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Abstract

We study the problem of a Principal seeking advice from an expert with better in-

formation about an agent’s cost, on how to design an incentive contract for the agent.

The expert has a prior relationship with the agent, facilitating (weak) ex ante collu-

sion which coordinates their participation and reporting decisions to generate mutual

benefits. Delegating contracting with the agent to the expert is never profitable, while

consulting the expert is frequently valuable in designing the agent’s contract. Changes

in bargaining power within the coalition have no effect, while altruism of the expert

towards the agent makes the Principal worse off.
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1 Introduction

Consider a Principal (P) seeking to procure a service from a contractor, worker or utility

firm that is privately informed about its cost. In order to limit the supplier’s information

rent, P seeks the advice of an expert, referee or monitor (M) endowed with information

concerning technology and supply conditions in the relevant industry. The expert has a

prior relationship with the agent (A), which creates the potential for ex ante collusion:

not only can M and A coordinate their reports to P, but also coordinate their decision

whether to participate in the mechanism. Prior literature on hierarchical mechanism design

has focused mainly on contexts of interim collusion, restricted to coordination of reporting

decisions, after coalition partners have independently agreed to participate (Faure-Grimaud,

Laffont and Martimort (FLM hereafter, 2003), Celik (2009)). Interim collusion seems more

appropriate in auditing or supervision contexts where P assigns an auditor with no prior

relationship with the agent, and the auditor and agent come into contact with one another

after agreeing to participate. When M and A know each other prior to contracting with P,

they can coordinate their participation decisions, thereby enlarging the scope of collusion.

This raises a number of new questions. Under what conditions can P still benefit from the

expertise of M? Is it optimal for P to contract with M alone, and delegate contracting with

the agent to M? How is the Principal’s welfare affected by varying bargaining power or

altruistic preferences between M and A?

The existence of prior connections between experts and agents is common in many real

world contexts such as the relationship between credit rating agencies and firms raising

capital, regulators and private utility companies, company Directors and CEOs, managers

and workers, or prime contractors and subcontractors. However, its consequences for the

design of hierarchical contracts have not received much attention. By contrast, implications

of ex ante collusion in the context of auction design (where bidders collude on participation

and bids) have been studied by Che and Kim (2009) and Pavlov (2008). Besides incor-

porating collusion in participation, our model is similar to existing literature on collusion

in hierarchies. M’s signal of A’s cost is partially informative. Both M and A observe the

realization of this signal, resulting in one-sided asymmetric information within the coali-

tion, which represents the sole friction in collusion. If they fail to agree on a side contract

they play non-cooperatively thereafter (referred to as weak collusion); hence M and A enter

into a deviating side contract only if it results in an interim Pareto improving allocation
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for the coalition. We consider a continuum type space for A’s cost, and show how classical

Myersonian mechanism design methods based on ‘virtual’ types can be extended (using

techniques in Jullien (2000)) to incorporate ex ante collusion constraints, while allowing for

general information structures for M. This is in contrast to previous analyses which have

focused on discrete (two or three) type cases and specific information structures.

Our first main result is that collusion in participation has important implications for

the optimality of delegating authority to M (where P contracts with M alone and lets

M subcontract with A). Some authors have shown that delegation can be optimal in the

presence of collusion in specific settings, e.g., with moral hazard for a range of parameter

values by Baliga and Sjostrom (1998), or adverse selection with interim collusion and a

specific information structure by FLM. Celik (2009) on the other hand shows that the

FLM result does not hold under alternative information structures. By contrast in the

ex ante setting we show that delegation is never optimal, irrespective of the information

structure. Indeed, delegation is inferior to P not consulting the expert at all. Intuitively,

ex ante collusion results in an additional constraint on the delegation design problem, akin

to a limited liability constraint. This prevents P from being able to extract M’s collusion

rents upfront at the participation stage, resulting in double marginalization of rents (DMR).

Contracting directly with A in the absence of M would lower P’s procurement costs in all

states.5

To explore the nature of optimal mechanisms with ex ante collusion, we start by consid-

ering the simple case of an indivisible good, with a continuum type space and two possible

signals observed by M resulting in posterior beliefs with full support. This setting permits

a detailed analysis of optimal contracts under ex ante collusion (EAC), when and how they

differ from the interim collusion (INC) context. When P’s valuation of the good is low,

optimal contracts in the two contexts coincide and incentives are low-powered (in the sense

of lower variability of aggregate payments to M and A with the quantity delivered to P).

For higher valuations, optimal contracts diverge: the INC setting is characterized by high

powered contracts and delegation, resembling a franchise arrangement where M becomes a

residual claimant and pays P a fixed upfront fee. Such contracts are infeasible in EAC: M

would refuse to participate to avoid paying the upfront fee in states where A experiences a

5A similar result is obtained by Mookherjee and Tsumagari (2004) in a team production setting involving

two agents privately informed about their respective costs.
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high cost and does not deliver the good at the offered price. In such settings, collusion in

participation necessitates centralized contracting, low powered incentives, and low sensitiv-

ity of prices with respect to cost information. Moreover, when P’s valuation of the good is

sufficiently high, consulting M is no longer worthwhile under ex ante collusion, but always

remains valuable in interim collusion.

We then consider the context of divisible good procurement, and consider a wide range

of information structures. Here we show that consulting M is always valuable. This helps

explain the widespread reliance on experts, despite prospects for ex ante collusion. This

difference from the indivisible good context arises because there is greater scope for M’s

information to affect P’s procurement decisions e.g., regarding quantity of the good to be

supplied. The proof is based on showing that small variations can be constructed around

the optimal contract where M is not consulted, without giving rise to any collusion or

changing M’s interim payoff. The variation entails raising the output procured over some

range of cost types, and lowering it over another range (corresponding to an arbitrary cost

signal state). Differences in beliefs of P and M regarding A’s cost ensures the existence of

‘mutual gains from trade’ from such a variation, enabling P to earn higher profits, while

preserving M’s participation incentives.

The following additional results concerning optimal mechanisms in the ex ante collusion

setting are then provided:

• We find sufficient conditions for ex ante collusion to lower P’s profits, compared to the

setting without any collusion. This contrasts with results obtained by Che and Kim

(2006) or Motta (2009) for interim collusion settings where the second-best welfare

can generally be achieved by P.

• Altruism of M towards A always hurts P, implying the need for P to consult experts

without any personal connections with A. The result is not a priori obvious, owing to

two offsetting effects. Increased altruism aids collusion by lowering frictions within

the coalition, but also reduces the severity of the DMR problem by limiting the extent

to which M seeks to gain personally from lowering the price offered to A. The former

effect outweighs the latter when contracting is centralized, while the opposite is true

under delegated contracting.

• Changes in bargaining power between M and A over the side-contract do not matter.
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Despite the existence of asymmetric information within the coalition, a modified form

of the ‘Coase Theorem’ continues to hold. This is a consequence of the standard

assumption that failure to collude results in noncooperative play in P’s mechanism.6

The paper is organized as follows. Section 2 discusses relation to existing literature

in more detail. Section 3 studies the context of an indivisible good and two cost signals.

Section 4 considers a perfectly divisible good and a general information structure for M

involving a finite number of possible signals, and presents results concerning value of the

expert and collusion costs. Section 5 discusses extensions incorporating alternative allo-

cations of bargaining power within the coalition, and altruistic experts. Finally, Section

6 discusses implications of our results, extensions and shortcomings of our analysis. All

proofs are presented in the Appendix.

2 Related Literature

Early literature on mechanism design with collusion (e.g., Tirole (1986), Laffont and Ti-

role (1993)) focused on contexts of ‘hard’ information where supervisors could only hide

information but could not report untruthfully. The subsequent literature examines the case

of ‘soft’ information where no constraints on allowable reports are imposed. They can be

classified by the context (auctions, team production or supervision), the nature of collusion

(ex ante or interim, weak or strong collusion)7, and whether type spaces are discrete or

continuous.

A large part of existing literature deals with auctions and team production, where there

are multiple privately informed agents and no supervisor. For auctions, Dequiedt (2007)

considers strong ex ante collusion with binary agent types and shows that efficient collusion

is possible, implying that the second-best cannot be achieved. In contrast, Pavlov (2008)

considers a model with continuous types where the second-best can be achieved with weak

6Mookherjee and Tsumagari (2017) show this result no longer holds in settings of ‘strong’ collusion,

where side contracts include commitments to threats made by each party concerning strategies they will

employ should the other party refuse to participate in the collusion.
7Ex ante collusion permits collusion over both reporting and participation decisions, while interim col-

lusion pertains only to collusion over reporting. Weak collusion refers to collusion for mutual gain, where

failure to agree to collude is followed by noncooperative play. Under strong collusion, each partner commits

to a threat pertaining to how it would play in P’s mechanism, should the other partner refuse to collude,

thereby permitting extortion as well as mutual gain.
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ex ante collusion, and Che and Kim (2009) find the same result with either weak or strong

ex ante collusion with continuous types. Team production with binary types is studied by

Laffont and Martimort (1997), who show the second best can be achieved with weak interim

collusion; this analysis is extended to a public goods context in Laffont and Martimort

(2000) to explore the role of correlated types. Baliga and Sjostrom (1998) consider a

team setting with two productive agents that collude, involving moral hazard and limited

liability rather than adverse selection. They show that delegation to one of the agents is an

optimal response to collusion for a wide set of parameter values. Che and Kim (2006) show

how second-best allocations can be achieved in a team production context with continuous

types under weak interim collusion. Quesada (2004) on the other hand shows strong ex

ante collusion is costly in a team production model with binary types. Mookherjee and

Tsumagari (2004) show delegation to one of the agents is worse than centralized contracting

in the presence of weak ex ante collusion. The logic of this result is similar to that underlying

our result that delegation to the expert is worse than not consulting the expert at all.

Their paper also considers delegation to an expert who is perfectly informed about the

costs of each agent, and show that its value relative to centralized contracting depends

on complementarity or substitutability between inputs supplied by different agents. The

current paper differs insofar as there is only one agent, and there is asymmetric information

within the expert-agent coalition owing to the expert receiving a noisy signal of the agent’s

cost.

In the context of collusion between a supervisor and agent, existing models explore

interim collusion only. FLM consider a model with binary types and signals (with full

support for conditional distributions), a risk-averse supervisor where collusion is costly,

where (unconditional) delegation turns out to be an optimal response to collusion. Celik

(2009) considers a model with three types and two signals (where the support of conditional

distributions depends on the signal), and risk neutral supervisor and agent, in which un-

conditional delegation is dominated by no supervision, which in turn is dominated strictly

by centralized contracting with supervision. Our results show that Celik’s results (which

apply to a specific information structure in the context of interim collusion) extends to

general information structures under ex ante collusion.
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3 Illustration: Procurement of an Indivisible Good

P procures an indivisible good with quantity q either 0 or 1 from A who produces it at cost

θ. A is privately informed about the realization of θ. The expert M and A jointly observe

the realization of signal i ∈ {L,H} of A’s cost. Both A and M have outside option payoffs of

0. Fi(θ) denotes the distribution of θ conditional on i defined on [θ, θ̄], which has a density

fi(θ) which is differentiable and positive on [θ, θ̄]. Hence the support of θ does not vary

with the signal, and hazard rates are well-defined and finite-valued throughout the support.

κi ∈ (0, 1) denotes the probability of signal i, with κL + κH = 1. P does not observe the

signal i, and has a prior F (θ) ≡ κLFL(θ)+κHFH(θ) with density f(θ) ≡ κLfL(θ)+κHfH(θ).

