik’s results are similar to ours, but he considers interim
rather than ex ante collusion. Our results can be viewed as finding that the
results he derived in the context of interim collusion with a special informa-
tion structure happen to obtain quite generally with ex ante collusion and
continuous types. The need to examine ex ante rather than interim collusion
is highlighted by Motta (2009) who shows that collusion can be rendered
costless in models with discrete type and signal spaces and interim collusion,
by using mechanisms where the Principal offers a menu of contracts to the
agent which the latter must respond to before colluding with the supervisor.
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3 Model

3.1 Environment

We consider an organization composed of a principal (P ), an agent (A) and
a supervisor (S). P can hire A who delivers an output q ≥ 0 at a personal
cost of θq. P ’s return from q is V (q) where V (q) is twice continuously dif-
ferentiable, increasing and strictly concave satisfying limq→0 V

′
(q) = +∞,

limq→+∞ V
′
(q) = 0 and V (0) = 0. These conditions imply that q∗(θ) ≡

argq maxV (q)− θq is continuously differentiable, positive on θ ∈ [0,∞) and
strictly decreasing. In Section 6.4 we shall describe how the results are mod-
ified when V is linear and subject to a capacity constraint.

We use θ to denote a random variable whose realization is privately ob-
served by A. It is common knowledge that everybody shares a common prior
F (θ) over θ on the interval Θ ≡ [θ, θ̄] ⊂ <+. F has a density function f(θ)
which is continuously differentiable and everywhere positive on its support.
The ‘virtual cost’ H(θ) ≡ θ + F (θ)

f(θ)
is assumed to be strictly increasing in

θ. Section 6.4 will also discuss an extension to contexts involving two or
three types for the agent, which have been considered by previous models of
interim collusion by Faure-Grimaud et al (2003) and Celik (2009).

The supervisor S plays no role in production, and costlessly acquires
an informative signal η about A’s cost θ. The set of possible realizations
of η is Π, a finite set with #Π ≥ 2. It is common knowledge that the
realization of η is observed by both S and A. a(η | θ) ∈ [0, 1] denotes
the likelihood function of η conditional on θ, which is common knowledge
among all agents. a(η | θ) is continuously differentiable and positive on
Θ(η), where Θ(η) denotes the set of values of θ for which signal η can arise
with positive probability. We assume Θ(η) is an interval, for every η ∈ Π.
Define θ(η) ≡ inf Θ(η) and θ̄(η) ≡ sup Θ(η). We assume that for any η ∈ Π,
a(η | θ) is not a constant function on Θ, and there are some portions of θ
with positive measure such that a(η | θ) 6= a(η

′ | θ) for any η, η
′ ∈ Π. In this

sense each possible signal realization conveys information about the agent’s
cost. The information conveyed is partial, since Π is finite.

The conditional density function and the conditional distribution function
are respectively denoted by f(θ | η) ≡ f(θ)a(η | θ)/p(η) (where p(η) ≡∫ θ̄(η)

θ(η)
f(θ̃)a(η | θ̃)dθ̃) and F (θ | η) ≡

∫ θ
θ(η)

f(θ̃ | η)dθ̃. The ‘virtual’ cost

conditional on the signal η is h(θ | η) ≡ θ + F (θ|η)
f(θ|η)

. We do not impose
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any monotonicity assumption for h(θ | η). Let ĥ(θ | η) be constructed from
h(θ | η) and F (θ | η) by the ironing procedure introduced by Myerson (1981).

All players are risk neutral. P ’s objective is to maximize the expected
value of V (q), less expected payment to A and S, represented by XA and XS

respectively. S’s objective is to maximize expected transfers XS − t where t
is a transfer from S to A. A seeks to maximize expected transfers received,
less expected production costs, XA + t − θq. Both A and S have outside
options equal to 0.

In this environment, a feasible (deterministic) allocation is represented
by (uA, uS, q) = {(uA(θ, η), uS(θ, η), q(θ, η)) ∈ <2 × <+ | (θ, η) ∈ K} where
K ≡ {(θ, η) | η ∈ Π, θ ∈ Θ(η)}, uS, uA denotes S and A’s payoff respectively,
and q represents the production level. P ’s payoff equals uP = V (q) − uS −
uA − θq. These payoffs relate to transfers and productions as follows: uA ≡
XA + t− θq;uS ≡ XS − t;uP ≡ V (q)−XS −XA.

3.2 Mechanism in the Absence of Collusion

Consider as a benchmark the case where A and S do not collude, and P
designs contracts for both. We call this organization NC (no collusion).
Owing to risk-neutrality of all parties and concavity of V , P can restrict
attention to a deterministic grand contract:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA (resp. MS) is a message set for A (resp. S). This mechanism
assigns a deterministic allocation, i.e. transfers XS, XA and output q, for any
message (mA,mS) ∈MA ×MS. MA includes A’s exit option eA ∈MA, with
the property that mA = eA implies XA = q = 0 for any mS ∈MS. Similarly
MS includes S’s exit option eS ∈MS, where mS = eS implies XS = 0 for any
mA ∈ MA. The set of all possible deterministic grand contracts is denoted
by GC.

A grand contract induces a Bayesian game of incomplete information
between A and S. Let p(η) denote a set of beliefs held by S regarding the dis-
tribution of θ, in states where signal η has been realized. The posterior beliefs
of S based on Bayesian updating of prior beliefs on the basis of observation
of η alone are denoted by p∅(η).

Definition 1 A Bayesian equilibrium of the game played by A and S in state
η relative to beliefs p(η) is a set of functions c ≡ (mA(θ, η);mS(η)) (where
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mA maps K into MA, while mS maps Π into MS) such that the following
conditions are satisfied for all θ ∈ [θ(η), θ̄(η)]:

mA(θ, η) ∈ arg maxmA∈MA
[XA(mA,mS(η))− θq(mA,mS(η))] (1)

mS(η) ∈ arg maxmS∈MS
Ep(η)[XS(mA(θ, η),mS)] (2)

where Ep(η) denotes expectation taken with respect to beliefs p(η). C(p(η); η)
denotes the set of Bayesian equilibria corresponding to the beliefs p(η) in state
η.

The timing of events in NC is as follows.

(NC1) A observes θ and η, S observes η.

(NC2) P offers the grand contract GC ∈ GC, and for any η ∈ Π recom-
mends a Bayesian equilibrium c(p∅(η); η) relative to posterior beliefs
p∅(η) based on Bayesian updating by S on the basis of observation of
η alone.

(NC3) A and S play the recommended Bayesian equilibrium.

The order of the timing between (NC1) and (NC2) can be interchanged
without altering any of the results. If P offers a null contract to S (defined by
the property that MS is the empty set and XS = 0), this is an organization
without a supervisor, which we will denote by NS. Such an organization
obviously leaves no scope for collusion between A and S.

It is well-known that in (NC) the Principal can restrict attention to
direct revelation games, where MA,MS reduce to reports of private infor-
mation, besides participation decisions. Define the second-best allocation
(uSBA , uSBS , qSB) as follows:

uSBA (θ, η) =

∫ θ̄(η)

θ

qSB(y, η)dy,

E[uSBS (θ, η) | η] = 0

and
qSB(θ, η) ≡ q∗(ĥ(θ | η)) = arg max

q
[V (q)− ĥ(θ | η)q]

where ĥ(θ | η) is constructed from h(θ | η) and F (θ | η) by the ironing
procedure. It is well-known that this is the optimal allocation in (NC),
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where P observes η directly. It turns out that in (NC) it is possible for the
second-best to be implemented as a unique Bayesian equilibrium.11

3.3 Mechanism with Weak Ex Ante Collusion

Now we describe the game played with weak ex ante collusion. The ‘ex ante’
feature refers to the assumption that collusion takes the form of communi-
cation and side-contracting between A and S, which takes place before they
respond to P’s offer of the grand contract (including participation decisions).
This is distinguished from (interim) collusion where they do not collude on
their participation decisions, but collude on the reports they send to P and
enter into side payments in the event of joint participation. The ‘weak’ adjec-
tive additionally refers to the lack of commitment power of either colluding
partner with respect to how they would behave (i.e., play the grand contract)
in the event that they fail to agree on the side contract. In this event they
would play the grand contract noncooperatively (relative to beliefs formed
subsequent to the breakdown of the side contract).

The game with weak ex ante collusion is different from the game without
collusion following stage NC2. At that point, A and S can enter into a
side-contract in which A sends a message to S following which they jointly
decide on participation, reporting and side-payments. The side-contract is
unobserved by P. As in existing literature, we assume the side-contract is
costlessly enforceable. Moreover we assume S has all the bargaining power
vis-a-vis A: S can make a take-it-or-leave-it offer of a side-contract. This
assumption turns out to be inessential: Section 6.2 explains how the same
results obtain with side contracts offered by an uninformed third party that
assigns arbitrary welfare weights to the supervisor and agent. After S offers
the side contract, A retains the option of rejecting it; given that A’s true cost
is not known to S, this still enables A to earn some rents. This information
friction within the coalition plays a key role in our analysis.

The game replaces (NC3) above (while (NC1) and (NC2) are unchanged)
by the following three-stage subgame (conditional on any η ∈ Π):

(i) S offers a side-contract SC which determines for any θ̃ ∈ Θ(η) to be pri-
vately reported by A to S, a probability distribution over joint messages

11A proof is available on request.
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(mA,mS) ∈MA ×MS, and a side payment from S to A.12 Formally, it
is a pair of functions {m̃(θ̃, η), t(θ̃, η)} where m̃(θ, η) : Θ(η)× {η} −→
∆(MA × MS), the set of probability measures over MA × MS, and
t : Θ(η) × {η} −→ <. The case where S does not offer a side con-
tract is represented by a null side-contract (NSC) with zero side pay-
ments (t(θ, η) ≡ 0), and (deterministic) messages (mA(θ, η);mS(η)) the
same as those in the Bayesian equilibrium of the grand contract rec-
ommended by the Principal. We abuse terminology slightly and refer
to the situation where no side contract is offered as one where NSC is
offered.

(ii) A either accepts or rejects the SC offered, and the game continues as
follows.

(iii) If A accepts the offered SC, he sends a private report θ
′ ∈ Θ(η) to

S, following which the SC is executed. If A rejects SC, S updates his
beliefs to p(SC; η) which is restricted to be p∅(η) if NSC was offered in
stage (i) above.13 A and S then play a Bayesian equilibrium c of the
grand contract relative to beliefs p(SC; η).

The notion of Weak Perfect Bayesian Equilibrium (WPBE) of the game
with collusion requires beliefs and continuation strategies to be specified cor-
responding to all information sets of the game.14 As there are typically
multiple weak PBEs of the continuation game following any given GC offer,
we need to specify how these might be selected. The next section discusses
this in further detail.

4 Weak Collusion Proof Allocations

4.1 Definition of WCP

We start by providing a definition of weak collusion proofness. Later in this
section we will discuss some justifications for this concept.

12The option of randomizing over possible messages is useful for technical reasons. Ow-
ing to quasilinearity of payoffs, there is no need to randomize over side transfers.

13This ensures that it is immaterial whether or not NSC was accepted or rejected, since
in either case they play the grand contract non-cooperatively with prior beliefs.

14For definition of WPBE, see Mas-Colell, Whinston and Green (1995, p.285).
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Informally, an allocation is weakly collusion proof if the supervisor can-
not benefit from offering a non-null side contract when the Principal selects
a grand contract based on the associated direct revelation mechanism (i.e.,
when agent and supervisor make consistent reports about the state, the al-
location corresponding to that state is chosen). This requires the null side
contract to be the optimal side contract for S, when the outside option of A
corresponds to his payoff resulting from the allocation.

Before proceeding to the formal definition, note that a deterministic allo-
cation can be represented by payoff functions (uA(θ, η), uS(θ, η)) of the true
state (θ, η) combined with the output function q(θ, η), as these determine
the Principal’s payoff function uP (θ, η) ≡ V (q(θ, η)) − uS(θ, η) − uA(θ, η) −
θq(θ, η), and the aggregate net transfers of S (equals uS(θ, η)) and A (equals
uA(θ, η) + θq(θ, η)). For technical convenience we consider randomized allo-
cations, though it will turn out they will never actually need to be used on
the equilibrium path. In a randomized allocation, (uA(θ, η), uS(θ, η), q(θ, η))
denotes the expected payoffs of A, S and the expected output, conditional on
the state (θ, η). For (conditional expected) allocation (uA(θ, η), uS(θ, η), q(θ, η)),
define functions (X̂(m), q̂(m)) on domain m ∈ M̂ ≡ K ∪ {e} (where K ≡
{(θ, η) | θ ∈ Θ(η), η ∈ Π}) as follows:

(X̂(θ, η), q̂(θ, η)) = (uA(θ, η) + θq(θ, η) + uS(θ, η), q(θ, η))

(X̂(e), q̂(e)) = (0, 0)

(X̂(θ, η), q̂(θ, η)) denote corresponding expected values of the sum of pay-
ments XS + XA made by the principal, and the output delivered, in state
(θ, η). Also, let ∆(M̂) denote the set of the probability measures on M̂ , and
use m̃ ∈ ∆(M̂) to denote a randomized message submitted by the coalition
to P. With a slight abuse of notation, we shall denote the corresponding
conditional expected allocation by (X̂(m̃), q̂(m̃)), which is defined on ∆(M̂).
m̃ = (θ, η) or e will be used to denote the probability measure concentrated
at (θ, η) or e respectively.

S’s choice of an optimal (randomized) side-contract can be formally posed
as follows. Given a grand contract and a noncooperative equilibrium rec-
ommended by P, let the corresponding conditional expected allocation as
defined above be denoted by (uA(θ, η), uS(θ, η), q(θ, η)) and (X̂(m̃), q̂(m̃)).
For any η ∈ Π, the associated side-contracting problem P (η) is to select
(m̃(θ | η), ũA(θ, η)) to maximize S’s expected payoff

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]
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subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

for any θ, θ
′ ∈ Θ(η), and

ũA(θ, η) ≥ uA(θ, η)

for all θ ∈ Θ(η). The first constraint states truthful revelation of the agent’s
true cost to S is consistent with the agent’s incentives, and the second con-
straint requires A to attain a payoff at least as large as what he would expect
to attain by playing the grand contract noncooperatively.

Let the maximum payoff of S in the side contracting problem in state η
be denoted by W (η).

Definition 2 The (conditional expected) allocation (uA(θ, η), uS(θ, η), q(θ, η)) :
K → <2 × <+ is weakly collusion proof (WCP ) if for every η ∈ Π: (m̃(θ |
η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves problem P (η) in which S achieves a
maximum payoff of W (η) = E[uS(θ, η) | η].

4.2 Characterization of WCP Allocations

We now characterize WCP allocations. This requires us to define a family
of ‘modified’ virtual cost functions, representing the effective cost incurred
by the coalition in delivering a unit of output to P, following selection of an
optimal side-contract.