Assumption 1 (i) fL(θ)
fH(θ) is decreasing

(ii) H(θ) ≡ θ + F (θ)
f(θ) , hi(θ) ≡ θ + Fi(θ)

fi(θ)
and li(θ) ≡ θ + Fi(θ)−1

fi(θ)
(i = L,H) are increasing

(iii) hL(θ̄) > V > θ

Part (i) represents a monotone likelihood ratio property wherein i = L (resp. i = H) is a

signal of low (resp. high) cost, while (ii) is a standard assumption ensuring monotonicity of

(conditional) virtual costs. These imply FH(θ) < F (θ) < FL(θ) and hH(θ) < H(θ) < hL(θ)

for any θ ∈ (θ, θ̄). The second inequality of (iii) ensures gains from trade between P and

A; the first one ensures that costless access to M’s signal is valuable for P in the absence

of collusion. These conditions are satisfied in the following example with a uniform prior

F (θ) = θ on [0, 1] and linear conditional densities: FL(θ) = 2dθ − (2d − 1)θ2, FH(θ) =

2(1−d)θ+(2d−1)θ2 on [0, 1], κL = κH = 1/2, d ∈ (1/2, 1) and V between 0 and 1+ 1
2(1−d) .

We shall illustrate our analysis with numerical computations for this example.

The situation where P has no access to M’s signal is referred to as the No Monitor

(NM) case. Here P offers a non-contingent price pNM to maximize F (p)[V − p], which

satisfies V = H(pNM ) if V < H(θ̄), and equals θ̄ otherwise. Let ΠNM ≡ F (pNM )[V −pNM ]

denote the resulting expected payoff of P. The second-best allocation results when there is

no collusion whence P can costlessly access M’s signal; here P offers A a price pSBi which

maximizes (V − pi)Fi(pi). The ordering of virtual cost functions implied by Assumption 1

ensures a lower price elasticity of supply and thus a lower second-best price in the low cost

signal state. However, the supply curve is shifted to the right in the low signal state, so the
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ordering of resulting supply likelihoods between the two states is ambiguous, which turns

out to depend on V :

Lemma 1 (i) pSBH > pNM > pSBL if V < H(θ̄), and pSBH = pNM = θ̄ > pSBL otherwise

(ii) There exist V ∗ and V ∗∗ such that θ < V ∗ ≤ V ∗∗ < hH(θ̄), where FL(pSBL ) > FH(pSBH )

for V ∈ (θ, V ∗) and FL(pSBL ) < FH(pSBH ) for V ∈ (V ∗∗, hL(θ̄)).

3.1 Delegation to Expert with Ex Ante Collusion

Consider P’s option to contract solely with M and delegate the authority to contract with

A. With ex ante collusion, M does not commit to responding to P’s offer before contracting

with A. So after P offers M a contract, the latter offers A a contract. Following A’s response,

M then responds to P.

Given this timing, standard arguments imply that (following any given contract offer)

M can confine attention to offering A a take-it-or-leave-it price pi in state i for delivering the

good to P. And similarly P can confine attention to offering M a two part contract X0, X1

where Xq is the payment for delivery of output q. There is no added value to P asking M

to submit a report of her signal or the outcome of contracting with A, as conditional on

the q delivered M would select whichever message would maximize her payment received.

In order to induce M to deliver the good with positive probability, P must offer X1 > θ.

Upon observing signal i, M will then decide what price pi ∈ [θ,X1] to offer A, along with

participation decision in P’s contract in either of the two events where A does or does not

accept M’s offer. If A accepts, it is optimal for M to agree to participate in P’s contract since

the optimal price will satisfy pi < X1. Let I ∈ {0, 1} denote M’s participation decision

in the event that A does not accept M’s offer. Then M selects pi and I to maximize

Fi(pi)(X1 − pi) + I[1 − Fi(pi)]X0. It follows that I = 1 only if X0 ≥ 0. If X0 < 0, M will

not accept P’s offer in the event that A does not accept M’s offer. The same outcome is

realized if P sets X0 = 0. Hence without loss of generality, X0 ≥ 0, and M always accepts

P’s offer. The constraint X0 ≥ 0 plays a key role in the subsequent analysis. It arises owing

to ex ante collusion, whereby M contracts and communicate with A prior to responding to

P’s offer. In an interim collusion setting this constraint does not arise, and is replaced by

interim participation constraints for M, whence X0 can be negative and yet P’s contract

could be accepted by M.
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Let b denote the delivery bonus X1−X0. The choice of pi will be made by M to maximize

Fi(pi)(b−pi). If b ≤ θ, it is optimal for M to offer A a price below θ, whence the good is never

delivered to P. Otherwise there is a unique optimal price pi(b) which satisfies θ < pi(b) < b.

Eventually P earns expected payoff [κLFL(pL(b)) + κHFH(pH(b))](V − b) − X0, which is

sought to be maximized by choosing b > θ,X0 ≥ 0. Now note that any such payoff would

be strictly dominated by the option of not consulting M at all where P directly offers A

a price of b. This follows since b < V is necessary for P to earn a positive payoff; hence

[κLFL(pL(b)) + κHFH(pH(b))](V − b)−X0 < F (b)(V − b) ≤ ΠNM . We thus obtain:

Proposition 1 With an indivisible good and ex ante collusion, delegation to the expert is

worse for the principal compared to not consulting the expert at all.

As we shall later see, delegation could dominate the no-monitor outcome under interim

collusion. This represents a stark contrast between the two forms of collusion. In delegation

with ex ante collusion, M earns rents which cannot be taxed away upfront by P at the time

of contracting with M, thereby generating a double marginalization of rents (DMR). Under

interim collusion, P may be able to extract some of M’s interim rents (in the absence of

knowledge of A’s type) via an upfront fee, thereby limiting the DMR problem.

3.2 Centralized Contracting with Ex Ante Collusion

Under ex ante collusion, therefore, if at all P obtains an advantage from consulting M,

she needs to contract simultaneously with both M and A. M and A can negotiate a side-

contract (SC, for short) prior to responding to P’s offer. Following private communication

of a cost message by A to M, the SC coordinates their respective messages (which include

participation decisions and cost reports) sent to P, besides a side payment between A

and M. As shown later, without loss of generality M has all the bargaining power within

the coalition and makes a take-it-or-leave-it SC offer to A. If A refuses it, they play P’s

mechanism non-cooperatively. It turns out (as explained in the online Appendix) P can

confine attention to mechanisms that are collusion-proof, i.e., for which it is optimal for M

to not offer any non-null SC to A, and both M and A agree to participate. We now explain

the implied individual and coalition incentive compatibility constraints in the context of an

indivisible good.

First, a contract offer to A reduces to a single take-it-or-leave-it price offer pi when the

cost signal is i. Second, in order to deter collusion, P must offer an aggregate payment
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to M and A which depends only on whether or not the good is produced. Let X0 + b,X0

denote the aggregate payments when the good is and is not produced respectively. The

two prices pL, pH combined with X0, b characterize an allocation entirely. This is associated

with a mechanism where M and A are asked to submit reports of the signal i to P. If the two

reports happen to match, A is offered the option to produce and deliver the good directly to

P in exchange for price pi, while M is paid X0 if the good is not delivered, and b+X0 − pi
if it is delivered. If the two reports do not match, there is no production and both M

and A are required to pay a high penalty to P. The key feature distinguishing centralized

contracting from delegation is that in the former P makes a contract offer directly to A

which is conditioned on reported signals. This provides an outside option to A which M is

constrained to match while offering an SC to A. This is an important strategic tool which

enables P to manipulate the outcome of collusion between M and A, and reduce the severity

of the DMR problem.

Along the equilibrium path where A and M decide to participate, report i truthfully to

P, and do not enter into a deviating SC, A produces the good in state i and receives the

payment pi if and only if θ is smaller than pi. Without loss of generality, A receives no

payment in the event of non-production (since any mechanism paying a positive amount

to A in the event of non-production is dominated by one that does not). This generates

utility to A of uA(θ, i) = max{pi − θ, 0}. M ends up with X0 + b − pi in the event that

production takes place, and X0 otherwise.

The allocation pL, pH , X0, b has to satisfy the following constraints. First, in order to

ensure that ex post the coalition does not prefer to reject it, the aggregate payment to M

and A must be nonnegative in the event that the good is not delivered:

X0 ≥ 0. (1)

The reason is that if the good is not delivered, A earns no rent; hence rejection of P’s

contract by the coalition does not entail any payoff consequence for A. If X0 < 0, M would

then benefit from rejecting P’s contract; hence it is Pareto improving for the coalition to

do so.8 This constraint is distinctive to the ex ante collusion setting, where participation

decisions in P’s contract are made after M and A have negotiated a side contract.

8No analogous non-negativity constraint on aggregate payments X0 + b corresponding to delivery of the

good is imposed here, because the decision to reject P’s contract could result in a loss of rents for A. M

would then have to compensate A for this loss, and the required compensation may be large enough that it
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Second, in order to induce M to participate ex ante:

FH(pH)(b− pH) +X0 ≥ 0 (2)

FL(pL)(b− pL) +X0 ≥ 0 (3)

Individual participation constraints for A are already incorporated into the supply decision

represented by a supply likelihood of Fi(pi) in state i.

Third, M and A should not be tempted to enter a deviating SC. A deviating SC would

involve a different set of prices p̃i offered to A (in state i) for delivering the good, combined

with a lump-sum payment ũi. A would then produce if θ is smaller than p̃i, and M would

earn an expected payoff Fi(p̃i)(b− p̃i) +X0 − ũi. Type θ of A would accept the deviating

SC provided

max{p̃i − θ, 0}+ ũi ≥ max{pi − θ, 0} (4)

We show in the online Appendix that without loss of generality M can restrict attention

to side contracts which are accepted by all types of A. Hence collusion-proofness requires

(p̃i, ũi) = (pi, 0) to maximize Fi(p̃i)(b− p̃i) +X0 − ũi subject to (4) for all types θ ∈ [θ, θ̄].

This condition can be broken down as follows. First, if pi > θ, M should not benefit

by deviating to a price p̃i < pi. This would necessitate offering a lump-sum payment of

ũi = pi − p̃i to ensure that all types of A accept the SC, which would then generate M an

interim expected payoff of Fi(p̃i)(b− p̃i)+X0−pi+ p̃i. A necessary and sufficient condition

for such a deviation to not be worthwhile is that

b ≥ pi −
1− Fi(pi)
fi(pi)

≡ li(pi) (5)

since li(p) is increasing in p as per the monotone hazard rate assumption 1(ii). Intuitively,

offering a lower price than pi is similar to M selling the good back to A. Condition (5) which

states that the value (b) of the good to M exceeds its virtual value to A, ensures that such

a sale is not worthwhile.

Similarly, if pi < θ̄, M should not want to offer A a higher price p̃i. Unlike the case of a

lower offer price, such a variation cannot be accompanied by a negative lump sum payment

ũi to A, owing to the need for A’s ex post participation constraint to be satisfied in non-

delivery states. Offering p̃i > pi will then generate an interim payoff of Fi(p̃i)(b− p̃i) +X0.

may be optimal for M to instead accept P’s contract despite X0 + b being negative. The issue of coalition

incentive compatibility is addressed in more detail below.
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For M to not want to deviate to a higher price, it must be the case that

b ≤ pi +
Fi(pi)

fi(pi)
= hi(pi) (6)

This condition can be interpreted simply as the value of delivery (b) to M being lower than

the virtual cost of A delivering it.

(5, 6) can be combined into the single collusion-proofness condition

max{l̂L(pL), l̂H(pH)} ≤ b ≤ min{ĥL(pL), ĥH(pH)}. (7)

where l̂i(pi) denotes li(pi) if pi > θ and −∞ otherwise, and ĥi(pi) denotes hi(pi) if pi < θ̄ and

∞ otherwise (since the corresponding state i constraint is relevant only when pi differs from

θ, θ̄ respectively). This condition is referred to as coalition incentive constraint henceforth.

As implied by arguments in the online Appendix, these conditions are necessary and suf-

ficient for the allocation (pL, pH , b,X0) to be the outcome of a Perfect Bayesian Equilibrium

(PBE) of the ex ante collusion contracting game, which is interim-Pareto-undominated for

the coalition by any other PBE. Hence, an optimal allocation must maximize

[κHFH(pH) + κLFL(pL)](V − b)−X0 (8)

subject to (1, 2, 3, 7). We refer to these constraints as characterizing ex ante collusion

(EAC) feasibility.

It is convenient to restate P’s profit as

U(pL, pH)−R(b,X0; pL, pH) (9)

where U(pL, pH) ≡ κHFH(pH)(V − pH) + κLFL(pL)(V − pL) is the expression for expected

profit in the second-best setting, from which M’s rent R(b,X0; pL, pH) ≡ κHFH(pH)(b −

pH) + κLFL(pL)(b− pL) +X0 has to be subtracted in the presence of collusion. Note also

that given b, pL, pH it is optimal to set X0 = max{0,maxi{Fi(pi)(pi − b)}}. With this

convention we can henceforth represent an EAC allocation by the triple (pL, pH , b).

We start the analysis by making some simple but key observations regarding properties

of any EAC-feasible allocation in which M is valuable (i.e, where the resulting profit exceeds

the maximum profit attainable in NM).

Lemma 2 In any EAC-feasible allocation in which M is valuable:
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(i) b < pi for some i and X0 > 0

(ii) pL < pH

(iii) FL(pL) > FH(pH).

Part (i) states that relevant EAC allocations must involve low-powered incentives for

M in at least one state i, in the sense that ex post M is worse off in state i if the good

is delivered than when it is not. This is the very opposite of delegation, where M earns a

nonnegative margin on any transaction in every state. In ex ante collusion, the base pay

X0 must be positive in order to compensate for the ‘loss’ incurred by M when the good

is delivered in state i (so as to ensure that M wants to participate at the interim stage

corresponding to state i). Conversely, (i) may be viewed as stating that A is offered higher

powered incentives than M in some state; this is a ‘countervailing incentive’ designed to

raise A’s outside option in bargaining with M over a side contract, so as to counter the

DMR problem.

Part (ii) states that the low cost signal results in a lower price offered to A, just as in the

second-best setting. The reason is that when the prices offered to A can vary with the cost

signal, P’s profit rises only if they result in a lower price being offered following a low cost

signal. A variation in the opposite direction would directly result in lower profit, besides

possibly entailing some rents paid to M. Part (iii) restricts the extent to which the prices

can vary across the two states: the price in the low cost state should not be so low that the

resulting supply likelihood becomes smaller in that state. Intuitively, larger variations in

prices are not worthwhile because they generate high collusion stakes which raise M’s rent

excessively.

Lemma 2 indicates the problem of finding an optimal EAC allocation can be broken

down into two successive stages. At the first stage, for any given pair of prices pL, pH

satisfying (ii) and (iii), we find an optimal contract b for M to minimize M’s rent subject

to the coalition incentive constraint (7), and the requirements that b < pH and X0 =

maxi{Fi(pi)(pi − b)}. Then at the second stage, prices pL, pH are selected to maximize

U(pL, pH) − R∗(pL, pH) subject to pL < pH , FL(pL) > FH(pH), where R∗(pL, pH) denotes

the minimized rent of M at the first stage.

The next result describes the solution to the first stage problem, i.e., the optimal bonus

for any set of prices satisfying (ii) and (iii). Upon substituting for the optimal base pay
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X0, the expression for M’s expected rent reduces to

R̃(b; pL, pH) ≡ κLFL(pL)(b−pL)+κHFH(pH)(b−pH)−min{FL(pL)(b−pL), FH(pH)(b−pH)}.

(10)

Clearly R̃ is non-negative and attains a global minimum of zero at b = pLFL(pL)−pHFH(pH)
FL(pL)−FH(pH) ≡

B(pL, pH) < pL < pH . This turns out to be feasible (snd hence B(pL, pH) is optimal) if

B(pL, pH) ≥ max{lL(pL), lH(pH)}, otherwise it is optimal to select the lowest bonus that

is feasible, which is max{lL(pL), lH(pH)}.

Lemma 3 Given pL, pH satisfying pL < pH and FL(pL) > FH(pH), the optimal bonus

b(pL, pH) = max{B(pL, pH), lL(pL), lH(pH)} where B(pL, pH) ≡ pLFL(pL)−pHFH(pH)
FL(pL)−FH(pH) .

Next, we characterize properties of optimal EAC allocations (with pEi denoting the

corresponding optimal price in state i).

Proposition 2 With an indivisible good and ex ante collusion:

(a) There exists V̂1 > θ such that if V ∈ (θ, V̂1) the second-best profit can be achieved;

(b) M is valuable if V < H(θ̄), but not if V > V̂2 for some V̂2 ∈ (H(θ̄), hL(θ̄)).

(c) pEH ≤ pSBH

(d) pEL ≥ pSBL if lL(.) is convex.

Part (a) states that the second-best profit can be achieved by P when V is low enough,

while (b) says that consulting M is valuable for low values of V but not for sufficiently high

values. Parts (c) and (d) describe how prices offered to A deviate from second-best prices.

Provided lL is convex, a condition satisfied in our example with linear conditional density

functions and uniform prior, the dispersion between prices in the two states is narrower than

in the second-best. The heuristic reason underlying these results is that collusion costs tend

to rise with dispersion in prices pi across the two states. For sufficiently low values of V ,

the second-best can be implemented, essentially because the dispersion between second-best

prices corresponding to the different cost signals is small enough. The value of consulting

M tends to decline as V rises, because this raises price dispersion and hence the rents paid

to M.
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Figure 1: Second-Best, No Monitor

and EAC Optimal Prices in Example

with d = 0.99
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Figure 2: M’s payoff in EAC Optimal

Allocation in Example with d = 0.99

This intuitive argument also helps explain why M is valuable for values of V smaller

than H(θ̄). Starting with the optimal NM allocation where an interior price pNM < θ̄ is

offered, consulting M enables P to vary the price pi with the cost signal in the direction of

the second-best prices (pSBL < pL < pNM < pH < pSBH ). When the variation is slight, the

induced stakes of collusion are small enough that M can earn no rents, thereby generating

a profit improvement for P. Parts (c) and (d) reinforce this intuition, by showing that

the distortion in prices compared with the second-best involves lower dispersion (given

convexity of lL).

These results are illustrated in our numerical example with d = 0.99. Figure 1 plots

optimal prices offered to A in the second-best (SB), no monitor (NM) and ex ante collusion

(E) settings, corresponding to different values of V . It also plots the corresponding EAC-

optimal bonus values bE . Figure 2 plots the corresponding rents earned by M. For low values

of V , the second-best is implemented and M earns no rents. Over this range price dispersion

rises, as in the second-best. For intermediate values of V , M is valuable despite earning

positive rents; over this range price dispersion narrows in contrast to rising dispersion in

second-best prices. Eventually the gap between pEL and pEH is eliminated as V grows further,

from which point onwards M ceases to be valuable and earns zero rents. Hence M earns

positive rents only for intermediate values of V , as confirmed by Figure 2.
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3.3 Contrasting Ex Ante and Interim Collusion

We now describe how (and when) the solution to EAC differs from interim collusion (INC).

The formulation of the INC problem differs from the EAC problem in only one respect:

the collusive participation constraint X0 ≥ 0 does not apply. An INC allocation can

also be represented by the triple (b, pL, pH), where base pay X0 is optimally set equal to

maxi{Fi(pi)(pi − b)} and is permitted to be negative. Part (i) of Lemma 1 then no longer

applies, opening up the possibility of providing high powered incentives with a bonus b

larger than maxi{pi} (as in a delegation setting), and then extracting M’s rent upfront

with a negative base pay. In particular, delegation to M can no longer be ruled out.

It is easy to check that in INC, part (ii) of Lemma 2 continues to apply (for the same

reason), so pL < pH is still necessary. However part (iii) need not apply: the likelihood of

supply could be higher in the high cost state. The reason is that under interim collusion

part (i) of Lemma 2 no longer holds — incentives could be high-powered (b > pH). Part

(iii) is then modified as follows (upon using a similar argument as in Lemma 2): an INC

allocation where M is valuable must either (i) be low-powered (in the sense that b < pH)

and satisfy FL(pL) > FH(pH), X0 > 0, or (ii) high-powered (b > pH) and satisfy FH(pH) >

FL(pL), X0 < 0. It is evident that (i) is EAC feasible, while (ii) is not. We therefore obtain:

Lemma 4 The optimal INC allocation differs from the optimal EAC allocation only if the

former involves high powered incentives (b > pH > pL) and FH(pH) > FL(pL).

So we now focus on allocations with high-powered incentives where b > pH > pL and

FH(pH) > FL(pL). The optimal bonus in ex ante collusion now differs from Lemma 3 as

follows.

Lemma 5 Given pL, pH satisfying pL < pH and FL(pL) > FH(pH), the optimal bonus in

interim collusion is b(pL, pH) = min{B(pL, pH), ĥL(pL), ĥH(pH)}. M is valuable only if

b > V .

The relevant range of bonuses and their effect on M’s rent are thus reversed in interim

collusion, compared to the EAC setting: the relevant range of b is (pH ,mini{ĥi(pi)}], over

which M’s rent is decreasing in b. Whenever M earns positive rents in INC, it is optimal

for P to make incentives as high-powered as possible, and set the bonus to the maximum
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level mini{ĥi(pi)} consistent with the coalition incentive constraint. Moreover, the bonus

needs to exceed V in order for M to be valuable.

We are now in a position to characterize some features of INC optimal allocations which

are EAC-infeasible.

Lemma 6 (i) An INC optimal allocation which is not EAC feasible can be implemented

via delegation to M.

(ii) Second-best profits cannot be achieved by an INC optimal allocation which is not EAC

feasible.

(iii) There exists Ṽ ≤ H(θ̄) such that for all V ∈ (Ṽ , hL(θ̄)) M is valuable in the INC

optimal allocation.

Result (i) follows from observing that P’s profits are decreasing in each price pi in INC.

Raising prices paid to A raises the likelihood of the good being delivered, which lowers

P’s profit largely as a consequence of paying a bonus exceeding what the good is worth to

P (as shown in the previous Lemma). Hence if hi(pi) exceeds b, it is profitable to lower

pi slightly while leaving the bonus b unchanged, as this would preserve feasibility of the

allocation. This implies that the price offered to A is exactly what would have been chosen

in each state by M under delegation. And under delegation M would earn a higher profit

in the low cost state compared with the high cost state, owing to A’s ‘supply curve’ being

shifted to the right in the former relative to the latter. It is then impossible for P to fully

extract M’s rents in the low cost state, as M has to be willing to accept the contract in

both states. Hence second-best profits cannot be achieved. Part (iii) shows that unlike the

ex ante collusion setting, M remains valuable in interim collusion for all large V between

H(θ̄) and hL(θ̄). Intuitively this is because in the absence of collusion in participation and

the associated DMR problem, delegation helps P control the stakes of collusion better.