Definition 3 For any η ∈ Π, Y (η) is a collection of coalitional shadow
cost (CSC) functions π(· | η) : Θ(η) → < which satisfy the following
property. For any function in this collection, there exists a real-valued func-
tion Λ(θ|η) which is non-decreasing in θ ∈ Θ(η) with Λ(θ(η) | η) = 0 and
Λ(θ̄(η) | η) = 1, such that

π(θ|η) ≡ θ +
F (θ | η)− Λ(θ | η)

f(θ | η)
(3)

Equation (3) modifies the usual expression for virtual cost h(θ|η) ≡ θ +
F (θ|η)
f(θ|η)

by subtracting from it the non-negative term Λ(θ|η)
f(θ|η)

. Intuitively, with
collusion between S and A, it is as if P procures the good from a single entity,
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consisting of the coalition of S and A. If A’s outside option payoff in the side-
contracting problem were 0 instead of uA(θ, η), S would incur a cost of h(θ|η)
in arranging for delivery of one unit of the good. P’s problem of procuring the
good would then reduce to contracting with a single agent with an unknown
cost of h(θ|η). This is worse for P compared with the situation where there
is no supervisor at all — in the latter context, P would be contracting with
A alone who incurs a cost of θ rather than h(θ|η). This is the well-known
problem of double marginalization of rents (DMR), arising due to exercise of
monopsony power by S in side-contracting with A. As elaborated later, this
is why delegating the right to contract (with A) to S cannot result in any
improvement for P compared to the situation where no S is employed.

To limit DMR, P contracts with both S and A, and provides A with an
outside option (of uA(θ, η)) that effectively raises his bargaining power vis-a-
vis S while negotiating the side contract. Meeting a larger outside option for
A effectively induces S to deliver a higher output to P: this is what paying
a higher rent to A necessitates. The extent of DMR is then curbed: the
shadow cost for the coalition in delivering a unit of output to P is lowered.
This lowering of the virtual cost is represented by the subtraction of the term
Λ(θ|η)
f(θ|η)

from what it would have been (h(θ|η)) under delegated contracting.

The derivative of Λ(θ | η) represents the Kuhn-Tucker multiplier on A’s
(type θ) participation constraint in S’s problem of selecting an optimal side
contract. Since the multiplier is non-negative, the Λ(θ | η) function is non-
decreasing.

However, π(θ|η) is not the correct expression for the shadow cost of out-
put for the coalition, if it is non-monotone in θ. In that case, it has to be
replaced by its ‘ironed’ version (Myerson (1981)), using the distribution func-
tion F (θ|η). Let the corresponding ironed version of π(θ|η) be denoted by
z(θ|η): we call this a coalitional virtual cost function.

Definition 4 For any η ∈ Π, the set of coalitional virtual cost (CVC)
functions is the set

Z(η) ≡ {z(· | η) is the ironed version of some π(· | η) ∈ Y (η)}.

of functions obtained by applying the ironing procedure to the set Y (η) of
CSC functions.15 Denote by Θ(π(· | η), η) the corresponding pooling region
of θ where π(·|η) is flattened by the ironing procedure.

15The ironing procedure ensures these functions are continuous and non-decreasing.
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As the next result shows, every WCP allocation satisfies coalitional par-
ticipation and incentive constraints corresponding to some coalitional virtual
cost function z. Combined with an individual incentive compatibility con-
straint for A, and a constraint that output must be constant over regions
where the ironing procedure flattens the underlying CSC function, these
coalitional constraints characterize WCP allocations.

Proposition 1 The allocation (uA, uS, q) is WCP if and only if the following
conditions hold for every η. There exists a CVC function z(·|η) ∈ Z(η) such
that

(i) For every (θ, η), (θ
′
, η
′
) ∈ K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π},

X(θ, η)− z(θ | η)q(θ, η) ≥ X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X(θ, η)− z(θ | η)q(θ, η) ≥ 0

where
X(θ, η) ≡ uA(θ, η) + uS(θ, η) + θq(θ, η)

(ii) For any θ, θ
′ ∈ Θ(η),

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

(iii) q(θ, η) is constant on any interval of θ which is a subset of the corre-
sponding pooling region of the CVC function z.

Conditions (i) and (ii) represent the coalitional incentive and participation
constraints corresponding to contracting with a single agent with a unit cost
of z. Condition (ii) is the individual incentive compatibility constraint for A.
Condition (iii) states that the output must be constant over every interval
in the pooling region.

In the rest of this section, we shall provide a justification for focusing
attention on WCP allocations. It can be skipped by those interested in our
main results concerning the principal’s mechanism design problem, where
the outcome of such mechanisms are described by resulting WCP allocations
that satisfy interim participation constraints.
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4.3 Justification for WCP Allocations

We first explain the need for restricting off-equilibrium-path beliefs. If the
mechanism design problem is stated as selection of an allocation by the Prin-
cipal subject to the constraint that it can be implemented as the outcome
of some WPBE following a choice of a grand contract, it is presumed that
the Principal is free to select continuation beliefs and strategies for nonco-
operative play of the grand contract following off-equilibrium path rejections
of offered side contracts by S to A. It can be shown that in such a setting
the problem of collusion can be completely overcome by the Principal, with
appropriate selection of off-equilibrium-path continuations. This is formally
shown in the working paper version of this paper (Mookherjee et al (2014)).
A heuristic description of how the second-best payoff can be achieved by
the Principal as a weak PBE is as follows. P selects a grand contract and
recommends a noncooperative equilibrium of this contract in which (i) con-
ditional of participation by S, noncooperative play results in the second-best
allocation; (ii) S is paid nothing; and (iii) if S does not participate, P offers
A a ‘gilded’ contract providing the latter a high payoff in all states. On the
equilibrium path S always offers a null side contract. If A rejects any offer of
a non-null side-contract, they mutually believe that subsequently S will not
participate in the grand contract, and A will receive the gilded contract. This
forms a weak PBE as rejection of any non-null side contract is sequentially
rational for A given A’s belief that S will exit following any rejection. And
exit is sequentially rational for S given his belief that A will reject the side
contract and they will subsequently play the grand contract noncooperatively
where S will be paid nothing.

Collusion is overcome by the Principal here by exploiting a lack of co-
ordination among A and S over continuation beliefs and play of the side
contracting game. This denies the essence of collusive activity, which in-
volves coordination by the colluding parties ‘behind the Principal’s back’. It
is therefore reasonable to insist that S and A can collectively coordinate on
the choice of side-contracting equilibria that are Pareto-undominated (for the
coalition). Specifically, this rules out WPBE outcomes for which (following
some realization of η) there exists some side-contract offer and a PBE of the
subsequent continuation game played by S and A which generates a higher
expected payoff for S, without lowering the expected payoff of any type of
A. Appendix A provides an alternative noncooperative justification for WCP
allocations in terms of a restriction on off-equilibrium-path beliefs which gen-

18



eralizes the assumption of ‘passive’ beliefs which has been employed by many
previous authors.

Definition 5 Following the selection of a grand contract by P, a WPBE(wc)
is a Weak Perfect Bayesian Equilibrium (WPBE) of the subsequent game
with the following property. There does not exist some signal realization η,
and some deviating side-contract offer SC(η) for which there is a Perfect
Bayesian Equilibrium (PBE) of the subsequent continuation game in which
(conditional on η) S’s payoff is strictly higher and A’s payoff not lower for
any type.

Definition 6 An allocation (uA, uS, q) is implementable in the weak collu-
sion game if there exists a grand contract and a WPBE(wc) of the subsequent
game which results in this allocation.

We now show that the WPBE(wc) refinement corresponds to WCP alloca-
tions that satisfy interim participation constraints. Note that the WPBE(wc)
notion allows for collusion to occur (i.e., a non-null side contract to be of-
fered and accepted by some types of A), and also for side-contract offers to
be rejected by some types of A. Hence the WCP notion does not rest on
any arbitrary restrictions on side contract outcomes, e.g., which rule out the
possibility of equilibrium-path rejections by A of the side contract offered
by S. The problem discussed by Celik and Peters (2011) therefore does not
apply to this setting. Moreover, the restriction to WCP allocations which
correspond to equilibrium outcomes in which collusion does not occur on the
equilibrium path, is also without loss of generality.

Proposition 2 An allocation (uA, uS, q) is implementable in the weak collu-
sion game, if and only if it is a WCP allocation satisfying interim participa-
tion constraints

E[uS(θ, η)|η] ≥ 0 for all η (4)

uA(θ, η) ≥ 0 for all (θ, η) (5)

5 Main Results

We are now in a position to present our main results. In this section we will
compare the following organizational alternatives:

19



(a) No Supervisor (NS): where P does not employ S and contracts with A
alone on the basis of his own prior information F over A’s cost θ. This
is a special case of the preceding model where XS ≡ 0,MS ≡ ∅ in the
grand contract. It is well known that P attains an expected profit of
E[V (qNS(θ)) − H(θ)qNS(θ)] where qNS(θ) is defined by the property
V ′(qNS(θ)) = H(θ). We shall denote this profit by ΠNS.

(b) Delegated Supervision (DS): Here P contracts with S alone, and dele-
gates to S the authority to contract with A and make production deci-
sions. It is a special case of the preceding model where XA ≡ 0,MA ≡ ∅
in the grand contract. S enters into a side-contract with A, and then
responds to P’s contract offer with a message regarding the joint real-
ization of θ and η, or some summary of the two variables. Here A has
no outside option of rejecting the side contract and participating in the
grand contract, which increases the bargaining power of S with A. We
shall denote the resulting profit of P by ΠDS.

(c) Centralized Supervision (CS): This is the unrestricted version of the
model considered so far, where P offers a grand contract involving both
S and A. A now has an outside option of rejecting the side contract
offered by S and participating in the grand contract noncooperatively.
We shall denote the resulting profit of P by ΠCS.

We will also assess these relative to the benchmark of no collusion, which
is associated with the second-best allocation defined previously. The associ-
ated profit will be denoted ΠSB. Since S has access to information about A’s
cost that is valuable in contracting with A, it is obvious that ΠNS < ΠSB,
i.e., hiring S is valuable if there is no collusion. We now compare the three
alternatives above against one another, and will subsequently assess them
relative to the second-best.

Proposition 3 ΠDS < ΠNS: delegated supervision is worse for the Principal
compared to hiring no supervisor.

The result of Faure-Grimaud, Laffont and Martimort (2003) therefore
does not extend to the setting of our model with ex ante collusion, risk
neutrality and continuous types. The intuitive reason is simple. Ex ante
collusion implies that in contracting with P, the supervisor is subject to
an ex post participation constraint: he can accept or reject the contract
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offered by P after he has learnt the realization of A’s cost θ. This results in
double marginalization of rents (DMR): A earns rents owing to his private
information regarding θ with respect to S, and then S earns rents owing to his
private information regarding his costs of procuring from A (which depend
on the realizations of θ and η). In DS, the Principal effectively contracts
with a single agent whose unit cost equals ĥ(θ|η) which is the ironed version

of h(θ|η) ≡ θ+ F (θ|η)
f(θ|η)

, who can decide whether to participate after observing

the realization of his unit cost. Since h(θ|η) > θ almost everywhere (which
implies the same is true for its ironed version ĥ(θ|η)), delegated supervision
amounts to contracting with a single supplier whose cost is uniformly higher,
compared to contracting with the agent alone in the absence of the supervisor.
While it is relatively easy to show that DS cannot dominate NS, the proof
establishes the stronger result that DS is strictly dominated by NS.16

Proposition 4 ΠNS < ΠCS: the Principal is strictly better off hiring S and
contracting directly with both S and A, compared to hiring no supervisor.

This states that P always benefits from hiring S despite the presence of ex
ante collusion between S and A. Combining with the previous result, it fol-
lows that S is valuable only provided P does not delegate authority to S: it is
essential that P contracts simultaneously with A as well, thus providing A an
outside option which raises A’s bargaining power within the coalition. This
limits the DMR problem by countervailing S’s tendency to behave monop-
sonistically with respect to A. By raising A’s outside option, the coalitional
virtual cost z is reduced, allowing an increase in output delivered, and raising
P’s expected payoff.

This helps explain how contracting directly with both S and A helps re-
duce the DMR problem inherent in DS which rendered it inferior to NS.
However, it does not help explain why it manages to do so sufficiently that
CS ends up being superior to NS. The explanation for this is more subtle,
arising from P’s ability to profitably utilize S’s superior information concern-
ing the agent’s cost with a simple mechanism. This arises ultimately from
the discrepancy between relative likelihoods of different cost states by P and

16The proof of strict domination is also straightforward in the case that h(θ|η) is con-
tinuous and nondecreasing in θ over a common support [θ, θ̄] for every η. In that case an
argument based on Proposition 1 in Mookherjee and Tsumagari (2004) can be applied. In
the general case there are a number of additional technical complications, but the result
still goes through.
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S, which they use to weight different states in computing their respective
payoffs.

It may help to outline the WCP allocation that can be used by P. Starting
with the optimal allocation in NS (which corresponds to the special case of CS
where Λ(θ | η) is chosen equal to F (θ | η), ensuring that the CSC and CVC
functions both reduce to the identity function (π(θ|η) = z(θ|π(·|η), η) = θ)),
P can construct a small variation in the CVC function z in some state η∗,
raising it above θ for some interval ΘH and lowering it for some other interval
ΘL, both of which have positive probability given η∗. The corresponding
quantity procured q(θ, η∗) is set equal to qNS(z(θ|η∗)), the quantity procured
in NS when the agent reported a cost of z(θ|η∗). This corresponds to raising
the quantity procured from the coalition over ΘL and lowering it over ΘH .
Payments to the coalition are set analogously at XNS(z(θ|η∗)), what the
agent would have been paid in NS following such a cost report.17 The agent is

offered the associated rent: uA(θ, η∗) =
∫ θ̄
θ
qNS(z(y|η∗))dy. By construction,

this allocation satisfies the agent’s incentive and participation constraints, as
well as the coalitional incentive constraint.18

Proposition 1 ensures such an allocation is WCP, provided S’s interim par-
ticipation constraint is satisfied. The variation over ΘL lowers rents earned
by S, and over ΘH raises them. Since S does not earn any rents to start with
(i.e, in NS), it is necessary to construct the variation such that S’s expected
rents in state η∗ do not go down. The rate at which S’s rents vary locally
in state θ with the quantity procured equals F (θ|η∗)

f(θ|η∗) .19 Intuitively this is the
saving that can be pocketed by S when procuring one less unit of the good
from A. Maintaining S’s expected rent therefore implies a marginal rate of
substitution between output variations over ΘL and ΘH that equals the ra-
tio of the (average) conditional inverse hazard rates F (θ|η∗)

f(θ|η∗) over these two
intervals respectively.

17Specifically, XNS(z(θ|η)) = z(θ|η)qNS(z(θ|η)) +
∫ θ̄
z(θ|η)

qNS(y)dy.
18This requires checking that there exists a CSC function π(θ|η) corresponding to some

function Λ(· | η) on [θ(η), θ̄(η)] satisfying the requirements in the definition of a CSC
function, such that z(θ | η) is the ironed version of π(θ | η). This is true, since we can
select Λ(θ | η) = (θ−z(θ | η))f(θ, η)+F (θ, η), which is strictly increasing over ΘL and ΘH

for a sufficiently small variation of z from the identity function. Then Λ(· | η) is a function
which satisfies the required properties and generates π(θ|η) = z(θ | η), since z(θ | η) is a
non-decreasing function.