Combining the various results above, we obtain the following Proposition which con-

trasts optimal solutions in the ex ante and interim collusion settings.9 The solution to ex

ante collusion involves low powered incentives, and in particular can never be achieved by

9The result comparing INC optimal prices with second-best prices in (iii) obtains from observing that

prices corresponding to delegation with a bonus of V equal second-best prices, and the optimal bonus must

exceed V .
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Figure 3: When Interim and Ex Ante Collusion Solutions Differ

delegation. Interim collusion involves a different allocation for large values of V , which is

implemented via high-powered incentives (a delivery bonus that exceeds the value of the

good to P, combined with delegation). Recall that we consider the range of possible values

of V between θ and hL(θ̄).

Proposition 3 (i) For sufficiently small values of V , EAC and INC optimal allocations

coincide. For sufficiently large V , they are different.

(ii) M is valuable in INC for all V > H(θ̄), whereas M is not valuable in EAC for suffi-

ciently large V .

(iii) Whenever the INC optimal allocation differs from the EAC optimal allocation, it can

be implemented via delegation to M, with prices pIi ≥ pSBi for i = L,H and a bonus

bI > V (with (pIi , b
I) corresponding to the INC optimal allocation).

In the context of our numerical example, Figure 3 shows different regions of the two

dimensional parameter space (V, d) where the INC optimal and EAC optimal solutions do

and do not coincide. The unshaded subregion on the extreme right is excluded by our

restriction that V < hL(θ̄). In the subregion on the left (marked “EA=IN”) involving

relatively low values of V , the EAC and INC solutions coincide. In the middle subregion

(marked “EA 6= IN”) they diverge. Figure 4 plots the pattern of optimal prices in the

INC optimal solution, corresponding to different values of V (with d set equal to 0.99).

For intermediate values of V where the second-best is not attained and the two solutions
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Figure 4: Optimal Prices with Interim

Collusion
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Figure 5: Optimal Bonus in Ex Ante and

Interim Collusion

coincide, the price offered in the high cost signal state is smaller than the corresponding

second-best price. As V rises further, the INC solution diverges from the EAC, causing a

discontinuous switch in the pricing pattern: the price offered in the high cost signal state

jumps up to the second-best price, resulting in locally increasing price dispersion. Figure 5

plots the optimal bonus against alternative values of V (with d set equal to 0.99). Over the

range where the EAC and INC solutions coincide, incentives are low-powered (the bonus

is smaller than V ). At the threshold where they just begin to diverge, the INC optimal

bonus jumps discontinuously upwards while the EAC bonus continues to remain below V .

Interim collusion is thus characterized by a discontinuous change in contracting strat-

egy as V crosses the threshold, from a ‘bureaucracy’ (low-powered incentives, centralized

contracting and low sensitivity of supplier price to cost information of the expert), to a

‘market-like’ contract resembling a franchise arrangement (high powered incentives, delega-

tion, revenues earned primarily through franchise fees, and higher sensitivity of price to cost

information). The market-based strategy is infeasible in the presence of ex ante collusion,

since franchisees can then collude with their suppliers to avoid paying the upfront franchise

fee when suppliers cannot deliver owing to high cost realizations.
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4 Divisible Good Procurement

4.1 Environment

A delivers an output q to P at a personal cost of θq. Output is perfectly divisible: the range

of feasible outputs is <+. P’s return from q is V (q) where V (q) is twice continuously differ-

entiable, increasing and strictly concave satisfying limq→0 V
′
(q) = +∞, limq→+∞ V

′
(q) = 0

and V (0) = 0. These conditions imply that q∗(θ) ≡ arg maxq V (q) − θq is continuously

differentiable, positive on θ ∈ [0,∞) and strictly decreasing.

A is privately informed about the realization of θ; P and M share a common prior F (θ)

over θ on the interval Θ ≡ [θ, θ̄] ⊂ <+. F has a density function f(θ) which is continuously

differentiable and everywhere positive on its support. The ‘virtual cost’ H(θ) ≡ θ + F (θ)
f(θ)

is strictly increasing in θ; this assumption simplifies the analysis but is inessential to the

results.

M plays no role in production, and costlessly acquires an informative signal η about θ.

The underlying assumption is that the relevant knowledge concerning A’s cost realization

has already been acquired by M prior to contracting. The set of possible realizations of η is

Π, a finite set with #Π ≥ 2. The finiteness of this set is assumed for technical convenience,

and is relatively inessential as long as M’s information regarding θ is not perfect. It is

common knowledge that the realization of η is observed by both M and A. a(η | θ) ∈ [0, 1]

denotes the likelihood function of η conditional on θ, which is common knowledge among all

agents. a(η | θ) is continuously differentiable and positive on Θ(η), where Θ(η) denotes the

set of values of θ for which signal η can arise with positive probability. We assume Θ(η) is

an interval, for every η ∈ Π. Define θ(η) ≡ inf Θ(η) and θ̄(η) ≡ sup Θ(η). We assume that

for any η ∈ Π, a(η | θ) is not a constant function on Θ, and there are some subsets of θ with

positive measure such that a(η | θ) 6= a(η
′ | θ) for any η, η

′ ∈ Π. In this sense each possible

signal realization conveys information about the agent’s cost. The information conveyed is

partial, since Π is finite. This formulation includes both cases of full support and partition

information structures.

The conditional density function and the conditional distribution function are respec-

tively denoted by f(θ | η) ≡ f(θ)a(η | θ)/p(η) (where p(η) ≡
∫ θ̄(η)
θ(η) f(θ̃)a(η | θ̃)dθ̃) and F (θ |

η) ≡
∫ θ
θ(η) f(θ̃ | η)dθ̃. The ‘virtual’ cost conditional on the signal η is h(θ | η) ≡ θ + F (θ|η)

f(θ|η) .

We do not impose any monotonicity assumption for h(θ | η). Let ĥ(θ | η) be constructed
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from h(θ | η) and F (θ | η) by the ironing procedure introduced by Myerson (1981) (see the

online Appendix for details regarding this procedure).

All players are risk neutral. P’s objective is to maximize the expected value of V (q),

less expected payment to A and M, represented by XA and XM respectively. M’s objective

is to maximize expected transfers XM − t where t is a transfer from M to A. A seeks to

maximize expected transfers received, less expected production costs, XA + t− θq. Both A

and M have outside options equal to 0.

In this environment, a feasible (deterministic) allocation is represented by (uA, uM , q) =

{(uA(θ, η), uM (θ, η), q(θ, η)) ∈ <2 ×<+ | (θ, η) ∈ K} where K ≡ {(θ, η) | η ∈ Π, θ ∈ Θ(η)},

uM , uA denotes M and A’s payoff respectively, and q represents the production level. P’s

payoff equals uP = V (q)−uM −uA− θq. These payoffs relate to transfers and productions

as follows: uA ≡ XA + t− θq;uM ≡ XM − t;uP ≡ V (q)−XM −XA.

In the absence of collusion where P costlessly learns the realization of η, it is well

known (e.g., adapting arguments of Baron and Myerson (1982)) that the resulting optimal

or second-best allocation (uSBA , uSBM , qSB) is as follows:

uSBA (θ, η) =

∫ θ̄(η)

θ
qSB(y, η)dy,

E[uSBM (θ, η) | η] = 0

and

qSB(θ, η) ≡ q∗(ĥ(θ | η)) = arg max
q

[V (q)− ĥ(θ | η)q].

4.2 The Ex Ante Collusion Game

Owing to risk-neutrality of all parties, concavity of V and linearity of A’s payoff in q, it is

easy to check that P can restrict attention to a deterministic grand contract:

GC = (XA(mA,mM ), XM (mA,mM ), q(mA,mM );MA,MM )

where MA (resp. MM ) is a message set for A (resp. M).10 This mechanism assigns a

deterministic allocation, i.e. transfers XM , XA and output q, for any message (mA,mM ) ∈

MA×MM . MA includes A’s exit option eA ∈MA, with the property thatmA = eA implies

10Randomized contracts are optimal in Ortner and Chassang (2017) owing to their assumption that the

contract offered to M by P is not observed by A. In our context, contracts are observed by both M and A,

so there are no benefits of randomization.
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XA = q = 0 for any mM ∈MM . SimilarlyMM includes M’s exit option eM ∈MM , where

mM = eM implies XM = 0 for any mA ∈MA.

The timing of events is as follows.

(C1) A observes θ and η, M observes η.

(C2) P offers a grand contract GC.

(C3) M and A play the side contract game described in more detail below.

As in existing literature, we assume the side-contract is costlessly enforceable. Moreover

we assume M can make a take-it-or-leave-it offer of a side-contract. This assumption turns

out to be inessential: Section 5.1 explains how the same results obtain with side contracts

offered by an uninformed third party that assigns arbitrary welfare weights to M and A.

Conditional on any η ∈ Π which is jointly observed by M and A, (C3) consists of the

following three stages.

(i) M offers a side-contract SC which determines for any θ̃ ∈ Θ(η) to be privately reported

by A to M, a probability distribution over joint messages (mA,mM ) ∈ MA ×MM ,

and a side payment from M to A.11 Formally, it is a pair of functions {m̃(θ̃, η), t(θ̃, η)}

where m̃(θ, η) : Θ(η)× {η} −→ ∆(MA ×MM ), the set of probability measures over

MA×MM , and t : Θ(η)×{η} −→ <. The case where M does not offer a side contract

is represented by a null side-contract (NSC) with zero side payments (t(θ, η) ≡ 0),

and (deterministic) messages (mA(θ, η),mM (η)) which is a noncooperative Bayesian

equilibrium of the grand contract relative to the prior beliefs. We abuse terminology

slightly and refer to the situation where no side contract is offered as one where NSC

is offered.

(ii) A either accepts or rejects the SC offered, and the game continues as follows.

(iii) If A accepts the offered SC, he sends a private report θ
′ ∈ Θ(η) to M, following

which the SC is executed.12 If A rejects SC, M updates his beliefs which is restricted

11The option of randomizing over possible messages is useful for technical reasons. Owing to quasilinearity

of payoffs, there is no need to randomize over side transfers.
12Standard arguments show that the restriction to direct revelation mechanisms for the side contract

entails no loss of generality.
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to be prior beliefs if NSC was offered in stage (i) above.13 A and M then play a

noncooperative Bayesian equilibrium of the grand contract relative to the beliefs.

4.3 Suboptimality of Delegated Contracting

First consider the special case of Delegation to M (DM) where P delegates authority to M

over contracting with A. Here the GC designed by P involves a null contract for A: the

latter submits no report to P directly, and receives no production instructions or payments

from P. P contracts only with M, requiring the latter to send a message mM to P which

determines the output q(mM ) and aggregate payment X(mM ) to the (M,A) coalition.

Following receipt of this offer, M designs a side contract for A which selects an output

Q(mA) and payment XA(mA) to the latter as a function of a message mA sent by A to

M, provided A accepts the side contract. After receiving A’s message (and conditional on

A agreeing to participate), M submits a participation decision and message mM to P. In

contrast to the interim collusion setting, M can postpone submission of the participation

decision after receiving a report from A.

Our first main result is that delegation is never optimal in ex ante collusion, as it is

strictly dominated by the case where M is not consulted at all, which we refer to as No

Monitor (NM).

Proposition 4 Delegation to M generates lower expected profit for the Principal compared

to the optimal NM mechanism with no monitor.

The FLM result concerning optimality of delegation in an interim collusion setting with

two cost types therefore does not extend to ex ante collusion.14 The underlying argument

13This ensures that it is immaterial whether or not NSC was accepted or rejected, since in either case

they play the grand contract non-cooperatively with prior beliefs.
14It can be shown, however, that the optimal allocation under ex ante collusion can be achieved by a

modified form of delegation, where P communicates and transacts only with M on the equilibrium path. In

this arrangement, M is ‘normally’ expected to contract on behalf of the coalition {M,A} with P, sending a

joint participation decision and report of the state (θ, η) to P after having entered into a side contract with

A. However A has the option of circumventing this ‘normal’ procedure and asking P to activate a grand

contract in which A and M will send independent reports and participation decisions to P. The presence

of this option ensures that A has sufficient bargaining power within the coalition; it does not have to be

‘actually’ used on the equilibrium path.
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(extending Proposition 1 in Mookherjee and Tsumagari (2004) for a setting with two agents

and no supervisor or intermediary) is simple and very general (e.g., it can be shown to extend

to a discrete type setting also). P contracts for delivery of the good with M, so the problem

reduces to contracting with a single agent M. In order to deliver the good to P, M needs to

procure it in turn from A. The cost that M expects to incur equals A’s virtual cost function

h(θ|η) corresponding to the signal observed by M. This is unambiguously higher than the

delivery cost θ of A if P were to contract directly with A. This is the well-known problem

of double marginalization of rents (DMR), arising due to exercise of monopsony power by

M in side-contracting with A. Unlike the context of interim collusion, M can postpone her

own participation decision after receiving A’s report. This effectively translates into a kind

of ‘limited liability’ constraint for M, which prevents P from taxing away upfront the rents

earned by M.15

Given this result, we hereafter focus on centralized contracting, where P offers a non-null

contract to both M and A in GC.

4.4 Centralized Contracting and Ex Ante Collusion Proofness

We now introduce the notion of ex ante collusion proofness in the context of centralized

contracts. A more detailed justification for this solution concept is provided in the online

Appendix.

Informally, an allocation is ex ante collusion proof (EACP) if M cannot benefit from

offering a non-null side contract when the Principal selects a grand contract based on the

associated direct revelation mechanism (i.e., when A and M make consistent reports about

the state, the allocation corresponding to that state is chosen). Equivalently, the null side

contract is optimal for M, when the outside option of A corresponds to the latter’s payoff

in the resulting allocation.

Before proceeding to the formal definition, note that a deterministic allocation can be

represented by payoff functions (uA(θ, η), uM (θ, η)) of the true state (θ, η) combined with

the output function q(θ, η), as these determine the Principal’s payoff function uP (θ, η) ≡
15While it is relatively easy to show that DM cannot dominate NM, the proof establishes the stronger

result that DM is strictly dominated by NM. The proof of strict domination is also straightforward in the

case that h(θ|η) is continuous and nondecreasing in θ over a common support [θ, θ̄] for every η. In that case

an argument based on Proposition 1 in Mookherjee and Tsumagari (2004) can be applied. In the general

case there are a number of additional technical complications, but we show that the result still goes through.
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V (q(θ, η)) − uM (θ, η) − uA(θ, η) − θq(θ, η), and the aggregate net transfers of M (equals

uM (θ, η)) and A (equals uA(θ, η) + θq(θ, η)). For technical convenience we consider ran-

domized allocations, though it will turn out they will never actually need to be used on

the equilibrium path.16 In a randomized allocation, (uA(θ, η), uM (θ, η), q(θ, η)) denotes the

expected payoffs of A, M and the expected output, conditional on the state (θ, η).

We now introduce notation for ‘coalitional’ contracts and incentives as follows; this

will be useful in representing constraints imposed by ex ante collusion proofness. For

(conditional expected) allocation (uA(θ, η), uM (θ, η), q(θ, η)), define functions (X̂(m), q̂(m))

on domain m ∈ M̂ ≡ K ∪ {e} (where K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π}) as follows:

(X̂(θ, η), q̂(θ, η)) = (uA(θ, η) + θq(θ, η) + uM (θ, η), q(θ, η))

where the message e represents a coordinated coalitional decision for both M and A to

exit from P’s mechanism, while the message (θ, η) represents a coordinated decision for M

and A to agree to participate and send the common report (θ, η) to P. The key constraint

distinguishing ex ante from interim collusion is:

(X̂(e), q̂(e)) = (0, 0).

Let (X̂(θ, η), q̂(θ, η)) denote corresponding expected values of the sum of paymentsXM+XA

made by the principal, and the output delivered, in state (θ, η). Also, let ∆(M̂) denote

the set of the probability measures on M̂, and use m̃ ∈ ∆(M̂) to denote a randomized

message submitted by the coalition to P. With a slight abuse of notation, we shall denote

the corresponding conditional expected allocation by (X̂(m̃), q̂(m̃)), which is defined on

∆(M̂). m̃ = (θ, η) or e will be used to denote the probability measure concentrated at

(θ, η) or e respectively.

M’s choice of an optimal (randomized) side-contract can be formally posed as follows.

Given a grand contract and a noncooperative equilibrium recommended by P, let the corre-

sponding conditional expected allocation as defined above be denoted by (uA(θ, η), uM (θ, η), q(θ, η))

and (X̂(m̃), q̂(m̃)). For any η ∈ Π, the associated side-contracting problem P (η) is to select

(m̃(θ | η), ũA(θ, η)) to maximize M’s expected payoff

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

16This owes to the assumption that A’s payoff is linear in the output produced.
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subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

for any θ, θ
′ ∈ Θ(η), and

ũA(θ, η) ≥ uA(θ, η)

for all θ ∈ Θ(η). The first constraint states truthful revelation of the agent’s true cost to

M is consistent with the agent’s incentives, and the second constraint requires A to attain

a payoff at least as large as what he would expect to attain by playing the grand contract

noncooperatively.

Definition 1 The (conditional expected) allocation (uA(θ, η), uM (θ, η), q(θ, η)) : K → <2×

<+ is ex ante collusion proof (EACP ) if for every η ∈ Π: (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η))

solves problem P (η).

4.5 Characterization of EACP Allocations

We now characterize EACP allocations. This requires us to define a family of ‘modified’

virtual cost functions, representing the effective cost incurred by the coalition in delivering

a unit of output to P, following selection of an optimal side-contract.

Definition 2 For any η ∈ Π, Y (η) is a collection of coalition shadow cost (CSC)

functions π(· | η) : Θ(η)→ < which satisfy the following property. For any function in this

collection, there exists a real-valued function Λ(θ|η) which is non-decreasing in θ ∈ Θ(η)

with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1, such that

π(θ|η) ≡ θ +
F (θ | η)− Λ(θ | η)

f(θ | η)
(11)

Equation (11) modifies the usual expression for virtual cost h(θ|η) ≡ θ + F (θ|η)
f(θ|η) by

subtracting from it the non-negative term Λ(θ|η)
f(θ|η) . In order to overcome the DMR problem

in delegation, in the centralized regime P contracts with both M and A, thereby providing A

an outside option (of uA(θ, η)) that effectively raises his bargaining power vis-a-vis M while

negotiating the side contract. Meeting a larger outside option for A effectively induces M to

deliver a higher output to P: this is what paying a higher rent to A necessitates. The extent

of DMR is then curbed: the shadow cost for the coalition in delivering a unit of output to
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P is lowered. This lowering of the virtual cost is represented by the subtraction of the term
Λ(θ|η)
f(θ|η) from what it would have been (h(θ|η)) under delegation. In the analogous context

of contracting with a single agent with type dependent outside options (Jullien (2000)),

Λ(θ | η) represents the shadow value of a uniform reduction in A’s outside option for all

types below θ. Clearly, the Λ(θ | η) function must be non-decreasing.

However, π(θ|η) is not the correct expression for the shadow cost of output for the

coalition, if it is non-monotone in θ. In that case, it has to be replaced by its ‘ironed’

version, using the distribution function F (θ|η). Let the corresponding ironed version of

π(θ|η) be denoted by z(θ|η): we call this a coalition virtual cost function.

Definition 3 For any η ∈ Π, the set of coalition virtual cost (CVC) functions is the

set

Z(η) ≡ {z(· | η) is the ironed version of some π(· | η) ∈ Y (η)}

of functions obtained by applying the ironing procedure to the set Y (η) of CSC functions.17

Denote by Θ(π(· | η), η) the corresponding pooling region of θ where π(·|η) is flattened by

the ironing procedure.

As the next result shows, every EACP allocation satisfies coalition participation and

incentive constraints corresponding to some coalition virtual cost function z. Combined

with an individual incentive compatibility constraint for A, and a constraint that output

must be constant over regions where the ironing procedure flattens the underlying CSC

function, these coalition constraints characterize EACP allocations.18 The proof of this

Proposition is provided in the online Appendix, as it extends well known methods from

Jullien (2000).

Proposition 5 The allocation (uA, uM , q) is EACP if and only if the following conditions

hold for every η. There exists a CVC function z(·|η) ∈ Z(η) such that

(i) For every (θ, η), (θ
′
, η
′
) ∈ K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π},

X(θ, η)− z(θ | η)q(θ, η) ≥ X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

17The ironing procedure ensures these functions are continuous and non-decreasing. For further details,

see the online Appendix.
18See Mookherjee and Tsumagari (2004), Celik (2008) and Pavlov (2008) for similar characterizations of

collusion proof mechanisms.
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X(θ, η)− z(θ | η)q(θ, η) ≥ 0

where X(θ, η) ≡ uA(θ, η) + uM (θ, η) + θq(θ, η).

(ii) For any θ, θ
′ ∈ Θ(η), uA(θ, η) ≥ uA(θ

′
, η) + (θ

′ − θ)q(θ′ , η).

(iii) q(θ, η) is constant on any interval of θ which is a subset of the corresponding pooling

region of the CVC function z.

Define an allocation to be EAC feasible if it is EACP and satisfies interim participation

constraints for M and A: E[uM (θ, η)|η] ≥ 0 for all η ∈ Π, uA(θ, η) ≥ 0 for all (θ, η) ∈ K.

Finally, P’s problem is to select among EAC feasible allocations to maximize her expected

profit Π ≡ E[V (q(θ, η)) − uM (θ, η) − uA(θ, η) − θq(θ, η)], where expectation is taken with

respect to P’s prior beliefs. Condition (i) represents the coalition incentive and participation

constraints corresponding to contracting with a single agent with a unit cost of z. Condition

(ii) is the individual incentive compatibility constraint for A. Condition (iii) states that the

output must be constant over every interval in the pooling region. In comparing with

the analysis of the indivisible good case, the choice of the output function q(θ, η) and

agent’s payoff uA(θ, η) corresponds to the prices offered to A, while the payment function

X(θ, η) corresponds to the choice of base pay X0 and bonus b for M. It can be checked

that requirement (i) above that the payment function X(θ, η) be incentive compatible for

the coalition with a unit cost function z(·|η) ∈ Z(η) corresponds to the coalition incentive

constraint (7) in the indivisible good case.

4.6 Results

Proposition 6 With a divisible good and ex ante collusion, consulting M is always valuable.

This result contrasts with the indivisible good case, where consulting M was sometimes

not valuable. Intuitively, M is more valuable in the divisible good setting, owing to the

additional scope for varying the quantity procured based on M’s information. The proof

starts with the optimal no-monitor contract, and constructs a small variation in the output

function q(., η∗∗) for a cost signal state η∗∗ satisfying a regularity condition.19 The divis-

ibility of the good implies the existence of such a state. The variation in output schedule

19The regularity condition requires that [F (θ|η∗∗)/f(θ|η∗∗)]/[F (θ)/f(θ)] is increasing over some interval

of θ with positive measure conditional on η∗∗. The proof shows that the informativeness of M’s signal

implies that such a state always exists.
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corresponding to this state is constructed as follows. Starting with the optimal allocation in

NM (which corresponds to the special case Λ(θ | η) is chosen equal to F (θ | η), ensuring that

the CSC and CVC functions both reduce to the identity function (π(θ|η) = z(θ|η) = θ)),

P can construct a small variation z̃ in the CVC function in state η∗∗, raising it above θ for

some interval ΘH and lowering it for some other interval ΘL. The corresponding quantity

procured q(θ, η∗∗) is set equal to qNM (z̃(θ|η∗∗)), the quantity procured in NM when the

agent reported a cost of z̃(θ|η∗∗). This corresponds to raising the quantity procured from

the coalition over ΘL and lowering it over ΘH . Payments to the coalition are set analo-

gously at XNM (z̃(θ|η∗∗)), what the agent would have been paid in NM following such a

cost report. The agent is offered the associated rent: uA(θ, η∗∗) =
∫ θ̄
θ q

NM (z̃(y|η∗∗))dy.