19S’s interim rent in state η equals the expected value conditional on η of XNS(z(θ|η))−
uA(z(θ|η))−θqNS(z(θ|η)), i.e., equals E[{z(θ|η))−h(θ|η)}qNS(z(θ|η)−

∫ θ̄
z(θ|η)

qNS(z)dz|η].

22



On the other hand, P’s benefit from a small expansion in output de-
livered in state θ equals V ′(qNS(θ)) − θ, where qNS(θ) denotes the optimal

allocation in NS.20 This allocation satisfies V ′(qNS(θ)) = H(θ) ≡ θ + F (θ)
f(θ)

,
the virtual cost of procurement without conditioning on information regard-
ing η. Hence P’s marginal benefit from output expansion in state θ equals
the unconditional inverse hazard rate F (θ)

f(θ)
. This implies that P’s marginal

rate of substitution between output variations over ΘL and ΘH equals the
ratio of the (average) unconditional inverse hazard rates F (θ)

f(θ)
over these two

intervals. The informativeness of S’s signals implies that P’s marginal rate
of substitution differs from S’s in some state η∗ over some pair of intervals
ΘL,ΘH . Hence there exist variations of the type described above which raise
P’s expected payoff, while preserving the expected payoff of S.

One may wonder whether the gains achieved by the Principal from hiring
S are marginal rather than substantial. Section 6.4 shows that the second-
best payoff is achievable for some cases in the context of variants of the model
where the Principal’s benefit function is linear. This is consistent with results
of Che and Kim (2009) in the case of auctions (where the indivisibility of the
object being auctioned renders the context analogous to a linear benefit func-
tion). In the context of nonlinear benefit functions, the following result shows
that the second-best is not achievable provided the benefit function exhibits
sufficient curvature (besides some standard restrictions on the information
structure).

Proposition 5 ΠCS < ΠSB: P cannot attain the second-best payoff in CS if
the following conditions hold:

(i) The support of θ does not vary with the signal: Θ(η) = Θ for any η ∈ Π;

(ii) there exists η∗ ∈ Π such that f(θ|η∗) and f(θ|η∗)
f(θ|η)

are both strictly de-
creasing in θ for any η 6= η∗; and

(iii) V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
for any q ≥ 0.

Condition (i) states that the support of θ does not vary with η, while
(ii) is a form of a monotone likelihood property: there is a signal realization

20This follows from the fact that ∂XNS(z(θ|η))
∂z = z(θ | η)qNS

′
(z(θ | η)), implying that

the marginal increase in payment evaluated at z(θ, η) = θ equals θ times the marginal
output change.
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η∗ which is ‘better’ news about θ than any other realization, in the sense of
shifting weight in favor of low realizations of θ. It additionally requires that
the conditional density f(θ|η∗) is strictly decreasing in θ, i.e., higher realiza-
tions of θ are less likely than low realizations when η = η∗. (ii) is satisfied for
instance when θ has a uniform prior and there are just two possible signal
values satisfying the standard monotone likelihood ratio property. Condition
(iii) is satisfied if V is exponential (V = 1− exp(−rq), r > 0). It corresponds
to the assumption of ‘non-increasing absolute risk aversion’ of the Principal’s
benefit function.

The proof develops necessary conditions for implementation of the second
best given the distributional properties (i) and (ii). If the outputs must be
second-best, they must be a monotone decreasing function of the (ironed)
virtual cost ĥ(θ | η) in the second-best setting. If they also satisfy the
coalitional incentive constraints, they must be monotone in CVC z(θ | η).
These conditions imply the existence of a monotone transformation from ĥ
to z, and enable S’s ex post rent to be expressed as a function of ĥ alone.
Condition (iii) is used to show that this rent function is strictly convex which
in turn is used to show that the expected rents of S must be strictly higher
in state η∗ than any other state.

6 Extensions

6.1 Implementation via Modified Delegation

We now show that the optimal allocation can be implemented by a modified
form of delegation, where P communicates and transacts only with S on the
equilibrium path. In this arrangement, S is ‘normally’ expected to contract
on behalf of the coalition {S,A} with P, sending a joint participation decision
and report of the state (θ, η) to P after having entered into a side contract
with A. However A has the option of circumventing this ‘normal’ procedure
and asking P to activate a grand contract in which A and S will send inde-
pendent reports and participation decisions to P. The presence of this option
ensures that A has sufficient bargaining power within the coalition; it does
not have to be ‘actually’ used, i.e., on the equilibrium path. This mechanism
can implement any implementable allocation as a WPBE(wc) outcome.

The argument is quite simple, and outlined as follows (we omit a formal
proof). Take any WCP allocation (uS(θ, η), uA(θ, η), q(θ, η)) defined on K
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which satisfies interim participation constraints, and let aggregate payments
to the coalition be X(θ, η) = uA(θ, η)+uS(θ, η)+θq(θ, η). Let the associated
grand contract be denoted as follows. The message spaces are M̃S, M̃A, where
M̃S = Π ∪ {eS} and M̃A = K ∪ {eA}. Both S and A report η, and A
additionally reports θ. P cross-checks the two η reports, and conditional
on these agreeing with one another, transfers are set in the obvious way
corresponding to the allocation (uS(θ, η), uA(θ, η), q(θ, η)), e.g., when neither
party exits, both report η and A reports θ, X̃S(θ, η) = uS(θ, η), X̃A(θ, η) =
uA(θ, η) + θq(θ, η), q̃(θ, η) = q(θ, η), otherwise these are all zero.

This ‘original’ grand contract can be augmented as follows. A is offered
a message space MA = M̃A ∪ {∅}, while S is offered MS = M̃S ∪ K ∪ {e}.
The interpretation is that if mA = ∅, A decides not to communicate directly
with P. And if mS ∈ K ∪ {e}, S decides to submit a joint report (θ, η)
(or else communicates a joint shutdown decision e) to P on behalf of the
coalition. The choice of mA = ∅,mS ∈ K ∪ {e} will correspond to the
‘normal’ delegation mode.

When the normal delegation mode is in operation, i.e., mA = ∅,mS ∈
K ∪ {e}, P will communicate and transact with S alone. Hence transfers
and output assignments in the augmented mechanism are defined as follows:
(XS, XA, q) equals (X̃S, X̃A, q̃) on M̃S × M̃A, (0, X(mS), q(mS)) if mA =
∅,mS ∈ K ∪ {e}, and (−T,−T, 0) otherwise where T is a large positive
number. The last feature ensures that A and S will always coordinate on
either the normal delegation mode, or the grand contract.

It is easy to check that this augmented mechanism has a WPBE(wc)
where both S and A opt for the normal delegation mode, S offers A a side
contract with mS(θ, η) = (θ, η) ∈ K and u∗A(θ, η) = uA(θ, η) for all (θ, η),
which A accepts. To see this note first that if S and A play this augmented
grand contract noncooperatively, A will never select mA = ∅, since this
results in a negative payoff for A no matter what S does. If mA = ∅,mS ∈
K ∪ {e}, A is committed to producing a positive quantity while not getting
paid anything, while mA = ∅,mS ∈ M̃S implies XA = −T, q = 0. And given
that A does not select mA = ∅, neither will S select mS in K ∪ {e}, owing
to the large penalty T for mis-coordination. Rejection of a side contract will
effectively result in noncooperative play of the original grand contract.

Hence A has an outside option of earning uA(θ, η) by rejecting any side
contract offered by S. This (along with the fact that the allocation is WCP)
implies that the side contract offered by S in equilibrium is optimal for S.
The reason is that the outcome of any feasible side contract in the normal
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delegation mode was also attainable as the outcome of some feasible side
contract in the original mechanism.

Proposition 6 Any implementable allocation with weak collusion can be im-
plemented as a WPBE(wc) outcome of the modified delegation mechanism
described above, where P communicates and transacts with S alone on the
equilibrium path.

The reverse pattern of modified delegation, where P communicates only
with A on the equilibrium path, also happens to be an alternative way of
implementing an optimal WCP allocation. We do not present a formal state-
ment or proof for this result. It implies that the model does not provide any
argument for superiority of either form of modified delegation over the other.
In the context of legal procedures, this suggests the equivalence of plea bar-
gaining arrangements (where the judge seeks a report from accused party
and reserves the right to go to trial should a ‘not-guilty’ plea be made) with
the reverse system where the judge seeks a report from a public prosecutor
initially and then decides whether or not to go to trial based on this report.
If we were to extend our model to include fixed costs of communication of
the Principal with either the supervisor or the agent (but not both), it would
provide a way of discriminating between the two alternatives. If for instance
communication with S is costless while with A is costly, modified delegation
to S will be optimal and will dominate modified delegation to A.

6.2 Side Contracts Designed by a Third Party, and
Alternative Allocations of Bargaining Power

We now explain how the preceding results extend when the side contract is
designed not by S, but instead by a third-party that manages the coalition
and assigns arbitrary welfare weights to the payoffs of S and A respectively.
Such a formulation has been used by a number of authors to model collusion,
such as Laffont and Martimort (1997, 2000), Dequiedt (2006) and Celik and
Peters (2011). An advantage of this approach is that it allows an evaluation
of the effects of varying the allocation of bargaining power between colluding
partners.

Our results extend to such a setting, under the following formulation
of side contracts designed by a third party. We assume the third-party’s
objective is to maximize a weighted sum of S and A’s interim payoffs. The
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third party designs the side contract after learning the realization of η.21

Both S and A have the option to reject the side contract, in which case they
play the grand contract noncooperatively.

The notion of WCP allocations is extended as follows. Letting α ∈ [0, 1]
denote the welfare weight assigned by the third-party to A’s payoff, the side
contract design problem reduces to selecting randomized message m̃(θ, η) and
A’s payoff ũA(θ, η) to (using the same notation for the formulation P (η) of
side contracts in Section 3):

maxE[(1− α)[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)] + αũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ uA(θ, η)

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η] ≥ E[uS(θ, η) | η].

Besides modifying the objective function, this formulation adds a participa-
tion constraint for S. We refer to this as problem TP (η;α). The definition
of WCP can be extended to WCP(α) by requiring the null side contract to
be optimal in TP (η;α) for every η.

In Appendix B, we explain how WCP(α) allocations can continue to be
justified by a suitable extension of the WPBE(wc) concept to this setting.
In order to address the Celik-Peters (2011) problem, side contracts consist of
two stages: an initial collusion-participation stage, followed by a reporting
or execution stage in the event of both parties agreeing to participate at the
first stage. The collusion-participation stage enlarges a dichotomous (exit-
participate) message set for each party to a larger message set which includes
auxiliary messages for A. At the end of the first stage, S and A observe their
respective first stage messages; conditional on both agreeing to participate,
they communicate type reports to P at the second stage. The auxiliary
first-stage messages enable A to communicate more information to S than is
possible with a dichotomous participation decision, and replicate outcomes
achievable when side contract offers are rejected by some types of A. This
enables attention to be restricted to side contracts which are always accepted
on the equilibrium path.

21This assumption can be dropped without affecting the results, since it can be shown
the third-party can use cross-reporting of η by S and A to learn its true value.
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In this setting, the WPBE(wc) notion is extended in the obvious manner:
it should not ever be possible for the third party to deviate to some alter-
native side-contract whose subsequent continuation game has a PBE which
generates a higher payoff for the third-party, without lowering the payoff of
S or any type of A. In Appendix B we show that allocations implementable
as WPBE(wc) outcomes coincide with the set of WCP(α) allocations.

We now claim that the set of WCP(α) allocations is independent of α.
This implies that all our preceding results extend to side contracts designed
by a third party.22

Proposition 7 The set of WCP(α) allocations is independent of α ∈ [0, 1].

The reasoning is straightforward, so we omit a formal proof and sketch
the idea. Essentially, the WCP criterion amounts to the absence of incentive
compatible deviations that are Pareto improving for the coalition: this prop-
erty does not vary with the precise welfare weights. Consider any α ∈ (0, 1).
A given allocation is WCP(α) if and only if there is no other allocation
attainable by some non-null side contract which satisfies the incentive con-
straint for A, and which Pareto-dominates it (for A and S) with at least one
of them strictly better off. The same characterization applies to any interior
α′ ∈ (0, 1), implying that the set of WCP(α) allocations is independent of
α ∈ (0, 1). The transferability of utility can then be used to show that the
set of WCP allocations for interior welfare weights are also the same at the
boundary.23

6.3 Altruistic Supervisors

Now consider a different variant, where S offers a side-contract to A, but
S is altruistic towards A rather than just concerned with his own income.
Suppose S’s payoff is uS = XS + t + α[XA − t − θq], where α ∈ [0, 1] is the

22Faure Grimaud et al (2003) provide an analogous result for the case of interim collu-
sion.

23If an allocation is WCP(1) but not WCP(α) for some interior α, there must exist a
non-null side contract SC∗ which allows S to attain a strictly higher payoff, which leaves
A’s payoff unchanged. Then there exists another feasible non-null side-contract which
gives A a slightly higher payoff in all states, which meets S’s participation constraint.
Hence it is possible to design a feasible side contract that raises A’s expected payoff, so
the original allocation could not have been WCP(1).
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weight he places on A’s payoff. A on the other hand is concerned with only
his own income: uA = XA − t− θq.

Our analysis extends as follows. It is easy to check that the expression
for coalitional shadow cost is now modified to

πα(θ|η) ≡ θ + (1− α)
F (θ | η)− Λ(θ | η)

f(θ | η)

instead of π(θ|η) in Definition 3. In DS, the corresponding expression for
the cost of procuring one unit from S is modified from h(θ | η) to hα(θ |
η) = θ + (1 − α)F (θ|η)

f(θ|η)
. As long as α < 1, this is strictly higher than θ, so

DS will still continue to result in a lower profit than NS. The proof that CS
dominates NS also goes through in toto.

It is interesting to examine the effect of changes in the degree of altruism
on P’s payoffs. An increase in α lowers S’s shadow cost of output in DS
hα(θ | η), which benefits P. This is intuitive: the DMR problem becomes
less acute with a more altruistic supervisor. Note that with perfect altruism
α = 1, and the DMR problem disappears: DS then becomes equivalent to
NS.

On the other hand, an increase in altruism cannot benefit P in CS. The
set of WCP allocations can be shown to be non-increasing in α. Take any
WCP allocation corresponding to α: the following argument shows that it
is a WCP allocation corresponding to any α

′
< α. Let z(θ | η) be the CVC

function that is associated with the allocation at α, i.e., it is the ironed version
of πα(θ|η) corresponding to some function Λα(·|η) satisfying the stipulated
requirements in the definition of CSC functions on [θ(η), θ̄(η)]. We can then
select

Λα′ (θ | η) =
α− α′

1− α′
F (θ | η) +

1− α
1− α′

Λα(θ | η)

when the altruism parameter is α
′
, which satisfies the stipulated requirements

since α > α
′
. This ensures that the same CSC and CVC function is available

when the altruism parameter is α
′
, since by construction πα(θ|η) = πα′ (θ|η).

Hence the allocation satisfies the sufficient condition for WCP when the
altruism parameter is α

′
.