By construction, this allocation satisfies the agent’s incentive and participation con-

straints, as well as the coalition incentive constraint. Proposition 5 ensures such an allo-

cation is EAC feasible, i.e., M’s interim participation constraint is satisfied. The variation

over ΘL lowers rents earned by M, and over ΘH raises them. Since M does not earn any

rents to start with (i.e, in NM), it is necessary to construct the variation such that M’s

expected rents in state η∗∗ do not go down. The rate at which M’s rents vary locally in state

θ with the quantity procured equals F (θ|η∗∗)
f(θ|η∗∗) .20 Intuitively this is the saving that can be

pocketed by M when procuring one less unit of the good from A. Maintaining M’s expected

rent therefore implies a marginal rate of substitution between output variations over ΘL

and ΘH that equals the ratio of the (average) conditional inverse hazard rates F (θ|η∗∗)
f(θ|η∗∗) over

these two intervals respectively. On the other hand, P’s benefit from a small expansion

in output delivered in state θ equals V ′(qNM (θ)) − θ, where qNM (θ) denotes the optimal

allocation in NM.21 This allocation satisfies V ′(qNM (θ)) = H(θ) ≡ θ + F (θ)
f(θ) , the virtual

cost of procurement without conditioning on information regarding η. Hence P’s marginal

benefit from output expansion in state θ equals the unconditional inverse hazard rate F (θ)
f(θ) .

This implies that P’s marginal rate of substitution between output variations over ΘL and

ΘH equals the ratio of the (average) unconditional inverse hazard rates F (θ)
f(θ) over these two

intervals. The informativeness of M’s signals implies that P’s marginal rate of substitution

differs from M’s in state η∗∗ over ΘL,ΘH . Hence there exist variations of the type described

20M’s interim rent in state η∗∗ equals the expected value conditional on η∗∗ of XNM (z̃(θ|η∗∗)) −

uA(z̃(θ|η∗∗))− θqNM (z̃(θ|η∗∗)), i.e., equals E[{z̃(θ|η∗∗)−h(θ|η∗∗)}qNM (z̃(θ|η∗∗))−
∫ θ̄
z̃(θ|η∗∗)

qNM (z)dz|η∗∗].
21This follows from the fact that ∂XNM (z)

∂z
= zqNM

′
(z), implying that the marginal increase in payment

evaluated at z = θ equals θ times the marginal output change.
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above which raise P’s expected payoff, while preserving the expected payoff of M.

The next result provides sufficient conditions for ex ante collusion to be costly, thereby

providing a contrast with interim collusion in team production (Che-Kim (2006)) or super-

vision (Motta (2009)) settings.

Proposition 7 With a divisible good and ex ante collusion, the second-best payoff cannot

be attained if :

(i) The support of θ does not vary with the signal: Θ(η) = Θ for any η ∈ Π;

(ii) There exists η∗ ∈ Π such that f(θ|η∗) and f(θ|η∗)
f(θ|η) are both strictly decreasing in θ for

any η 6= η∗;

(iii) θf(θ | η∗) > 1;

(iv) V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
for any q ∈ QSB ≡ {q̃|q̃ = qSB(θ, η) for some (θ, η) ∈ K}.

Condition (ii) includes a weaker version of the monotone likelihood ratio property:

there is a signal realization η∗ which is ‘better’ news about θ than any other realization,

in the sense of shifting weight in favor of low realizations of θ. It additionally requires

that the conditional density f(θ|η∗) is strictly decreasing in θ, i.e., higher realizations of θ

are less likely than low realizations when η = η∗. (ii) is satisfied for instance when θ has a

uniform prior and there are just two possible signal values satisfying the standard monotone

likelihood ratio property. Condition (iii) says that costs are high in the sense that the

support of the cost distribution is shifted sufficiently to the right. Finally (iv) is a condition

on the benefit function, which is satisfied if V is exponential (V = V0[1 − exp(−rq)];V0 >

0, r > 0).22

The proof develops necessary conditions for the second best to be EAC feasible given

the distributional properties (i) and (ii). If the outputs are second-best, they must be

a monotone decreasing function of the (ironed) virtual cost ĥ(θ | η) in the second-best

setting. If they also satisfy the coalition incentive constraints, they must be monotone in

CVC z(θ | η). These conditions imply the existence of a monotone transformation from

22This benefit function does not satisfy the Inada conditions assumed in the model. However, the only

purpose of imposing the Inada conditions was to ensure that optimal allocations would always involve strictly

positive quantities procured in all states. This will be the case here if V0 is large enough.
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ĥ to z, and enable M’s ex post rent to be expressed as a function of ĥ alone. Condition

(iv) is used to show that this rent function is strictly convex; combined with (i) and (ii)

this implies that the expected rents of M must be strictly higher (hence strictly positive) in

state η∗ than any other state. Then M must earn positive rents in state η∗, which ensures

the second best cannot be achieved.

5 Extensions

5.1 Side Contracts Designed by a Third Party, and Alternative Alloca-

tions of Bargaining Power

We now explain how the preceding results extend when the side contract is designed not by

M, but instead by a third-party that manages the coalition and assigns arbitrary welfare

weights to the payoffs of M and A respectively. Such a formulation has been used by a

number of authors to model collusion, such as Laffont and Martimort (1997, 2000), Dequiedt

(2007) and Celik and Peters (2011). An advantage of this approach is that it enables us to

examine effects of varying the allocation of bargaining power between colluding partners.

Our results extend to such a setting, under the following formulation of side contracts

designed by a third party. We assume the third-party’s objective is to maximize a weighted

sum of M and A’s interim payoffs. In the subgame (C3) following choice of a grand contract

by P, the third party designs the side contract after learning the realization of η.23 Both

M and A have the option to reject the side contract; if either of them does, they play the

grand contract noncooperatively. Otherwise the side contract mechanism is executed.

The notion of EACP allocations is extended as follows. Letting α ∈ [0, 1] denote the

welfare weight assigned by the third-party to A’s payoff, the side contract design problem

reduces to selecting randomized message m̃(θ | η) and A’s payoff ũA(θ, η) to (using the

same notation for the formulation P (η) of side contracts in Section 4.4):

maxE[(1− α){X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)}+ αũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ uA(θ, η)

23This assumption can be dropped without affecting the results, since it can be shown the third-party

can use cross-reporting of η by M and A to learn its true value.
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for all θ ∈ Θ(η),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

for any θ, θ
′ ∈ Θ(η), and

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η] ≥ E[uM (θ, η) | η].

Besides modifying the objective function, this formulation adds a participation constraint

for M. We refer to this as problem TP (η;α). The definition of EACP can be extended

to EACP(α) by requiring the null side contract to be optimal in TP (η;α) for every η.

Further details concerning the justification of this solution concept is provided in the online

Appendix.

We now show that the set of EACP(α) allocations is independent of α. This implies

that all our preceding results extend to side contracts designed by a third party.24

Proposition 8 The set of EACP(α) allocations is independent of α ∈ [0, 1].

Despite the existence of asymmetric information within the coalition, the Coase Theo-

rem applies. The reasoning is straightforward. The EACP criterion amounts to the absence

of incentive compatible deviations that are Pareto improving for the coalition: this property

does not vary with the precise welfare weights. Consider any α ∈ (0, 1). A given allocation

is EACP(α) if and only if there is no other allocation attainable by some non-null side

contract which satisfies the incentive constraint for A, and which Pareto-dominates it (for

A and M) with at least one of them strictly better off. The same characterization applies

to any interior α′ ∈ (0, 1), implying that the set of EACP(α) allocations is independent of

α ∈ (0, 1). The transferability of utility can then be used to show that the set of EACP

allocations for interior welfare weights are also the same at the boundary.

5.2 Altruistic Expert

Now consider a different variant, where M offers a side-contract to A, but M is altruistic

towards A rather than just concerned with his own income. Suppose M’s payoff is uM =

XM + t+ α[XA − t− θq], where α ∈ [0, 1] is the weight M places on A’s payoff. A’s payoff

function remains the same as in the previous section: uA = XA − t− θq.
24FLM provide an analogous result for the case of interim collusion.
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Our analysis extends as follows. The expression for coalition shadow cost is now modified

to

πα(θ|η) ≡ θ + (1− α)
F (θ | η)− Λ(θ | η)

f(θ | η)

instead of π(θ|η) in Definition 2. When P delegates to M, the corresponding expression for

the cost of procuring one unit from M is modified from h(θ | η) to hα(θ | η) = θ + (1 −

α)F (θ|η)
f(θ|η) . As long as α < 1, this is strictly higher than θ, so delegation will still continue to

result in a lower profit than NM. The proof that M is valuable under centralized contracting

also goes through in toto.

It is interesting to examine the effect of changes in the degree of altruism on P’s payoffs.

When P delegates to M, an increase in α lowers M’s shadow cost of output hα(θ | η),

which benefits P. This is intuitive: the DMR problem becomes less acute with a more

altruistic expert. Note that with perfect altruism α = 1, and the DMR problem disappears:

delegation then becomes equivalent to NM.

On the other hand, an increase in altruism cannot benefit P in centralized contracting.

The set of EACP allocations can be shown to be non-increasing in α. Take any EACP

allocation corresponding to α: the following argument shows that it is a EACP allocation

corresponding to any α
′
< α. Let z(θ | η) be the CVC function that is associated with the

allocation at α, i.e., it is the ironed version of πα(θ|η) corresponding to some function Λα(·|η)

satisfying the stipulated requirements in the definition of CSC functions on [θ(η), θ̄(η)]. We

can then select

Λα′ (θ | η) =
α− α′

1− α′
F (θ | η) +

1− α
1− α′

Λα(θ | η)

when the altruism parameter is α
′
, which satisfies the stipulated requirements since α > α

′
.

This ensures that the same CSC and CVC function is available when the altruism parameter

is α
′
, since by construction πα(θ|η) = πα′ (θ|η). Hence the allocation satisfies the sufficient

condition for EACP when the altruism parameter is α
′
.

Finally, if α = 1, the CSC function πα coincides with the identity function θ, the cost

of the agent in NM. We thus obtain

Proposition 9 In centralized contracting, P’s optimal payoff is non-increasing in α. When

P delegates to M, P’s optimal payoff is increasing in α. When α = 1, P’s optimal payoffs

in delegation, centralized contracting coincide and equal that in NM, so M is not valuable.
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6 Concluding Comments

Our results have interesting implications for hierarchical contract design. They provide

a rationale for the widespread practice of consulting third party experts in the design of

incentive contracts, even when they have ‘prior connections’ with the agent that could facil-

itate ex ante collusion. In such circumstances, unconditional delegation is suboptimal; the

mechanism must allow the agent to communicate directly with the Principal. The Principal

could appoint the expert as a ‘manager’, i.e., contract only with the expert and delegate

subcontracting with the agent on the equilibrium path, but the agent must be provided

the option to bypass the manager and register an ‘appeal’ with the Principal, prompting

the latter to intervene directly. The existence of such off-equilibrium-path options is es-

sential for the Principal to be able to control the prospect of ex ante collusion sufficiently

to make it profitable to consult the expert. Within firms, it explains the role of worker

rights to appeal the evaluations reported by their managers to higher level managers or

an ombudsman appointed for this purpose, thereby formalizing Williamson’s (1975) claim

that such dispute settlement procedures constitute an advantage of hierarchies over market

relationships.25

The result concerning effects of altruism of M towards A implies that the Principal

ought to appoint ‘external’ experts rather than ‘insiders’ likely to be altruistic towards the

agent. In the context of corporate governance, for instance, this is an argument in favor

of appointing ‘outsiders’ rather than ‘insiders’ to a company’s Board of Directors.26 In

the context of regulation, it confirms the normal intuition in favor of preventing any direct

conflict of interest for the regulator (e.g., who should not have a financial stake in the

agent’s fortunes, nor have any social or personal connections with the agent).

Extensions of the model to bilateral asymmetric information within the coalition (e.g.,

if A does not observe M’s signal) and to discrete type spaces are examined respectively

in Tsumagari (2016a,b). Mookherjee and Tsumagari (2017) show that the allocation of

bargaining power between M and A does matter in the case of ‘strong’ collusion, e.g.,

where the side contract includes commitments regarding subsequent actions by one partner

25It also relates to Hirschman’s (1970) depiction of the value of ‘voice’ within organizations over and above

exit options.
26See Harris and Raviv (2008) for a model based on limited commitment by P where this result may not

hold in some settings.
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if the other refuses it.

Our analysis is subject to a number of shortcomings. We excluded the possibility of

other coalitions that may co-exist with the M-A coalition, a topic studied by Ortner and

Chassang (2017). We also ignored the enforcement of side contracts within the coalition;

modeling self-enforcing collusion via a relational contract in a side game between colluding

parties seems to be an interesting extension that could be pursued in future research.
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Appendix: Proofs

Proof of Lemma 1: (i) is straightforward. To establish (ii), for any q ∈ [0, 1], define

Pi(q) ∈ [θ, θ̄] such that Fi(Pi(q)) = q and Ci(q) ≡ qPi(q). So we may interpret Ci(q) as

the ‘cost’ function in state i. Since C
′
i(Fi(θ)) = hi(θ), Assumption 1 (ii) implies C

′
i(q) is

increasing in q on [0, 1]. Then qSBi ≡ Fi(p
SB
i ) satisfies V = C

′
i(q

SB
i ) for V ∈ (θ, hi(θ̄)).

From Assumption 1 (i) and fi(θ) > 0 on [θ, θ̄] for i ∈ {L,H}, CL(q) < CH(q) on q ∈ (0, 1)

with CL(0) = CH(0) = 0 and CL(1) = CH(1) = θ̄. Hence there are intervals of small q such

that C
′
L(q) < C

′
H(q) and large q such that C

′
L(q) > C

′
H(q). This guarantees the existence

of V ∗ and V ∗∗ with the stated properties.

Proof of Lemma 2: (i) If b ≥ pi, i = L,H, the optimal X0 = 0. P’s profit (8) then

equals [κHFH(pH) + κLFL(pL)](V − b), which is non-negative only if V − b ≥ 0. This

implies that P’s profit is (weakly) dominated by the allocation p̃H = p̃L = b, which in

turn is weakly dominated by what P could earn in NM. (ii) The interim participation

constraints imply that M will attain a nonnegative rent. Hence P’s profit is bounded above

by U(pL, pH). If pL ≥ pH , the value of U(pL, pH) is smaller than the maximum value of

U(p̃L, p̃H) subject to the constraint that p̃L ≥ p̃H . The constraint must bind, since the

unconstrained solution is represented by second-best prices which violate the constraint.

Hence the maximum value of the constrained problem is realized at p̃H = p̃L = pNM . The

expected profit of P would then be dominated by the NM allocation where P offers pNM

to A in both states. (iii) Parts (i) and (ii) imply that in order to dominate the best NM

allocation, an EAC feasible allocation must satisfy pH − b > max{0, pL − b}. So if (iii) did

not hold, FH(pH)(pH − b) ≥ FL(pL)(pL − b), and optimal X0 = FH(pH)(pH − b). Then as

FH(pH) ≥ FL(pL) implies κHFL(pL) + κHFH(pH) ≤ FH(pH), and V ≥ b to ensure that P

earns non-negative profit, it follows that P’s profit equal [κLFL(pL) +κHFH(pH)](V − b)−

FH(pH)(pH − b) ≤ FH(pH)(V − pH) ≤ F (pH)(V − pH) ≤ ΠNM , a contradiction.

Proof of Lemma 3: To start with, note that the restrictions pL < pH and FL(pL) >

FH(pH) imply that the prices are interior: θ < pi < θ̄, i = H,L. Hence the coalition

incentive constraint (7) simplifies to maxi{li(pi)} ≤ b ≤ mini{hi(pi)}. Next, note that upon

substituting for the optimal base pay X0, the expression for M’s expected rent reduces to

R̃(b; pL, pH) ≡ κLFL(pL)(b−pL)+κHFH(pH)(b−pH)−min{FL(pL)(b−pL), FH(pH)(b−pH)}.

(12)
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Clearly R̃ is non-negative and attains a global minimum of zero at b = B(pL, pH) < pL <

pH . If B(pL, pH) ≥ max{lL(pL), lH(pH)}, it is feasible to select b = B(pL, pH) as the

coalition incentive constraint (7) is satisfied (given that pi ≤ hi(pi), i = H,L), as well

as the constraint that b < pH . Hence in this case the optimal bonus equals B(pL, pH).

If B(pL, pH) < max{lL(pL), lH(pH)}, then observe that over the range b ≥ B(pL, pH),

(b− pL)FL(pL) ≥ (b− pH)FH(pH), implying that X0 = FH(pH)(b− pH), or

R̃ = κL[{FL(pL)− FH(pH)}b− pLFL(pL) + pHFH(pH)]. (13)

Hence R̃ is strictly increasing in b over the range b ≥ B(pL, pH), and the optimal bonus in

this case equals max{lL(pL), lH(pH)}.

Having solved for the optimal bonus corresponding to a given set of prices, we can now

turn to the problem of selecting these prices optimally.

Proof of Proposition 2: (a) By Lemma 1, FL(pSBL ) > FH(pSBH ) for V close to θ. As

V approaches θ, pSBi approaches θ for both i = H,L, and B(pSBL , pSBH ) approaches θ >

maxi{li(θ)}, implying b(pSBL , pSBH ) = B(pSBL , pSBH ) for V sufficiently close to θ. So (pL, pH , b) =

(pSBL , pSBH , B(pSBL , pSBH )) is EAC feasible, implying the second-best profit can be achieved

for V close to θ.

(b) V < H(θ̄) implies pNM < θ̄. For any such V , we can find pL, pH sufficiently close

to pNM satisfying pSBL ≤ pL < pNM < pH ≤ pSBH , FL(pL) > FH(pH) and maxi{li(pi)} <

B(pL, pH) (sinceB(p, p) = p > li(p), i = L,H for any p < θ̄). The allocation (pL, pH , B(pL, pH))

is then EAC feasible, in which M earns zero rent, and P earns a profit of U(pL, pH) >

U(pNM , pNM ) = ΠNM .

Next we show that M is not valuable at V = V̂ ≡ κLhL(θ̄)+κHhH(θ̄) < hL(θ̄). Suppose

otherwise, whence FL(pEL ) > FH(pEH) by Lemma 2. Note that V̂ = θ̄+[κL
1

fL(θ̄)
+κH

1
fH(θ̄)

] >

θ̄+ 1
κLfL(θ̄)+κHfH(θ̄)

= H(θ̄). Hence ΠNM (V̂ ) = V̂ −θ̄ = κL(hL(θ̄)−θ̄)+κH(hH(θ̄)−θ̄). Now

θ̄ is the second-best price when V equals hi(θ̄) in state i, implying hi(θ̄)−θ̄ ≥ Fi(pEi )(hi(θ̄)−

pEi ). Hence ΠNM (V̂ ) ≥ κLFL(pEL )(hL(θ̄)− pEL ) +κHFH(pEH)(hH(θ̄)− pEH) ≥ κLFL(pEL )(V̂ −

pEL ) + κHFH(pEH)(V̂ − pEH) = U(pEL , p
E
H), where the second inequality follows from the

definition of V̂ and FL(pEL ) > FH(pEH). Since P’s expected profit in EAC is bounded above

by U(pEL , p
E
H), we obtain a contradiction. Hence it is optimal to offer pi = θ̄ for both i at

V̂ . By a standard revealed preference argument, these prices are also optimal at any higher

V . Hence M is not valuable at any V > V̂ .
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(c) We first show that M’s rent is locally non-decreasing in pH at (pEL , p
E
H). IfB(pEL , p

E
H) >

maxi{li(pEi )}, M earns zero rent which is unaffected by small variations in pH . So sup-

pose B(pEL , p
E
H) ≤ maxi{li(pEi )} in which case bE = maxi{li(pEi )} and R∗(pEL , p

E
H) =

κL[{FL(pEL )−FH(pEH)}maxi{li(pEi )}+FH(pEH)pEH−FL(pEL )pEL ] = κL maxi ρi(p
E
H , p

E
L ) where

ρi(pH , pL) ≡ {FL(pL)− FH(pH)}li(pi) + FH(pH)pH − FL(pL)pL. Now ρL is locally nonde-

creasing in pH at (pEL , p
E
H) because FH(pH)[pH − lL(pL)] is increasing in pH at (pEL , p

E
H)

(the latter in turn follows from Lemma 2 and (7) which together imply pEH > bE =

maxi{li(pEi )} ≥ lL(pEL )). And ρH is nondecreasing in pH over the range of pH which satisfies

FL(pL) > FH(pH) since l′H(pH)[FL(pL)− FH(pH)] + fH(pH)[hH(pH)− lH(pH)] ≥ 0.

It now follows that if pEH > pSBH , a slight lowering of pH will have a positive first order

effect on U(pL, pH), without raising M’s rent. Hence pEH ≤ pSBH .

(d) We show that M’s rent is locally non-increasing in pL at (pEL , p
E
H) if lL(pL) is convex.

When B(pEL , p
E
H) > maxi{li(pEi )}, M’s rent is zero which does not vary locally with pL. So

suppose B(pEL , p
E
H) ≤ maxi{li(pEi )} implying that R∗(pEL , p

E
H) = κL maxi ρi(p

E
H , p

E
L ). Now

FL(pL)[lH(pEH)− pL] is locally non-increasing in pL at pEL , since its partial derivative with

respect to pL at pEL equals fL(pEL )[lH(pEH) − hL(pEL )], which is non-positive as (7) implies

lH(pEH) ≤ bE ≤ hL(pEL ). Hence ρH is locally nonincreasing in pL at (pEL , p
E
H). The result

therefore holds when ρL(pEL , p
E
H) < ρH(pEL , p

E
H).

Next consider the case where ρH(pEL , p
E
H) ≤ ρL(pEL , p

E
H) =

R∗(pEL ,p
E
H)

κL
. Since ∂ρL

∂pL
=

l′L(pL)[FL(pL) − FH(pH)] − 1, the convexity of lL(pL) implies the conxevity of ρL in pL

over the range of pL which satisfies FL(pL) > FH(pH) for any fixed value of pH . Now

as pL approaches pEH , ρL(pL, p
E
H) approaches [FL(pEH) − FH(pEH)][lL(pEH) − pEH ] < 0. Since

ρL(pEL , p
E
H) ≥ 0, there must exist p̃L ∈ [pEL , p

E
H) where ρL(p̃L, p

E
H) = 0 and ρL is locally

decreasing in pL. The convexity of ρL(pL, p
E
H) in pL then implies that ρL(pL, p

E
H) is also

locally decreasing in pL at every pL which satisfies pL ≤ p̃L and FL(pL) > FH(pEH). Since

pEL ≤ p̃L, it follows that ρL is locally decreasing in pL at (pEL , p
E
H).