Finally, if α = 1, the CSC function πα coincides with the identity function
θ, the cost of the agent in NS. We thus obtain

Proposition 8 In CS, P ’s optimal payoff is non-increasing in α. In DS,
P ’s optimal payoff is increasing in α. When α = 1, P ’s optimal payoffs in
DS, NS and CS coincide.
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6.4 Linear Benefits

So far we have assumed that V is strictly concave, satisfying Inada conditions
so as to guarantee interior allocations. We now briefly describe how preced-
ing results extend when V is linear upto some capacity limit, and optimal
allocations are typically non-interior. This case is relevant for an indivisible
project where q refers to the probability of the project being carried out,
or to financial contexts where q denotes a revenue stream accruing to the
Principal.

We now consider the implications of assuming that V (q) = V q with
V ∈ (θ, θ̄) and q ∈ [0, 1]. For simplicity we focus on the case of a binary signal
η ∈ {η1, η2} with the monotone likelihood ratio property (a(η2 | θ)/a(η1 | θ)
is increasing in θ) and full support of θ for each signal: Θ(η1) = Θ(η2) = Θ.
The monotone likelihood ratio property implies that the distribution of θ
conditional on η2 first order stochastically dominates that on η1: F (θ | η1) >
F (θ | η2) for θ ∈ (θ, θ̄). It also implies the following ranking among the
virtual costs:

h(θ | η2) < H(θ) < h(θ | η1)

for any θ ∈ (θ, θ̄]. The same ranking is preserved after applying the ironing
transformation as well:

ĥ(θ | η2) < H(θ) < ĥ(θ | η1)

for any θ ∈ (θ, θ̄].
With linear V , the second best output schedules (qSB(θ, η1), qSB(θ, η2))

are characterized by the thresholds (θSB1 , θSB2 ) such that the output is 1 for
smaller θ than the threshold and 0 for larger θ than it where θSBi ≡ sup{θ |
V ≥ ĥ(θ | ηi)}.24 The ranking among virtual costs implies θSB1 < θNS < θSB2 .
The Principal’s expected payoff in NS is (V − θNS)F (θNS) and in SB, it is

p(η1)(V − θSB1 )F (θSB1 | η1) + p(η2)(V − θSB2 )F (θSB2 | η2).

The result that delegated contracting DS is inferior to NS continues to
go through without any modification, as DS is associated with an increase

24More precisely qSB(θ, ηi) can be the arbitrary non-increasing function on {θ | ĥ(θ |
ηi) = V } as far as it takes constant value on connected open interval of θ satisfying

{θ |
∫ F (θ|ηi)

0
h(F−1(φ | ηi) | ηi)dφ >

∫ F (θ|ηi)
0

ĥ(F−1(φ | ηi) | ηi)dφ} (which is the pooling
region where h(θ | η) is flattered). However in our analysis, without loss of generality, our
attention can be restricted to output schedule with one threshold.
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in the unit cost of delivering output by S, compared to the cost of output
delivered by A in NS. The argument used earlier to show that CS dominates
NS however cannot be applied, since output allocations in NS are not in-
terior. It turns out that a different variation can be constructed, involving
adjustment in the threshold θNS in NS to thresholds θi in state ηi, i = 1, 2
where θ1 < θNS < θ2, such that P is better off. The proof rests on showing
that such thresholds can be selected in the neighborhood of θNS such that
P’s profit rises in both states η1, η2 owing to outputs moving closer to the
corresponding second-best outputs θSB1 , θSB2 . These thresholds nevertheless
have to be selected carefully to ensure that the resulting allocation is WCP.

Proposition 9 Suppose V (q) = V q with V ∈ (θ, θ̄), with q ∈ [0, 1], and
Π ≡ {η1, η2} such that a(η2 | θ)/a(η1 | θ) is strictly increasing and Θ(η1) =
Θ(η2) = Θ. Then ΠCS > ΠNS: the Principal benefits from hiring the super-
visor.

With regard to the attainability of second-best payoffs, examples can be
constructed where this is and is not possible. [[ADD DETAILS HERE]]
[[ADD SECTION ON CELIK DISCRETE TYPE CASE]]

7 Concluding Comments

We have a considered a model of weak ex ante collusion between a super-
visor and agent, where collusion arises with regard to both participation
and reporting decisions, and outside option payoffs in coalitional bargaining
are determined by noncooperative equilibria of a grand contract designed
by the Principal. We showed in such settings that the Principal can still
benefit from employing the supervisor. This requires the Principal to de-
sign a grand contract involving both the supervisor and the agent, rather
than delegating authority over contracting with the agent to the supervisor
in an unconditional manner. It is essential for the Principal to give both
parties suitable outside option payoffs by designing such a grand contract
judiciously. The presence of such a centralized safeguard as an option then
allows optimal outcomes to be implemented by delegating authority to the
supervisor. These results are consistent with the widespread prevalence of
delegation to information intermediaries, managers and regulators, and high-
light the importance of centralized oversight mechanisms which are necessary
supplements to mitigate ‘abuse of power’ by the concerned intermediaries.
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While the commonsense justification for such mechanism is typically based
on considerations of fair treatment of agents, our analysis shows how such
mechanisms are essential to prevent inefficient output contractions and loss
of profits of the Principal owing to monopsonistic behavior by intermediaries
to whom authority is delegated.

In future research, we plan to explore implications of various notions of
strong collusion, where one or more of the colluding partners can commit to
playing the Principal’s grand contract in particular ways, when coalitional
bargaining breaks down. We expect that the result concerning irrelevance of
bargaining power within the coalition will then no longer apply, which will
generate interesting new results concerning implications of altering the ways
that supervisors and agents are matched.
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Appendix A: Justification for WCP Alloca-

tions in Terms of Belief Restrictions

In the text we provided a justification of WCP allocations in terms of the
equilibrium refinement WPBE(wc), which incorporated a notion of collusion
wherein S and A can collectively coordinate on choice of a PBE following
any given side-contract. We now provide an alternative ‘noncooperative’ jus-
tification, in terms of restrictions on off-equilibrium-path beliefs alone. This
generalizes the assumption of passive beliefs often made in the literature
(e.g., Faure-Grimaud, Laffont and Martimort (2003)). The ‘passive beliefs’
assumption requires beliefs following rejection of side-contract offers to not
vary with the side-contract offered. Such a restriction rules out implementa-
tion of the second-best along the lines of Proposition ??.

Faure-Grimaud, Laffont and Martimort (2003), however, restrict atten-
tion to side contracts offered that are always accepted by A on the equilib-
rium path. Celik and Peters (2011) have shown in the context of a model
of a two-firm cartel that this restriction may entail a loss of generality. In
contrast to a standard principal-agent setting where agent outside options
are exogenous, the consequences of rejection of a side-contract subsequently
results in A and S playing a noncooperative game and are thus endogenous.
Rejection of a side contract by some types of A can communicate informa-
tion to S about A’s type, affecting subsequent play and resulting payoffs in
the noncooperative game. Celik and Peters demonstrate collusive allocations
amongst cartel members which can only be supported by side-contract offers
which are rejected with positive probability on the equilibrium path.

To address this problem, we allow for side contract offers that might be
rejected by some types of A and accepted by others. This is combined with
the following restriction on beliefs.

Definition 7 A WPBE(w) is a Weak Perfect Bayesian Equilibrium (WPBE)
satisfying the following restriction on beliefs (conditional on realization of
any η): (a) there is a pair of beliefs p(η) and Bayesian equilibrium c(η) ∈
C(p(η); η) which results in the noncooperative play of the grand contract
following rejection of any non-null side contract offered by S, where (b)
(p(η), c(η)) = (p∅(η), c∅(η)) if S offers a null side-contract on the equilibrium
path.

Criterion (a) imposes the restriction that there is a common continuation

35



belief and Bayesian equilibrium of the grand contract, following rejection of
any non-null side-contract.25 Criterion (b) additionally requires this contin-
uation to be the same as the continuation that results when S offers a null
side-contract on the equilibrium path.26 In this case, the consequences of
rejection are independent of the side contract offered, and are taken as given
by the Principal.

One could argue that it would be reasonable to expand the scope of (b)
and also require (p(η), c(η)) = (p∅(η), c∅(η)) whenever a non-null SC is of-
fered and accepted by all types of A on the equilibrium path. Evidently, the
definition of WPBE(w) is consistent with this stronger version of (b). How-
ever, it is not needed for the results that follow. The Faure-Grimaud, Laffont
and Martimort (2003) assumption of passive beliefs (where rejection of any
offered SC is followed by beliefs (p∅(η), c∅(η))) is therefore consistent with
WPBE(w). Their approach can be rationalized by an underlying restriction
to side contract offers that are either accepted by all types, or rejected by all
types. So WPBE(w) may be viewed as a generalization of the assumption
of passive beliefs, when one allows rejection of SCs by some types on the
equilibrium path.

We now show that with this restriction on beliefs, there is no loss of
generality in confining attention to side-contract offers that are accepted by
all types on the equilibrium path.

Lemma 1 Given any grand contract, and any allocation resulting from a
WPBE(w) in which S’s side contract offer is rejected with positive probability
on the equilibrium path, there exists another WPBE(w) resulting in the same
allocation in which the side contract offered by S is accepted by all types of
A on the equilibrium path.

The argument resembles the standard one underlying the Revelation Prin-
ciple: offering a new side-contract S̃C which mimics the outcomes resulting
from rejection of an original side-contract (SC), can result in acceptance by
all types of A and the same resulting allocation. How can this be recon-
ciled with the Celik-Peters (2011) demonstration of a collusive allocation for

25This is irrespective of whether or not rejection occurs on the equilibrium path. If it
does, whereby subsequent continuation beliefs are determined by Bayes Rule, (a) requires
the same beliefs to ensue from rejection of some other non-null SC.

26Criterion (a) by itself is insufficient to allow collusion to have any bite, since the
construction used in proving Proposition ?? satisfied (a). Hence part (b) is additionally
required to avoid the conclusion of Proposition ??.
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a two-firm cartel which is the outcome of a side-contract that is rejected
with positive probability in equilibrium, which cannot be achieved by some
other side contract that is not rejected on the equilibrium path? There are
two main differences between our respective formulations of side-contracting.
First, in our model S rather than some third-party offers the side-contract.
In the latter case, a participation constraint for S has to be respected. In
our model S offers the SC, so there is no need to incorporate a participation
constraint for S. However this difference would disappear in the version of our
model to be considered later, where side contracts are designed and offered
by a third party. The second reason is the WPBE(w) restriction we have
imposed. The construction of the example in Celik-Peters (2011, Section
2) hinges on beliefs following rejection that vary with the side-contract in
question, contrary to what WPBE(w) requires.27

The next step is to observe that the collusion-proofness principle — that P
can without loss of generality restrict attention to noncooperative equilibria
of grand contracts that do not provide S with an incentive to offer a non-null
side contract — also holds for WPBE(w) allocations.

Lemma 2 An allocation (uA, uS, q) is a WPBE(w) outcome if and only if
there exists a grand contract GC satisfying the following two properties:

(i) In any state η ∈ Π: participation and truthful reporting by all types
of S and A constitutes a Bayesian equilibrium relative to beliefs p∅(η)
obtained by updating on η alone, which results in state-η allocation:
(uA(·, η), uS(·, η), q(·, η));

(ii) there is a WPBE(w) of the resulting side-contracting game in which S
offers no side-contract for any η ∈ Π.

The argument is straightforward. Lemma 1 ensures that without loss of
generality attention can be focused on WPBE(w) in which the equilibrium

27To elaborate further, their example rests on the following feature. Rejection of the
side contract analogous to our S̃C (by the uninformed party) results in coalition members
playing the grand contract noncooperatively with beliefs p∅, which differs from beliefs
following rejection of the equilibrium side contract. If the two side contracts were associ-
ated with the same post-rejection continuation beliefs, the argument underlying Lemma
1 would apply, implying that the S̃C contract would support the same allocation as the
equilibrium side-contract. Their construction is based on the implicit assumption that the
designer of the side-contract will disclose information regarding the type reported by the
other party for some side contracts (e.g., the equilibrium side contract), and not others
(e.g., S̃C) when a given party is the only one to reject the side contract.
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side contract, if offered in any state η, is not rejected by any type of A. Then
there is no room for further coordination by S and A which improves the
expected payoff of S while meeting A’s acceptance and incentive constraint.
If the resulting allocation were offered directly in the grand contract, there
would be no scope for S to benefit from any further side-contract.

Lemma 2 implies that allocations achieved as WPBE(w) outcomes fol-
lowing any grand contract coincide with WCP allocations satisfying interim
participation constraints for both A and S.

Proposition 10 An allocation (uA, uS, q) is a WPBE(w) outcome following
some grand contract, if and only if it is a WCP allocation satisfying interim
participation constraints

E[uS(θ, η)|η] ≥ 0 for all η (6)

uA(θ, η) ≥ 0 for all (θ, η) (7)
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Appendix B: Justification for WCP Allocations

when Side-Contracts are Designed by a Third

Party

Here we explain how WCP allocations can continue to be justified when side
contracts are offered by a third party, extending the ‘cooperative’ refinement
used in the text for the case where they are offered by S. To address the
problem highlighted by Celik and Peters (2011), the side-contract is now
modelled as a two stage game played by S and A. The first stage is a ‘par-
ticipation’ stage where they communicate their participation decisions in the
side contract, in addition to some auxiliary messages in the event of agreeing
to participate. The role of these messages is to allow A to signal informa-
tion about his type while agreeing to participate, which can help replicate
whatever information is communicated by side-contract rejection in a setting
where communication concerning participation decisions is dichotomous. A
and S observe the messages sent by each other at the end of the first stage.
At the second stage, A and S submit type reports, conditional on having
agreed to participate at the first stage.

Let (Dp
A, D

p
S) denote the message sets of A and S at the participation

stage (or p-stage). eA ∈ Dp
A and eS ∈ Dp

S are the exit options of A and S
respectively.

What occurs at the second stage (‘execution’ or e-stage) depends on dp =
(dpA, d

p
S) chosen at the first stage.

• If dpA 6= eA and dpS 6= eS, A and S select (deA, d
e
S) ∈ De

A(dp) × De
S(dp)

respectively. The report to P is selected according to µ(dp, de), associ-
ated with the transfers to A and S, tA(dp, de) and tS(dp, de) respectively.
Owing to wealth constraint of the third party, these are constrained to
satisfy tA(dp, de) + tS(dp, de) ≤ 0.

• If either dpA = eA or dpS = eS, A and S play GC non-cooperatively.

Given GC and η, the third party decides whether to offer a side-contract
SC(η) or not (i.e., offer a null side-contract NSC). If a non-null side-contract
is offered, A and S play a game denoted by GC ◦ SC(η) with two stages
as described above. On the other hand, if the third party offers a null side-
contractNSC at the first stage, A and S playGC non-cooperatively based on
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prior beliefs p0(η). The third-party’s objective is to maximize E[αuA(θ, η) +
(1− α)uS(θ, η) | η] in state η.

The refinement WPBE(wc) introduced in the text for the case where the
side contract is offered by S, can now be extended as follows.

Definition 8 Following the selection of a grand contract by P, a WPBE(wc)
is a Weak Perfect Bayesian Equilibrium (WPBE) of the subsequent game in
which side-contracts are designed by a third party, which has the following
property. There does not exist some η, and some deviating side-contract
offer SC(η) for which there is a Perfect Bayesian Equilibrium (PBE) of the
subsequent continuation game in which (conditional on η) the third-party’s
payoff is strictly higher, while the payoffs of S and every type of A is not
lower.

Definition 9 An allocation (uA, uS, q) is implementable in the weak collu-
sion game with side contracts designed by a third party assigning welfare
weight α to A, if there exists a grand contract and a WPBE(wc) of the sub-
sequent side contract game which results in this allocation.

Lemma 3 An allocation (uA, uS, q) is implementable in the weak collusion
game with side contracts designed by a third party assigning welfare weight
α to A, if and only if it is a WCP(α) allocation satisfying the interim par-
ticipation constraints uA(θ, η) ≥ 0 and E[uS(θ, η) | η] ≥ 0.
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Appendix C: Proofs

Proof of Proposition 1: Consider the necessity part. Suppose the allo-
cation (uA, uS, q) is WCP. Then the null side contract is optimal for S for
every η, so must be feasible in P (η). This implies (uA(θ, η), q(θ, η)) satisfies
A’s incentive compatibility condition. Now consider the problem P (η). The
incentive constraint

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

is equivalent to

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy

and q̂(m̃(θ | η)) is non-increasing in θ. Then the problem can be rewritten
as

maxE[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂) where M̂ ≡ K ∪ {e},

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy ≥ uA(θ, η)

and q̂(m̃(θ | η)) non-increasing in θ. Since randomized side contracts can be
chosen, the objective function is concave and the feasible set is convex. So the
solution maximizes (subject to the constraint q̂(m̃(θ | η)) is non-increasing in
θ) the following Lagrangian expression corresponding to some non-decreasing
function Λ̃(θ | η):

L ≡ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)|η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ̃(θ | η)

where X̂(m̃), q̂(m̃) denote expected values of X̂(m), q̂(m) taken with respect
to probability measure m̃ over m ∈ M̂ . Note that without loss of generality,
ũA(θ, η) is a deterministic function.
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A’s incentive constraint implies ũA(θ, η) is continuous on Θ(η). Hence
integration by parts yields:∫

[θ(η),θ̄(η)]

ũA(θ, η)dΛ̃(θ | η) = Λ̃(θ̄(η) | η)ũA(θ̄(η), η)− Λ̃(θ(η) | η)ũA(θ(η), η)

+

∫
[θ(η),θ̄(η)]

Λ̃(θ | η)q̂(m̃(θ | η))dθ

= [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]ũA(θ̄(η), η)

+

∫
[θ(η),θ̄(η)]

[Λ̃(θ | η)− Λ̃(θ(η) | η)]q̂(m̃(θ | η))dθ.

The second equality comes from

ũA(θ(η), η) = ũA(θ̄(η), η) +

∫
[θ(η),θ̄(η)]

q̂(m̃(y | η))dy.

Next consider the effect of raising uniformly A’s outside option function
from uA(θ, η) to uA(θ, η)+∆ where ∆ is an arbitrary positive scalar. It is ev-
ident that the solution is unchanged, except that ũA(θ, η) is raised uniformly
by ∆. Hence the maximized payoff of S must fall by ∆, implying that∫

[θ(η),θ̄(η)]

∆dΛ̃(θ | η) = [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]∆ = ∆,

and so Λ̃(θ̄(η) | η) − Λ̃(θ(η) | η) = 1 in the optimal solution. Now define
Λ(θ | η) ≡ Λ̃(θ | η) − Λ̃(θ(η) | η). Then Λ(θ | η) is non-decreasing in θ with
Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1.

This implies

L ≡
∫

[θ(η),θ̄(η)]

[X̂(m̃(θ | η))− π(θ | η)q̂(m̃(θ | η))]dF (θ | η)

−
∫

(θ(η),θ̄(η)]

uA(θ, η)dΛ(θ | η) (8)

where π(θ | η) ≡ θ + F (θ|η)−Λ(θ|η)
f(θ|η)

. This has to be maximized subject to

the constraint that q̂(m̃(θ | η)) is non-increasing in θ. This reduces to the
unconstrained maximization of the corresponding expression where the CSC
function π(· | η) is replaced by the corresponding CVC function z(· | η) using
the ironing procedure relative to the cdf F (θ | η).
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If m̃∗(θ | η) is optimal in problem P (η), there exists π(· | η) ∈ Y (η) so
that the optimal side contract m̃ = m̃∗(θ | η) maximizes

X̂(m̃(θ | η))− z(θ | η)q̂(m̃(θ | η))

where z(θ | η) ≡ z(θ | π(· | η), η). Moreover q̂(m̃∗(θ | η)) must be non-
increasing in θ and flat on any interval of θ which is a subset of Θ(π(· | η), η).

If the optimal side contract is degenerate and concentrated at (θ, η), it
must be the case that

X̂(θ, η)− z(θ | η)q̂(θ, η) ≥ X̂(m̃
′
)− z(θ | η)q̂(m̃

′
)

for any m̃
′ ∈ ∆(M̂). This implies

X̂(θ, η)− z(θ | η)q(θ, η) ≥ X̂(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X̂(θ, η)− z(θ | η)q(θ, η) ≥ 0

for any (θ, η), (θ
′
, η
′
), implying (i) in the proposition. Obviously q(θ, η) must

be non-increasing in θ and must be flat on any interval of θ which is a subset
of Θ(π(· | η), η) (implying (iii) in the proposition).

Now consider the sufficiency part. Consider any state η. Suppose there
is a CSC function π(· | η) ∈ Y (η) which is ironed to yield the CVC function
z(·|η) such that (uS(θ, η), uA(θ, η), q(θ, η)) satisfies all the conditions in the
proposition. Define (X̂(m), q̂(m)) on M̂ ≡ K ∪ {e} such that

(X̂(θ, η), q̂(θ, η)) = (uS(θ, η) + uA(θ, η) + θq(θ, η), q(θ, η))

and
(X̂(e), q̂(e)) = (0, 0).

and extend this to (X̂(m̃), q̂(m̃)) on ∆(M̂) in the obvious manner. Consider
the problem P (η) as selection of m̃(θ|η), ũA(θ, η) to maximize

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to
ũA(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))
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for any θ, θ
′ ∈ Θ(η). For ũA(θ, η) which satisfies constraints of the problem,

we have ∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) ≥ 0.

Then

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

≤ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η).

Now consider the problem of maximizing the right hand side of this inequality,
subject to the constraint that q̂(m̃(θ | η)) is non-increasing in θ. Using
the same steps in the proof of the necessity part, this can be expressed
as a problem of selecting m̃(θ|η) to maximize the Lagrangean (8) subject
to the constraint that q̂(m̃(θ | η)) is non-increasing in θ. Conditions (i)-
(iii) imply that the right-hand-side is maximized at m̃(θ | η) = (θ, η) and
ũA(θ, η) = uA(θ, η). Since∫

[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) = 0

when ũA(θ, η) = uA(θ, η), this shows that the left hand side of the above
inequality is also maximized at m̃(θ | η) = (θ, η) and ũA(θ, η) = uA(θ, η).
Hence (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves P (η).

Proof of Proposition 2

Proof of Necessity

Suppose (uA, uS, q) is implementable in the weak collusion game. It is evident
that it satisfies interim participation constraints of A and S. Here we show
that it is also a WCP allocation. Suppose not. Then there exists η ∈ Π
such that (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) does not solve the side-
contracting problem P (η). Suppose that (m̃∗(θ | η), ũ∗A(θ, η)) is the solution
of P (η). Defining

ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− ũ∗A(θ, η),
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we have
E[ũ∗S(θ, η) | η] > E[uS(θ, η) | η]

and
ũ∗A(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η). Since (uA, uS, q) is implementable in the weak collusion
game, there exists a grand contract GC and an associated WPBE(wc) which
results in this allocation. From the property of WPBE(wc), there exists
belief p(η) and non-cooperative equilibrium c(η) of GC based on the belief
p(η) such that A’s payoff is not better than uA(θ, η) for any θ ∈ Θ(η).

For m̃∗(θ | η) ∈ ∆(K ∪ e), there exists m̃c(θ, η) ∈ ∆(MA×MS) such that

(X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))) = (XA(m̃c(θ, η)) +XS(m̃c(θ, η)), q(m̃c(θ, η))).

Given GC and η, suppose that S offers the side-contract SCc(η) such that
the report to P is selected according to m̃c(θ

′
, η) on the basis of A’s report

of θ
′ ∈ Θ(η), associated with the transfer to A:

tcA(θ
′
, η) = ũ∗A(θ

′
, η)− [XA(m̃c(θ

′
, η))− θ′q(m̃c(θ

′
, η)))].

Now construct a Perfect Bayesian Equilibrium (PBE) in the game induced
by GC and SCc(η), as follows. It is evident that if A accepts this side-
contract, it is optimal for him to truthfully report θ ∈ Θ(η), generating
payoffs ũ∗A(θ, η) and ũ∗S(θ, η) for A and S respectively. If A rejects the side-
contract, A and S play c(η) based on the belief p(η) specified above. Since
ũ∗A(θ, η) ≥ uA(θ, η), all types of A participate in the side-contract, given
this choice of non-cooperative equilibrium in the event that A rejects the
side-contract. The argument shows that (ũ∗A(θ, η), ũ∗S(θ, η)) is realized as a
PBE outcome. Since S is better off without making any type of A worse
off, it contradicts the fact that (uA, uS, q) is realized as the outcome of a
WPBE(wc).

Proof of Sufficiency

Suppose that (uA, uS, q) is a WCP allocation satisfying interim participation
constraints of A and S. We show that there exists a grand contract which
realizes (uA, uS, q) as a WPBE(wc) outcome. Consider the following grand
contract, corresponding to T > 0 chosen sufficiently large:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)
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where
MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))
for ηA = ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6=
ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA

WCP implies that uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η) for any θ, θ
′ ∈ Θ(η).

Then together with interim participation constraints of A and S, this grand
contract has a non-cooperative truthful equilibrium (m∗A(θ, η),m∗S(η)) = ((θ, η), η)
based on prior beliefs. Then there exists a WPBE where S offers the null
side-contract on the equilibrium path for any η ∈ Π. In this WPBE, for
any non-null side-contract, A’s rejection always induces the truthful equilib-
rium based on prior beliefs. Then since (uA, uS, q) is WCP, S cannot benefit
from any non-null side-contract. This equilibrium also satisfies the robust-
ness criterion in WPBE(wc), since there is no room for S to achieve a higher
payoff, while leaving a payoff of at least uA(θ, η) to all types of A. Therefore
(uA, uS, q) is a WPBE(wc) outcome, given GC.

Proof of Proposition 3:
At the first step, note that the optimal side contract problem for S in DS

involves an outside option for A which is identically zero. This reduces to a
standard problem of contracting with a single agent with adverse selection
and an outside option of zero, where the principal has a prior distribution
F (θ|η) over the agent’s cost θ in state η. The CSC function equals h(θ|η),
and the CVC function z(θ|η) reduces to ĥ(θ|η) obtained by applying the
ironing rule to h(θ|η) and distribution F (θ|η).

Given this, P’s contract with S in DS is effectively a contracting problem
for P with a single supplier whose unit supply cost is ĥ(θ|η). P’s prior over
this supplier’s cost is given by distribution function

G(h) ≡ Pr((θ, η) | ĥ(θ | η) ≤ h)
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for h ≥ θ and G(h) = 0 for h < θ. Let G(h | η) denote the cumulative
distribution function of h = ĥ(θ | η) conditional on η:

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η)

for h ≥ ĥ(θ(η) | η)(= θ(η)) and G(h | η) = 0 for h < θ(η). Then G(h) =
Ση∈Πp(η)G(h | η). Since ĥ(θ | η) is continuous on Θ(η), G(h | η) is strictly

increasing in h on [θ(η), ĥ(θ̄(η) | η)]. However, G(h | η) may fail to be
left-continuous.

Hence P’s problem in DS reduces to

maxEh[V (q(h))−X(h)]

subject to
X(h)− hq(h) ≥ X(h

′
)− hq(h′)

for any h, h
′ ∈ [θ, h̄] and

X(h)− hq(h) ≥ 0

for any h ∈ [θ, h̄] where the distribution function of h is G(h) and h̄ ≡
maxη∈Π ĥ(θ̄(η) | η). The corresponding problem in NS is

maxEθ[V (q(θ))−X(θ)]

subject to
X(θ)− θq(θ) ≥ X(θ

′
)− θq(θ′)

for any θ, θ
′ ∈ Θ and

X(θ)− θq(θ) ≥ 0

for any θ ∈ Θ. The two problems differ only in the underlying cost dis-
tributions of P: G(h) in the case of DS and F (θ) in the case of NS. Since
θ < ĥ(θ | η) for θ > θ(η),

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) < Pr(θ | θ ≤ h, η) = F (h | η)

for h ∈ (θ(η), ĥ(θ̄(η) | η)), implying

G(h) = Ση∈Πp(η)G(h | η) < Ση∈Πp(η)F (h | η) = F (h)

for any h ∈ (θ, h̄). Therefore the distribution of h in DS (strictly) dominates
that of θ in NS in the first order stochastic sense.
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It remains to show that this implies that P must earn a lower profit in DS.
We prove the following general statement. Consider two contracting problems
with a single supplier which differ only in regard to the cost distributions G1

and G2, where G1(h) < G2(h) for any h ∈ (h, h̄). Let the maximized profit
of P with distribution G be denoted W (G). We will show W (G1) < W (G2).

Let q1(h) denote the optimal solution of the problem based on G1(h).
(i) First we show that V

′
(q1(h)) < h does not hold for any h. Suppose

otherwise that there exists some interval over which V
′
(q1(h)) < h. Then we

can replace the portion of q1(h) with V
′
(q1(h)) < h by q∗(h) with V

′
(q∗(h)) =

h, without violating the constraint that q(h) is non-increasing. It raises the
value of the objective function, since V (q1(h))− hq1(h) < V (q∗1(h))− hq∗1(h)

for h where q1(h) is replaced by q∗(h), and
∫ h̄
h
q(y)dy decreases with this

replacement. This is a contradiction.
(ii) Next we show that for any h

′ ∈ [h, h̄), there exists a subinterval of
[h
′
, h̄) over which V

′
(q1(h)) > h. Otherwise, there exists h

′ ∈ [h, h̄) such that
q1(h) = q∗(h) almost everywhere on [h

′
, h̄). Then for any h ∈ [h

′
, h̄),

V (q∗(h))− hq∗(h)−
∫ h̄

h

q∗(y)dy = V (q∗(h̄))− h̄q∗(h̄),

since V (q∗(h))−hq∗(h) =
∫ h̄
h
q∗(y)dy+V (q∗(h̄))− h̄q∗(h̄) (which follows from

the Envelope Theorem: d[V (q∗(h))− hq∗(h)]/dh = −q∗(h)). Then

W (G1) = (1−G1(h
′
))[V (q∗(h̄))− h̄q∗(h̄)]

+ G1(h
′
)E[V (q1(h))− hq1(h)−

∫ h
′

h

q1(y)dy | h ≤ h
′
]−G1(h

′
)

∫ h̄

h′
q∗(y)dy.

Now consider output schedule q(h) such that q(h) = q1(h) for h ≤ h
′

and
q(h) = q∗(h̄) for h > h

′
. It is evident that q(h) is non-increasing in h

and generates a higher value of the objective function, since
∫ h̄
h′
q∗(y)dy >∫ h̄

h′
q∗(h̄)dy. This is a contradiction.
(iii) We show there does not exist q such that q1(h) = q almost every-

where. Otherwise, q1(h) = q almost everywhere for some q. Then

V (q)− hq −
∫ h̄

h

qdy = V (q)− h̄q,

which is not larger than V (q∗(h̄)) − h̄q∗(h̄) which equals maxq̃[V (q̃) − h̄q̃].
We can show that the value of the objective function is increased by choosing
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the following output schedule q̃(h):

q̃(h) =

{
q∗(h̄) h ∈ [h∗, h̄]
q∗(h̄) + ε h ∈ [h, h∗]

where h∗ is any element of (h, h̄), and ε > 0 is chosen so that V (q∗(h̄) + ε)−
V (q∗(h̄)) > εh∗. This is possible since limε→0

V (q∗(h̄)+ε)−V (q∗(h̄))
ε

= V
′
(q∗(h̄)) =

h̄, implying existence of ε > 0 such that V (q∗(h̄) + ε) − V (q∗(h̄)) > εh∗ for
any h∗ < h̄.

Then we obtain a contradiction, since

V (q∗(h̄))− h̄q∗(h̄)

< (1−G1(h∗))[V (q∗(h̄))− h̄q∗(h̄)] +G1(h∗)[V (q∗(h̄) + ε)− h̄q∗(h̄)− εh∗]

=

∫ h̄

h

[V (q̃(h))− hq̃(h)−
∫ h̄

h

q̃(y)dy]dG1(h).

(iv) Define

Φ(h) ≡ V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy.

We claim that Φ(h) is left-continuous and bounded. First we show that q1(h)
is left-continuous. Otherwise, there exists h

′ ∈ (h, h̄) such that q1(h
′−) >

q1(h
′
). Now consider q̃1(h) (which is left-continuous at h

′
) such that q̃1(h

′
) =

q1(h
′−) and q̃1(h) = q1(h) for any h 6= h

′
. Defining Φ̃(h) ≡ V (q̃1(h)) −

hq̃1(h) −
∫ h̄
h
q̃1(y)dy, observe that Φ̃(h) = Φ(h) for h 6= h

′
and Φ̃(h) > Φ(h)

when h = h
′
. Then∫

[h,h̄]

Φ̃(h)dG(h) =

∫
[h,h̄]\h′

Φ̃(h)dG(h) + Φ̃(h
′
)[G(h

′
+)−G(h

′−)]

≥
∫

[h,h̄]\h′
Φ̃(h)dG(h) + Φ(h

′
)[G(h

′
+)−G(h

′−)] =

∫
[h,h̄]

Φ(h)dG(h)

with strict inequality if G(h) is discontinuous at h = h
′
. This is a contradic-

tion. This implies in turn that Φ(h) is also left-continuous. Moreover, Φ(h)
is bounded, since

Φ(h) ≤ Φ(h) ≤ V (q1(h))− hq1(h) ≤ V (q∗(h))− hq∗(h) <∞
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because of h > 0, and

Φ(h) ≥ Φ(h̄) = V (q1(h̄))− h̄q1(h̄) ≥ 0

because of V
′
(q) > V

′
(q1(h̄)) ≥ h̄ for q < q1(h̄) and V (0) = 0.

(v) We claim that Φ(h) is non-increasing in h and is not constant on
(h, h̄). To show the former, note that for any h, we have

lim
ε→0+

Φ(h+ ε)− Φ(h)

ε

= lim
ε→0+

(1/ε)[V (q1(h+ ε))− (h+ ε)q1(h+ ε)−
∫ h̄

h+ε

q1(y)dy

− [V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy]]

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

− q1(h+) + lim
ε→0+

(1/ε)

∫ h+ε

h

q1(y)dy

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

for some q̂(h) ∈ [q1(h+), q1(h)]. This is non-positive since V
′
(q̂(h)) ≤ V

′
(q1(h+)) ≤

h and limε→0+
q1(h+ε)−q1(h)

ε
≤ 0. Because of left-continuity of Φ(h), it implies

that Φ(h) is non-increasing in h.
Next we show that Φ(h) is not constant on (h, h̄). First we consider the

case that there exists h ∈ (h, h̄) such that q1(h+) < q1(h−). Then

Φ(h+)

= V (q1(h+))− hq1(h+)−
∫ h̄

h

q1(y)dy]

< V (q1(h−))− hq1(h−)−
∫ h̄

h

q1(y)dy = Φ(h−)

The inequality follows from V
′
(q1(h+)) > V

′
(q1(h−)) ≥ V

′
(q∗(h)) = h.

Therefore Φ(h) decreases discontinuously at h, implying that Φ(h) is not
constant on (h, h̄). Second we consider the case that q(h) is continuous on
(h, h̄). Then from (ii) and (iii) above, there exists an interval (h−, h+) with
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the positive measure such that q1(h) is strictly decreasing and V
′
(q1(h)) > h

on (h−, h+). Φ(h) is continuous and almost everywhere differentiable (be-
cause of monotonicity of q1(h)). At any point of differentiability,

Φ
′
(h) = [V

′
(q1(h))− h]q

′

1(h).

This is negative almost everywhere on (h−, h+). Hence Φ(h) is strictly de-
creasing in h on (h−, h+).

(vi) Now consider the contracting problem with cost distribution G2(h).
Since q1(h) is non-increasing in h, it is feasible for P to select this output

schedule when the cost distribution is G2. Hence W (G2) ≥
∫ h̄
h

Φ(h)dG2(h).

Therefore if
∫ h̄
h

Φ(h)dG2(h) >
∫ h̄
h

Φ(h)dG1(h) = W (G1), it follows that

W (G2) > W (G1). Since G1(h) is right-continuous and Φ(h) is left-continuous
and bounded, we can integrate by parts:∫ h̄

h

Φ(h)dG1(h) +

∫ h̄

h

G1(h)dΦ(h) = Φ(h̄)G1(h̄)− Φ(h)G1(h) = Φ(h̄).

Similarly for G2(h),∫ h̄

h

Φ(h)dG2(h) +

∫ h̄

h

G2(h)dΦ(h) = Φ(h̄)G2(h̄)− Φ(h)G2(h) = Φ(h̄).

Hence ∫ h̄

h

Φ(h)dG2(h)−
∫ h̄

h

Φ(h)dG1(h) =

∫ h̄

h

[G1(h)−G2(h)]dΦ(h).

By (iv) and G2(h) > G1(h) for h ∈ (h, h̄), this is positive.

Proof of Proposition 4:

Step 1: For any η ∈ Π and any closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), there exists δ > 0 such that z(·) ∈ Z(η) for any z(·)

satisfying the following properties:

(i) z(θ) is increasing and differentiable with |z(θ)− θ| < δ and
|z′(θ)− 1| < δ for any θ ∈ Θ(η)

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ
′′
].
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Proof of Step 1

For arbitrary η ∈ Π and arbitrary closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)

and
ε2 ≡ max

θ∈[θ′ ,θ′′ ]
|f ′(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive
on Θ(η), ε1 > 0, and ε2 is positive and bounded above. We choose δ > 0
such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, it is obvious that there exists z(θ) which satisfies conditions (i)
and (ii) of the statement. Define

Λ(θ | η) ≡ (θ − z(θ))f(θ | η) + F (θ | η).

Since z(θ) is differentiable on Θ(η), Λ(θ | η) is also so. It is equal to Λ(θ |
η) = F (θ | η) on θ /∈ [θ

′
, θ
′′
]. For θ ∈ [θ

′
, θ
′′
],

∂Λ(θ | η)

∂θ
= (2− z′(θ))f(θ | η) + (θ − z(θ))f

′
(θ | η) > (1− δ)f(θ | η)− δ|f ′(θ | η)|

≥ (1− δ)ε1 − δε2.

This is positive by the definition of (ε1, ε2, δ). Then Λ(θ | η) is increasing in θ
on Θ(η) with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1. Since z(θ) is increasing in θ
by the definition, it is preserved even by ironing rule. Therefore z(·) ∈ Z(η).

Step 2: There exist η ∈ Π and an interval of θ with positive measure such
that F (θ|η)

f(θ|η)
/F (θ)
f(θ)

is increasing in θ.

The proof of Step 2

Define

A(θ | η) ≡ F (θ | η)

f(θ | η)
/
F (θ)

f(θ)
≡

∫ θ
θ(η)

f(y)a(η|y)dy

a(η|θ)F (θ)
.
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If the result is false, A(θ | η) is non-increasing in θ ∈ (θ(η), θ̄(η)) for all η.
Then

∂A(θ | η)/∂θ =
1

F (θ)2a(η | θ)2
[F (θ)a(η | θ)2f(θ)

−
∫ θ

θ(η)

f(y)a(η | y)dy{F (θ)∂a(η | θ)/∂θ + f(θ)a(η | θ)}] ≤ 0

holds for θ ∈ (θ(η), θ̄(η)). Equivalently

∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[1/A(θ | η)− 1]a(η | θ).

Define Π(θ) ≡ {η ∈ Π | θ ∈ (θ(η), θ̄(η))}. By Ση∈Π(θ)a(η | θ) = 1,
Ση∈Π(θ)∂a(η | θ)/∂θ = 0. This implies that

0 = Ση∈Π(θ)∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[Ση∈Π(θ)a(η | θ)/A(θ | η)− 1],

or Ση∈Π(θ)a(η | θ)/A(θ | η) ≤ 1 holds any for θ ∈ (θ, θ̄). Since 1/A is convex
in A and Ση∈Π(θ)a(η | θ)A(θ | η) = 1,

Ση∈Π(θ)a(η | θ)/A(θ | η) ≥ 1/[Ση∈Π(θ)a(η | θ)A(θ | η)] = 1

with strict inequality if there exists η ∈ Π(θ) such that A(θ | η) 6= 1. This
means that A(θ | η) = 1 must hold for any η ∈ Π(θ) and any θ ∈ Θ. Then
h(θ | η) = H(θ) for any (θ, η) ∈ K. This is a contradiction, since η is
informative about θ.

Step 3:

From Step 2, we can choose η∗ ∈ Π and a closed interval [θ
′
, θ
′′
] ⊂ Θ(η∗)

such that θ(η∗) < θ
′
< θ

′′
< θ̄(η∗) and A(θ | η∗) ≡ F (θ|η∗)

f(θ|η∗) /
F (θ)
f(θ)

is increasing

in θ on [θ
′
, θ
′′
]. According to the procedure in Step 1, we select δ > 0 for η∗

and [θ
′
, θ
′′
]. Then we also choose λ > 0, closed intervals ΘL ⊂ [θ

′
, θ
′′
] and

ΘH ⊂ [θ
′
, θ
′′
] ,

λ <
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘL ≡ [θL, θ̄L] ⊂ [θ
′
, θ
′′
]
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λ >
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘH ≡ [θH , θ̄H ] ⊂ [θ
′
, θ
′′
]

with θ̄L < θH . These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗) > 0 for θ ∈ ΘL

and
H(θ)− (1− λ)θ − λh(θ | η∗) < 0 for θ ∈ ΘH .

Step 4: Construction of z(θ | η)

Now let us construct z(θ | η) which satisfies the following conditions.

(A) For η 6= η∗, z(θ | η) = θ for any θ ∈ Θ(η).

(B) For η∗, z(θ | η∗) satisfies

(i) z(θ | η∗) is increasing and differentiable with |z(θ | η∗) − θ| < δ
and |z′(θ | η∗)− 1| < δ for any θ ∈ Θ(η∗)

(ii) z(θ | η∗) = θ for any θ /∈ ΘH ∪ΘL

(iii) For θ ∈ ΘL, z(θ | η∗) satisfies (a) z(θ | η∗) ≤ θ with strict
inequality for some subinterval of ΘL of positive measure, and (b)
H(z)− (1− λ)z − λh(θ | η∗) > 0 for any z ∈ [z(θ | η∗), θ].

(iv) For θ ∈ ΘH , z(θ | η∗) satisfies (a) z(θ | η∗) ≥ θ with strict
inequality for some some subinterval of ΘH of positive measure,
(b) z(θ | η∗) < h(θ | η∗) and (c) H(z)− (1− λ)z − λh(θ | η∗) < 0
for any z ∈ [θ, z(θ | η∗)].

(v) E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +
∫ θ̄(η∗)
z(θ|η∗) q

NS(z)dz | η∗] = 0.

We now argue there exists z∗(θ | η∗) which satisfies (B(i)-(v)). Step 3
guarantees that we can select z(θ | η∗) which satisfies (B(i)-(iv)). Since

(z − h(θ | η∗))qNS(z) +

∫ θ̄(η∗)

z

qNS(y)dy

is increasing in z for z < h(θ | η∗), and

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(y)dy | η∗] = 0,
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the choice of z(θ | η∗) ≤ θ on ΘL (or z(θ | η∗) ≥ θ on ΘH) reduces (or raises)

E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]

away from zero. For any pair of parameters αH , αL lying in [0, 1], define
a function zαL,αH (θ|η∗) which equals (1 − αL)z(θ|η∗) + αLθ on ΘL, equals
(1 − αH)z(θ|η∗) + αHθ on ΘH and equals θ elsewhere. It is easily checked
that any such function also satisfies conditions (B(i)–(iv)). Define

Q(αL, αU) ≡ E[(zαL,αH (θ | η∗)−h(θ | η∗))qNS(zαL,αH (θ | η∗))+
∫ θ̄(η∗)

zαL,αH (θ|η∗)
qNS(z)dz | η∗].

Then Q is continuously differentiable, strictly increasing in αL and strictly
decreasing in αH . By (B(v)), Q(1, 1) = 0. The Implicit Function Theorem
ensures existence of α∗L, α

∗
H both smaller than 1 such that Q(α∗L, α

∗
H) = 0.

Hence the function zα∗L,α∗H (θ|η∗) satisfies (B(i)-(v)).

Step 5

By Step 1, z(· | η) constructed in Step 4 is in Z(η) for any η ∈ Π. Consider
the following allocation (uA, uS, q):

q(θ, η) = qNS(z(θ | η))

uA(θ, η) =

∫ θ̄

θ

qNS(z(y | η))dy

uS(θ, η) = XNS(z(θ | η))−θqNS(z(θ | η))−
∫ θ̄(η)

θ

qNS(z(y | η))dy−
∫ θ̄

θ̄(η)

qNS(y)dy.

where

XNS(z(θ | η)) ≡ z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz.

The construction of z(θ | η) implies that z(θ̄(η) | η) ≤ θ̄ for any η ∈ Π.
Hence

XNS(z(θ | η))− z(θ | η)qNS(z(θ | η)) ≥ 0
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for any (θ, η) ∈ K and
E[uS(θ, η) | η] = 0

from (A) and (B(v)). Then (uA, uS, q) is a WCP allocation satisfying interim
PCs. Now we show that this allocation generates a higher payoff to P than
the optimal allocation in NS. P ’s resulting expected payoff conditional on
η∗ (maintaining the expected payoff conditional on η 6= η∗ unchanged) is:

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗].

With E[uS(θ, η∗) | η∗] = 0, this is equal to

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

+ λE[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]

= E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗] | η∗]

− λ

∫ θ̄

θ̄(η∗)

qNS(z)dz

On the other hand,

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗] = 0.
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P ’s expected payoff conditional on η∗ in the optimal allocation in NS is:

E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

+ λE[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− [(1− λ)θ + λh(θ | η)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

− λ

∫ θ̄

θ̄(η∗)

qNS(z)dz

The difference between two payoffs is

E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

− E[V (qNS(θ))− [(1− λ)θ + λh(θ | η∗)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[V
′
(qNS(z))− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[H(z)− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗].

The second equality uses V
′
(qNS(z)) = H(z). From the construction of

z(θ | η∗) in Step 4 and qNS
′
(z) < 0, this is positive. We have thus found an

implementable allocation generating a higher payoff to P in CS compared
to the optimal allocation in NS.

Proof of Proposition 5:
Since f(θ | η∗) is decreasing in θ, h(θ | η∗) is increasing in θ, implying

h(θ | η∗) = ĥ(θ | η∗). Since f(θ|η∗)
f(θ|η)

is strictly decreasing in θ for any η 6= η∗,

57



f(θ
′ |η∗)

f(θ|η∗) >
f(θ
′ |η)

f(θ|η)
for θ > θ

′
. Θ(η) = Θ(η∗) = Θ then implies

F (θ | η∗)
f(θ | η∗)

=

∫ θ

θ

f(θ
′ | η∗)

f(θ | η∗)
dθ
′
>

∫ θ

θ

f(θ
′ | η)

f(θ | η)
dθ
′
=
F (θ | η)

f(θ | η)
.

Hence h(θ | η∗) > h(θ | η) for θ ∈ (θ, θ̄] and h(θ | η∗) = h(θ | η) = θ. The
ironing procedure then ensures that ĥ(θ | η∗) > ĥ(θ | η) for any θ > θ and any
η 6= η∗. Thus ĥ(θ̄|η∗) > ĥ(θ̄|η) while ĥ(θ|η∗) = ĥ(θ|η) = θ for η 6= η∗, i.e., the
range of ĥ conditional on η∗ includes the range of ĥ conditional on η. Since
h(θ | η∗) = ĥ(θ | η∗) is strictly increasing and continuously differentiable,
q∗(ĥ(θ | η∗)) is also continuously differentiable and strictly decreasing in θ.

Suppose the result is false, and the second best allocation (uSBA (θ, η), uSBS (θ, η), qSB(θ, η))
is implementable with weak collusion. Then Proposition 1 implies existence
of π(· | η) ∈ Y (η) such that

qSB(θ, η) = q∗(ĥ(θ | η))

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ 0

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ XSB(θ
′
, η
′
)− z(θ | η)qSB(θ

′
, η
′
)

where z(θ | η) ≡ z(θ, π(θ | η), η) and

XSB(θ, η) ≡ uSBA (θ, η) + uSBS (θ, η) + θqSB(θ, η).

Step 1: z(θ | η) ∈ [z(θ | η∗), z(θ̄ | η∗)] holds for any (θ, η).

The proof is as follows. Since ĥ(θ | η) < ĥ(θ | η∗) for any θ > θ and η 6= η∗,

qSB(θ, η∗) = q∗(ĥ(θ | η∗)) < q∗(ĥ(θ | η)) = qSB(θ, η).

Then z(θ | η∗) ≥ z(θ | η) follows from the coalition incentive constraints.
If on the other hand z(θ|η) < z(θ|η∗), there exists a non-degenerate in-

terval T of θ for which z(θ|η) ∈ (z(θ|η), z(θ|η∗)). The second-best output in
either state (θ, η) or (θ, η∗) is the first-best level q∗(θ) corresponding to cost
θ. The coalitional incentive constraints imply output must be constant over
T given η, so must equal the first-best q∗(θ) corresponding to cost θ. But
ĥ(θ, η) ≥ θ for every θ ∈ T , implying qSB(θ, η) = q∗(ĥ(θ, η)) ≤ q∗(θ) < q∗(θ),
and we obtain a contradiction.

In what follows, we denote [z(θ | η∗), z(θ̄ | η∗)] by [z, z̄].
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Step 2:

Now we claim that there exists φ(·) : [h, h̄]→ [z, z̄] which satisfies

(i) z(θ | η) = φ(ĥ(θ | η)).

(ii) φ(h) is continuous, and non-decreasing in h.

(iii) h− φ(h) is non-negative and increasing in h.

First we show that for any (θ, η) and (θ
′
, η
′
) such that ĥ(θ | η) = ĥ(θ

′ | η′),
z(θ | η) = z(θ

′ | η′). Otherwise, there exists (θ
′
, η
′
) and (θ

′′
, η
′′
) such that

ĥ(θ
′ | η′) = ĥ(θ

′′ | η′′) and z(θ
′ | η′) 6= z(θ

′′ | η′′). Suppose z(θ
′ | η′) < z(θ

′′ |
η
′′
) without loss of generality. By Step 1 and the continuity of z(θ | η∗), there

exists θ1 and θ2 (θ1 < θ2) such that

z(θ1 | η∗) = z(θ
′ | η′) < z(θ

′′ | η′′) = z(θ2 | η∗).

Since z(θ | η∗) is continuous in θ and non-decreasing in θ,

z(θ
′ | η′) ≤ z(θ | η∗) ≤ z(θ

′′ | η′′)

for any θ ∈ [θ1, θ2]. The coalitional incentive constraints imply

qSB(θ
′
, η
′
) ≥ qSB(θ, η∗) ≥ qSB(θ

′′
, η
′′
)

for any θ ∈ [θ1, θ2]. On the other hand ĥ(θ
′ | η′) = ĥ(θ

′′ | η′′) implies
qSB(θ

′
, η
′
) = qSB(θ

′′
, η
′′
). Therefore qSB(θ, η∗) = qSB(θ

′
, η
′
) = qSB(θ

′′
, η
′′
)

for any θ ∈ [θ1, θ2]. This contradicts the property that qSB(θ, η∗) must be
strictly decreasing in θ.

Hence there exists a function φ(·) : [h, h̄] → [z, z̄] such that z(θ | η) =
φ(ĥ(θ | η)). Since z(θ | η∗) and ĥ(θ | η∗) are continuous in θ, φ(h) must be
continuous.

Second we show that φ(h) is non-decreasing in h. For any (θ, η) and
(θ
′
, η
′
) such that ĥ(θ | η) < ĥ(θ

′ | η′),

qSB(θ, η) = q∗(ĥ(θ | η)) > q∗(ĥ(θ
′ | η′)) = qSB(θ

′
, η
′
).

The coalitional incentive constraints then imply z(θ | η) ≤ z(θ
′ | η′).
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Third we show h − φ(h) is non-negative and increasing in h. Since
qSB(θ, η∗) = q∗(ĥ(θ | η∗)) is strictly decreasing in θ, the pooling region
Θ(π(· | η∗), η∗) must be empty. Hence it must be the case that

z(θ | η∗) = θ +
F (θ | η∗)− Λ(θ | η∗)

f(θ | η∗)
,

implying
Λ(θ | η∗)
f(θ | η∗)

= ĥ(θ | η∗)− φ(ĥ(θ | η∗)).

The LHS is non-negative and increasing in θ, since f(θ | η∗) is decreasing in
θ and Λ(θ | η∗) is non-negative and non-decreasing in θ. So h − φ(h) must
be non-negative and increasing in h ∈ [h, h̄].

Step 3:

Define R(z) ≡ max(θ̃,η̃)∈K [XSB(θ̃, η̃)− zqSB(θ̃, η̃)] for any z ∈ [z, z̄]. Then

R(z(θ | η)) = XSB(θ, η)− z(θ | η)qSB(θ, η)

and by the Envelope Theorem, R
′
(z(θ | η)) = −qSB(θ, η) = −q∗(ĥ(θ | η)). It

also implies R
′
(φ(h)) = −q∗(h). Then S’s interim payoff is

E[XSB(θ, η)− h(θ | η)qSB(θ, η) | η]

= E[XSB(θ, η)− z(θ | η)qSB(θ, η) + (z(θ | η)− h(θ | η))qSB(θ, η) | η]

= E[R(φ(ĥ(θ | η))) + (φ(ĥ(θ | η))− ĥ(θ | η))q∗(ĥ(θ | η)) | η]

with the last equality using the property of the ironing rule.
Next define

L(h) ≡ R(φ(h)) + (φ(h)− h)q∗(h).

L(h) is continuous and differentiable almost everywhere, since the mono-
tonicity implies the differentiability of φ(h) almost everywhere. If the second
best allocation is implementable with weak collusion, E[L(ĥ(θ | η)) | η] = 0
holds for any η. The first derivative of L(h) is

L
′
(h) = (φ(h)− h)q∗

′
(h)− q∗(h).

Since q∗(h) is continuously differentiable, L
′
(h) is continuous and also differ-

entiable almost everywhere and

L
′′
(h) = (φ

′
(h)− 1)q∗

′
(h) + (φ(h)− h)q∗

′′
(h)− q∗′(h).
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By using V
′
(q∗(h)) = h, we can show that V

′′′
(q) ≤ 0 implies q∗

′′
(h) ≤ 0,

and 0 < V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
implies q∗

′′
(h) > 0 and hq∗

′′
(h) + q∗

′
(h) < 0. By

φ
′
(h)− 1 < 0 and φ(h)− h ≤ 0, it follows that L

′′
(h) > 0.

The strict convexity of L then implies L(h) > L(h
′
) − (h

′ − h)L
′
(h
′
) for

any h 6= h
′
. Hence

E[L(ĥ(θ | η∗)) | η∗] = E[L(h(θ | η∗)) | η∗]
> E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η∗)]L′(ĥ(θ | η)) | η∗]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

for any η 6= η∗. L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +
∫ θ̄
θ
L
′
(ĥ(y | η))dy is

non-increasing in θ, since

−[ĥ(θ | η)− θ]L′′(ĥ(θ | η)) < 0

and is strictly decreasing in θ over some interval (since the ironing rule ensures
ĥ(θ | η) is continuous with ĥ(θ | η) = θ and ĥ(θ̄ | η) > θ̄). Then property (ii)
implies F (θ | η∗) > F (θ | η) for θ ∈ (θ, θ̄) and for any η 6= η∗. A first order
stochastic dominance argument then ensures

E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

> E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η)]L
′
(ĥ(θ | η)) | η]

= E[L(ĥ(θ | η)) | η].

where the last equality utilizes a property of the ironing transformation.
Therefore S must earn a positive rent in state η∗, as E[L(h(θ | η∗)) | η∗] >
E[L(ĥ(θ | η)) | η] ≥ 0. This is a contradiction.

Proof of Propositions 6, 7, 8: sketched in the text.

Proof of Proposition 9

Step 1 and 2 are technical steps needed to prepare for the proof of the state-
ments in Step 3 and 4.
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Step 1: There exists θ
′
, θ
′′

and ε > 0 such that

(i) θSB1 < θ
′
< θNS < θ

′′
< θSB2

(ii)For any η ∈ {η1, η2} and any ε
′ ∈ (0, ε], there exists z(· | η) ∈ Z(η) such

that z(θ | η) = θ − ε′ on [θ
′
, θ
′′
].

Proof of Step 1

The proof is based on the construction. Evidently θ < θSB1 < θSB2 < θ̄ by
V ∈ (θ, θ̄). Then choose ε > 0 which satisfies

(i) ε <
min

[θSB1 ,θSB2 ]
|f(θ|η)|

max
[θSB1 ,θSB2 ]

|fθ(θ|η)| for η ∈ {η1, η2}

(ii) ε < θNS − θSB1

(iii) ε <
F (θSB2 |η)−F (θNS |η)

f(θNS |η)
for η ∈ {η1, η2}.

The continuous differentiability of f(θ | η) guarantees the existence of ε > 0
satisfying (i)-(iii). (i) implies that for any η ∈ {η1, η2} and for any ε

′ ≤ ε,
F (θ | η) + ε

′
f(θ | η) is increasing in θ on [θSB1 , θSB2 ]. Now we select θ

′
and θ

′′

as follows:
θ
′ ≡ θSB1 + ε

θ
′′ ≡ min{θ′′1 , θ

′′

2}

for θ
′′
1 and θ

′′
2 satisfying

F (θ
′′

1 | η1) + εf(θ
′′

1 | η1) = F (θSB1 | η1)

F (θ
′′

2 | η2) + εf(θ
′′

2 | η2) = F (θSB2 | η2).

(ii) implies θSB1 < θ
′
< θNS. By (i) and (iii), θNS < θ

′′
< θSB2 . Now for

ηi ∈ {η1, η2} and some ε
′ ∈ (0, ε], define Λ(θ | ηi) as follows

• Λ(θ | ηi) ≡ F (θ | ηi) for θ ∈ [θ, θSB1 ) ∪ (θSB2 , θ̄]

• Λ(θ | ηi) ≡ min{F (θ | ηi) + ε
′
f(θ | ηi), F (θSBi | ηi)} for θ ∈ [θSB1 , θSB2 ]
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Λ(θ | ηi) is non-decreasing in θ and Λ(θ | ηi) = 0 and Λ(θ̄ | ηi) = 1. Then

π(θ) ≡ θ + F (θ|ηi)−Λ(θ|ηi)
f(θ|ηi) = θ − ε′ for θ ∈ [θ

′
, θ
′′
], since

F (θ
′′ | ηi) + ε

′
f(θ

′′ | ηi) ≤ F (θSBi | ηi).

Moreover π(θ) < π(θ
′
) for any θ < θ

′
, since π(θSB1 ) = θSB1 ≤ π(θ

′
) = θ

′ − ε′

and π(θ) > π(θ
′′
) for any θ > θ

′′
. The ironing procedure implies that z(θ |

ηi) = π(θ) = θ − ε′ on [θ
′
, θ
′′
].

Step 2: There exists θL, θU such that

(i) θSB1 < θL < θNS < θU < θSB2

(ii) (V − θ)F (θ | η1) > (V − θNS)F (θNS | η1) for any θ ∈ (θL, θ
NS)

(iii) (V − θ)F (θ | η2) > (V − θNS)F (θNS | η2) for any θ ∈ (θNS, θU)

Proof of Step 2

By the definition of θSB1 , it is true that

(V − θSB1 )F (θSB1 | η1) > (V − θNS)F (θNS | η1).

However it does not mean that (V − θ)F (θ | η1) > (V − θNS)F (θNS | η1)
for any θ ∈ [θSB1 , θNS), unless h(θ | η1) is non-decreasing in θ. However this
inequality holds for θ sufficiently close to θNS.

∂[(V − θ)F (θ | η1)]

∂θ
|θ=θNS = f(θNS | η1)(V − h(θNS | η1))

= f(θNS | η1)(H(θNS)− h(θNS | η1)) < 0

The continuity of (V − θ)F (θ | η1) implies that there exists θL ∈ [θSB1 , θNS)
satisfying (ii). A similar argument ensures the existence of θU satisfying (i)
and (iii).

Step 3: There exists (θ1, θ2, θ̂), z(· | η1) ∈ Z(η1) and z(· | η2) ∈ Z(η2) such
that

(i) max{θ̂, θL} < θ1 < θNS < θ2 < θU

(ii) θ̂ = z(θ1 | η1) = z(θ2 | η2)
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(iii) For each ηi ∈ {η1, η2}, z(θ | ηi) is increasing in θ at θi

(iv) (θ1 − θ̂)F (θ1 | η1) = (θ2 − θ̂)F (θ2 | η2)

Proof of Step 3

For θ
′
, θ
′′

and ε selected in Step 1 and θL, θU in Step 2, choose θ1 and θ2

such that

(a) max{θ′ , θL} < θ1 < θNS < θ2 < min{θ′′ , θU}

(b) 0 < (θ2 − θ1) F (θ1|η1)
F (θ1|η1)−F (θ2|η2)

< ε.

Since F (θNS | η1) > F (θNS | η2), such θ1 and θ2 always exist. Define ε1 and
ε2 as follows:

ε1 ≡ [θ2 − θ1]
F (θ2 | η2)

F (θ1 | η1)− F (θ2 | η2)

ε2 ≡ [θ2 − θ1]
F (θ1 | η1)

F (θ1 | η1)− F (θ2 | η2)
.

Since (b) implies F (θ1 | η1) > F (θ2 | η2), 0 < ε1 < ε2 < ε. By Step 1,
we can choose z(· | ηi) ∈ Z(ηi) such that z(θ | ηi) = θ − εi on [θ

′
, θ
′′
] for

i ∈ {1, 2}. It is evident that z(· | ηi) satisfies (iii). By the definition of ε1
and ε2, it is evident that z(θ1 | η1) = z(θ2 | η2). With the definition of θ̂ such
that θ̂ ≡ z(θ1 | η1) = z(θ2 | η2), θ̂ < θ1 which satisfies (i), and (iv) is also
automatically satisfied.

Step 4:

Based on (θ1, θ2, θ̂) and z(· | ηi) in Step 3, consider the allocation

(uA(θ, η), uS(θ, η), q(θ, η))

as follows:

• uA(θ, ηi) = max{θi − θ, 0}

• uS(θ, ηi) = θ̂ − θi +K for θ ≤ θi and K for θ > θi where

K ≡ (θ1 − θ̂)F (θ1 | η1) = (θ2 − θ̂)F (θ2 | η2) > 0
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• q(θ, ηi) = q̃(z(θ | ηi)) for q̃(z) satisfying q̃(z) = 1 for z ≤ θ̂ and 0 for
z > θ̂.

We claim this is implementable in the weak collusion. First consider the
agent’s participation and incentive constraint. It is evident that uA(θ, ηi) ≥ 0
for any (θ, ηi). We can also show

uA(θ, ηi) ≥ uA(θ
′
, ηi) + (θ

′ − θ)q(θ′ , η)

for any θ, θ
′

and any ηi ∈ {η1, η2}, since

max{θi − θ, 0} ≥ max{θi − θ
′
, 0}+ (θ

′ − θ) = θi − θ

for any θ
′

such that z(θ
′
, ηi) ≤ θ̂ or equivalently θ

′ ≤ θi, and

max{θi − θ, 0} ≥ max{θi − θ
′
, 0} = 0

for any θ
′

such that z(θ
′ | ηi) > θ̂ or θ

′
> θi.

Next we can check the participation constraint of S:

E[uS(θ, ηi) | ηi] = F (θi | ηi)[θ̂ − θi +K] + [1− F (θi | ηi)]K = 0.

Finally, let us check WCP of the allocation. Define X̃(z) as follows:

X̃(z) = zq̃(z) +

∫ z̄

z

q̃(y)dy +K

where z̄ ≡ max{z(θ̄ | η1), z(θ̄ | η2)}. It satisfies X̃(z) − zq̃(z) ≥ 0 and
X̃(z)− zq̃(z) ≥ X̃(z

′
)− zq̃(z′) for any z, z

′
on possible range of z. Since

X̃(z(θ | ηi)) = θ̂ +K

for θ ≤ θi, and

X̃(z(θ | ηi)) = z(θ | ηi)q̃(z(θ | ηi)) +

∫ z̄

z(θ|ηi)
q̃(y)dy +K = K

for θ > θi, it implies that

X̃(z(θ | ηi)) = uA(θ, ηi) + uS(θ, ηi) + θq(θ, ηi).
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The allocation satisfies all conditions of the allocation which is implementable
in the weak collusion. In this allocation, the principal’s payoff is

Ση Pr(η)E[V (q̃(z(θ | η)))− h(θ | η)q̃(z(θ | η)) | η]

= p(η1)(V − θ1)F (θ1 | η1) + p(η2)(V − θ2)F (θ2 | η2)

which is strictly larger than the optimal payoff in NS: (V − θNS)F (θNS) by
Step 2, θ1 ∈ (θL, θ

NS) and θ2 ∈ (θNS, θU).

Proof of Lemma 1: Suppose on the equilibrium path S offers a side contract
SC∗ in some state η ∈ Π which is rejected by a set Tr ⊆ Θ(η) of types of A
with positive measure conditional on η. Let the continuation beliefs following
rejection of SC∗ be denoted p∗, and the Bayesian equilibrium of the grand
contract thereafter is denoted c∗ ∈ C(p∗) (here we are suppressing η in the
notation for expositional convenience).

Now suppose S offers an alternative side contract S̃C, which agrees with
SC∗ if A reports θ ∈ Θ(η)\Tr to S, i.e., results in the same coordinated
report to P and the same side-payment as stipulated by SC∗. If instead A
reports θ ∈ Tr, S proposes the same joint report (θ, η) they would have made
independently in c∗, with no side-payment. If S̃C is rejected by A, they play
according to (p∗, c∗) in the grand contract. This ensures consistency with
criteria (a) and (b) in the definition of WPBE(w).

If all types of A accept S̃C and report truthfully, it results in the same
allocation as in SC∗. Rejecting it results in the same continuation play of the
grand contract that resulted from rejecting SC∗. Conditional on accepting
S̃C, no type θ of A can benefit from deviating from truthful-reporting. Oth-
erwise, if θ ∈ Θ(η)\Tr benefitted from deviating, this would imply they would
have had a profitable deviation from their equilibrium response to SC∗. If
θ ∈ Tr benefits by deviating, this type would have benefitted earlier also,
either by accepting SC∗, or rejecting it and then deviating to the strategy
played by some other type of A while playing the Bayesian equilibrium of
the grand contract.

Owing to restriction (a) of Definition 7, rejection of any other side-
contract offer SC ′ will also result in the same continuation outcomes in the
grand contract. Hence the consequences of S deviating to some other side
contract offer remain unchanged. The consequences of not offering a side
contract have not changed. So it is optimal for S to offer S̃C.

Proof of Lemma 2: sketched in the text.
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Proof of Proposition 10:
Necessity follows straightforwardly from Lemmas 1 and 2. To show suf-

ficiency, consider a WCP allocation satisfying participation constraints. Let
P offer the following revelation mechanism in the grand contract: XS =
XA = q = 0 if mA = eA or mS = eS. If mA 6= eA and mS 6= eS, and A
reports (θ, ηA) while S reports ηS, q((θ, ηA), ηS) = q(θ, ηS), XS((θ, ηA), ηS) =
uS(θ, ηA), XA((θ, ηA), ηS) = θq(θ, ηS) + uA(θ, ηS)− T (ηS, ηA) where T equals
zero if ηA = ηS and (θ, ηA) ∈ K, and a large negative number otherwise.
We first show property (i) of Lemma 2 holds. Consider any η. Conditional
on both S and A participating, it is optimal for S to report ηS = η since
S’s payoff does not depend on ηS. Given that S is reporting truthfully, it is
optimal for A to report ηA = η. WCP implies that the null side contract
is feasible in the side contracting problem for every η, hence it is optimal
for A to report θ truthfully, given that η is being reported truthfully. Given
that both S and A report truthfully conditional on participation, the interim
participation constraints imply it is optimal for them to always participate.

Let this equilibrium be denoted c∗. We claim that there is a WPBE(w)
in which S always offers a null side contract, whose outcome is c∗. The
WPBE(w) restriction implies c∗ must be the consequence of rejection by A
of any offered non-null side contract. Hence uA(θ, η) is the outside option of
A which S takes as given while selecting a side contract. Since the allocation
resulting from c∗ is WCP, S cannot benefit from offering any non-null side
contract.

Proof of Lemma 3

Proof of Necessity

For some GC, suppose that allocation (uA, uS, q) is implemented in the game
with weak collusion. Suppose the allocation is achieved as the outcome of
a WPBE(wc) in which a non-null side contract SC∗(η) is offered on the
equilibrium path in some state η, which is rejected by some types of A. We
show it can also be achieved as the outcome of a WPBE(wc) in which a
non-null side contract is offered in state η and accepted by all types of A. Let
Θr be the set of types who reject SC∗(η). Following A’s rejection (dpA = eA),
suppose that A and S play the grand contract GC based on S’s updated
belief p(· | Θr, η). Since we are using the PBE as the solution concept, these
beliefs do not depend on S’s participation decision. Similarly in the event
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that A accepts, but S rejects SC∗(η), A and S play the grand contract GC
based on S’s updated belief conditioned on the observation of dpA 6= eA. Let
dp∗A (θ, η) denote A’s decision (on the equilibrium path) at the participation
stage. Denoting these beliefs by p(dpA) ≡ p(· | dp∗A (θ, η) = dpA, η), S’s expected
payoff from rejecting SC∗(η) is

E[uS(θ, η, c(dp∗A (θ, η))) | η]

where uS(θ, η, c) ≡ XS(mA(θ, η),mS(η)) for c = (mA(θ, η),mS(η)).
Now construct a new side-contract S̃C(η) which differs from SC∗(η) only

in that A’s message set at the participation stage is Dp
A∪{d̃

p
A} instead of Dp

A,
and A’s choice of d̃pA results in A and S playing of c(p(eA)) in GC without
any transfers. It is easily verified that the continuation game GC ◦ S̃C(η)
has a PBE where no type of A rejects the side-contract, realizing the same
allocation (uA, uS, q) in an equilibrium. In this equilibrium, type θ ∈ Θr

reports dpA = d̃pA instead of dpA = eA. In the off-equilibrium-path event that A
rejects S̃C(η), A and S play the grand contract based on the belief p(· | Θr, η).
Since S receives the same information from A’s decision about dpA, he does
not have an incentive to change his decision at the second stage; this in turn
implies he has no incentive to change his decision at the participation stage.
Since the original equilibrium was a WPBE(wc), so is the newly constructed
equilibrium.

Next we show that if allocation (uA, uS, q) is realized in a WPBE (wc) in
which side contracts are not rejected on the equilibrium path, it must be a
WCP(α) allocation. Suppose not: the allocation resulting from some non-
null side contract (ũ∗A(θ, η), m̃∗(θ, η)) 6= (uA(θ, η), (θ, η)) solves the problem
TP (η;α) for some η. Define ũ∗S(θ, η) ≡ X̂(m̃∗(θ, η))−θq̂(m̃∗(θ, η))− ũ∗A(θ, η).
It is evident that

E[αũ∗A(θ, η) + (1− α)ũ∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η],

ũ∗A(θ, η) ≥ uA(θ, η)

and
E[ũ∗S(θ, η) | η] ≥ E[uS(θ, η) | η].

We can find mc(θ, η) ∈ ∆(MA ×MS) for GC such that

(XA(mc(θ, η)) +XS(mc(θ, η)), q(mc(θ, η))) = (X̂(m̃∗(θ, η)), q̂(m̃∗(θ, η))).
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Now construct a new side-contract SC(η) which realizes (ũ∗A(θ, η), ũ∗S(θ, η), µ̃∗(θ, η))
as a PBE outcome of the game GC ◦ SC(η), contradicting the hypothesis
that (uA, uS, q) is realized in a WPBE (wc), since by construction the interim
participation constraints are satisfied. SC(η) is specified as follows:

• Dp ≡ Dp∗ where Dp∗ = (Dp∗
A , D

p∗
S ) are A and S’s message sets at the

participation stage of the original equilibrium side-contract SC∗(η).

• De
A = Θ(η) and De

S = {φ}

• A’s choice of deA = θ ∈ Θ(η) generates the report to P according to
mc(θ, η), associated with the transfers to A and P respectively:

tA(θ, η) = ũ∗A(θ, η)− [XA(mc(θ, η))− θq(mc(θ, η))]

and
tS(θ, η) = ũ∗S(θ, η)−XS(mc(θ, η)).

For this side-contract SC(η), we claim the following is a PBE of the game
GC ◦ SC(η). Given any (dpA, d

p
S) with dpA 6= eA and dpS 6= eS at the participa-

tion stage, A always selects deA = θ, since θ
′
= θ maximizes

XA(mc(θ
′
, η))− θq(mc(θ

′
, η)) + tA(θ

′
, η) = ũ∗A(θ

′
, η) + (θ

′ − θ)q̂(m̃∗(θ, η)).

At the participation stage, A is indifferent among any dpA ∈ Dp
A\{eA} as

the optimal response to dpS 6= eS, since the same outcome is realized in the
continuation for any of these choices. Therefore it is optimal for A to choose
the same d∗A(θ, η) as in the original equilibrium. It implies that S’s rejection
induces non-cooperative play of GC based on the same updated beliefs as
in the original equilibrium. E[ũ∗S(θ, η) | η] ≥ E[uS(θ, η) | η] guarantees S’s
participation. On the other hand, specify that A’s choice of dpA = eA induces
non-cooperative play of GC based on the same beliefs as in the original
equilibrium. It guarantees A’s participation dpA 6= eA. Hence this is a PBE
resulting in (ũ∗A(θ, η), ũ∗S(θ, η)), completing the argument. This completes
the proof of the necessity.

Proof of Sufficiency

Take an allocation which is WCP(α) and satisfies the interim participation
constraints. To show that it is implementable as a WPBE(wc) outcome,
consider the grand contract G̃C:

G̃C = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)
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where
MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))
for ηA = ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6=
ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA

where T > 0 is sufficiently large. The WCP(α) property implies that uA(θ, η) ≥
uA(θ

′
, η) + (θ

′ − θ)q(θ′ , η). The interim participation constraints imply that
this grand contract has a non-cooperative pure strategy equilibrium (m∗A(θ, η),m∗S(η)) =
((θ, η), η) based on prior beliefs. For this grand contract, we claim there ex-
ists a WPBE(wc) resulting in (m∗A(θ, η),m∗S(η)) = ((θ, η), η). This requires
us to check that there is no alternative SC(η) in any state η with an as-
sociated PBE of the continuation game which generates a higher expected
payoff for the third party, without making S or any type of A worse off. With
sufficiently large T > 0, the third party never benefits from a side-contract
which instructs the coalition to submit a report to P with ηA 6= ηS. Then
the WCP(α) property implies that the third party does not benefit from any
manipulation of the report to P , while guaranteeing E[uS(θ, η) | η] to S and
uA(θ, η) to A.
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