It now follows that if pEL < pSBL , a slight increase in pL will have a positive first-order

effect on U(pL, pH), without raising M’s rent. Hence pEL ≥ pSBL .

Proof of Lemma 5: Given any pair of prices satisfying pL < pH and FH(pH) > FL(pL),

the optimal bonus must minimize M’s rent subject to b > pH and the coalition incentive

constraint (7). M earns zero rent at the bonus B(pL, pH) = pHFH(pH)−pLFL(pL)
FH(pH)−FL(pL) which

is now larger than pH . Since the choice of b is restricted to the range b > pH where
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b > maxi{l̂i(pi)} is automatically satisfied, the bonus B(pL, pH) is optimal if B(pL, pH) ≤

mini{ĥi(pi)}. Otherwise, B(pL, pH) > mini{ĥi(pi)} and the choice of b is restricted to the

range (pH ,mini{ĥi(pi)}]. Over this range b < B(pL, pH) which implies FH(pH)(b− pH) <

FL(pL)(b− pL) and therefore X0 = −FH(pH)(b− pH). The expression for M’s rent is then

modified to R̃(b; pL, pH) = κLFL(pL)(b − pL) + κHFH(pH)(b − pH) − FH(pH)(b − pH) =

κL[{FL(pL)− FH(pH)}b+ FH(pH)pH − FL(pL)pL], which is now decreasing in b.

To see that b > V is necessary for M to be valuable, note that since the function

R̃(b; pL, pH) is decreasing in b, if b ≤ V then pH < V , implying that P’s profit is bounded

above by U(pL, pH) − κL[{FL(pL) − FH(pH)}V + FH(pH)pH − FL(pL)pL] = FH(pH)(V −

pH) ≤ F (pH)(V − pH), the profit attained in NM upon choosing the price of pH in both

states.

Proof of Lemma 6: (i) As explained in the text, an INC optimal allocation which is infeasible

in EAC must involve pL < pH , FH(pH) > FL(pL) and in which M is valuable (since any

allocation in NM is feasible in EAC). P attains profit Π = [κHFH(pH) + κLFL(pL)](V −

b) + FH(pH)(b − pH) = κLFL(pL)(V − b) + FH(pH)[κHV + κLb − pH ]. By Lemma 5, it is

necessary that b > V . To show that this can be attained via INC with delegation, we need

to show that if pi < θ̄ then b = hi(pi), while if pi = θ̄ then b ≥ hi(θ̄).

Suppose first that pi < θ̄ for either i. Then ĥi(pi) = hi(pi) ≥ b. If i = L and

hL(pL) > b, note that Π is strictly decreasing in pL, so profit can be raised by lowering

pL slightly. Similarly, if i = H and b < hH(pH), we have κHV + κLb < hH(pH), implying

FH(pH)[κHV + κLb − pH ] is locally strictly decreasing in pH , and profit can be raised by

lowering pH slightly.

Next, suppose pi = θ̄. If b < hi(θ̄), the same argument as above applies: profit can be

raised by lowering pi slightly. Hence it must be the case that b ≥ hi(θ̄).

(ii) From (i), an INC optimal allocation which is EAC infeasible satisfies pi = pi(b)

which maximizes Fi(p)(b − p) with respect to choice of p ∈ [θ, θ̄]. Since FL(p) > FH(p)

for all p ∈ (θ, θ̄), it must be true that FL(pL)(b − pL) ≥ FH(pH)(b − pH), with strict

inequality if b < hL(θ̄). Hence b < hL(θ̄) implies M earns positive rent in state L (as

X0 = −FH(pH)(b − pH)), and second-best profits cannot be achieved. And if b ≥ hL(θ̄),

it must be the case that pL = pH = θ̄, in which case the INC optimal allocation can be

attained in NM and therefore also in EAC.

(iii) Consider any V ≥ H(θ̄), whence ΠNM = V − θ̄. The optimal INC profit is bounded
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below by what can be achieved via delegation in the interim collusion setting. If the

bonus is b, the resulting prices will be pi(b), base pay will be set equal to −FH(pH(b))(b−

pH(b)) (using the argument in (ii) above), so the resulting profit will be ΠIND(b;V ) ≡

[κLFL(pL(b)) + κHFH(pH(b))][V − b] + FH(pH(b))[b − pH(b)]. The derivative of ΠIND

with respect to b evaluated at b = V then equals κL[FH(pH(V )) − FL(pL(V ))]. Now

observe that by definition of the pi(b) function, pi(V ) = pSBi . So V ≥ H(θ̄) implies

pSBH = pNM = θ̄, so pH(V ) = θ̄. On the other hand, pL(V ) = pSBL < θ̄ since V < hL(θ̄),

so FL(pL(V )) < 1 = FH(pH(V )). It follows that ΠIND is strictly increasing in b when

evaluated at b = V . Since ΠIND(V ;V ) = V − θ̄ = ΠNM , it follows that M adds value in

the INC optimal allocation.

Proof of Proposition 4:

At the first step, note that the optimal side contract problem for M in DM involves

an outside option for A which is identically zero. This reduces to a standard problem

of contracting with a single agent with adverse selection and an outside option of zero,

where M has a prior distribution F (θ|η) over the agent’s cost θ in state η. The expected

procurement cost incurred by M is then ĥ(θ|η).

Given this, P’s contract with M in DM is effectively a contracting problem for P with a

single supplier whose unit supply cost is ĥ(θ|η). P’s prior over this supplier’s cost is given

by distribution function G(h) ≡ Pr((θ, η) | ĥ(θ | η) ≤ h) for h ≥ minη ĥ(θ(η) | η) = θ and

G(h) = 0 for h < θ. Let G(h | η) denote the cumulative distribution function of h = ĥ(θ | η)

conditional on η: G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) for h ≥ ĥ(θ(η) | η)(= θ(η)) and

G(h | η) = 0 for h < θ(η). Then G(h) = Ση∈Πp(η)G(h | η). Since ĥ(θ | η) is continuous and

nondecreasing on Θ(η), G(h | η) is strictly increasing in h on [θ(η), ĥ(θ̄(η) | η)]. However,

G(h | η) may fail to be left-continuous.

Hence P’s problem in DM reduces to maxEh[V (q(h))−X(h)] subject to X(h)−hq(h) ≥

X(h
′
) − hq(h′) for any h, h

′ ∈ [θ, h̄] and X(h) − hq(h) ≥ 0 for any h ∈ [θ, h̄] where the

distribution function of h is G(h) and h̄ ≡ maxη∈Π ĥ(θ̄(η) | η). The corresponding problem

in NM is maxEθ[V (q(θ))−X(θ)] subject to X(θ)−θq(θ) ≥ X(θ
′
)−θq(θ′) for any θ, θ

′ ∈ Θ

and X(θ) − θq(θ) ≥ 0 for any θ ∈ Θ. The two problems differ only in the underlying cost

distributions of P: G(h) in the case of DM and F (θ) in the case of NM. Since θ < ĥ(θ | η)
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for θ > θ(η),

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) < Pr(θ | θ ≤ h, η) = F (h | η)

for h ∈ (θ(η), ĥ(θ̄(η) | η)), implying G(h) = Ση∈Πp(η)G(h | η) < Ση∈Πp(η)F (h | η) = F (h)

for any h ∈ (θ, h̄). Therefore the distribution of h in DM (strictly) dominates that of θ in

NM in the first order stochastic sense. h̄ > θ̄, since ĥ(θ̄(η) | η) > θ̄(η) for any η.

It remains to show that this implies that P must earn a lower profit in DM. We prove

the following general statement. Consider two contracting problems with a single supplier

which differ only in regard to the cost distributions G1 and G2, where G1(h) < G2(h) for

any h ∈ (h, h̄) and G2(h) = 1 on h ∈ [θ̄, h̄]. Standard arguments imply the problem can be

reduced to selecting q(h) to maximize the expected value of V (q(h)) − hq(h) −
∫ h̄i
h q(y)dy

(where h̄1 ≡ h̄ and h̄2 ≡ θ̄) with respect to distribution Gi, subject to the constraint that

q(.) is nonincreasing. Let the maximized profit of P with distribution G be denoted W (G).

We will show W (G1) < W (G2).

Let q1(h) denote the optimal solution of the problem based on G1(h). If q1(h) is constant

on (h, h̄) with q1(h) = q > 0, W (G1) = V (q)− h̄q. It is feasible for P to select this output

schedule when the cost distribution is G2, generating expected profit V (q) − θ̄q. Then

W (G2) ≥ V (q)− θ̄q > W (G1) since h̄ > θ̄. We henceforth focus on the case where q1(h) is

not constant.

(i) First we show that V
′
(q1(h)) < h does not hold for any set of values of h with positive

measure. Suppose otherwise that there exists some interval over which V
′
(q1(h)) < h. Then

we can replace the portion of q1(h) with V
′
(q1(h)) < h by q∗(h) with V

′
(q∗(h)) = h, without

violating the constraint that q(h) is non-increasing. It raises the value of the objective

function, since V (q1(h)) − hq1(h) < V (q∗(h)) − hq∗(h) for h where q1(h) is replaced by

q∗(h), and
∫ h̄
h q(y)dy decreases with this replacement. This is a contradiction.

(ii) Define

Φ(h) ≡ V (q1(h))− hq1(h)−
∫ h̄

h
q1(y)dy.

We claim that Φ(h) is left-continuous. First we show that our attention can be restricted

to the case that q1(h) is left-continuous. Otherwise, there exists h
′ ∈ (h, h̄) such that

q1(h
′−) > q1(h

′
). Now consider q̃1(h) (which is left-continuous at h

′
) such that q̃1(h

′
) =

q1(h
′−) and q̃1(h) = q1(h) for any h 6= h

′
. Defining Φ̃(h) ≡ V (q̃1(h))−hq̃1(h)−

∫ h̄
h q̃1(y)dy,
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observe that Φ̃(h) = Φ(h) for h 6= h
′

and Φ̃(h) > Φ(h) when h = h
′
. Then∫

[h,h̄]
Φ̃(h)dG(h) =

∫
[h,h̄]\h′

Φ̃(h)dG(h) + Φ̃(h
′
)[G(h

′
+)−G(h

′−)]

≥
∫

[h,h̄]\h′
Φ̃(h)dG(h) + Φ(h

′
)[G(h

′
+)−G(h

′−)] =

∫
[h,h̄]

Φ(h)dG(h)

with strict inequality if G(h) is discontinuous at h = h
′
. When q1(h) is left-continuous,

Φ(h) is also so.

(iii) We claim that Φ(h) is non-increasing in h and is not constant on (h, h̄). To show

the former, note that for any h, we have

lim
ε→0+

Φ(h+ ε)− Φ(h)

ε

= lim
ε→0+

(1/ε)[V (q1(h+ ε))− (h+ ε)q1(h+ ε)−
∫ h̄

h+ε
q1(y)dy − [V (q1(h))− hq1(h)−

∫ h̄

h
q1(y)dy]]

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε
− q1(h+) + lim

ε→0+
(1/ε)

∫ h+ε

h
q1(y)dy

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

for some q̂(h) ∈ [q1(h+), q1(h)]. This is non-positive since V
′
(q̂(h)) ≥ V

′
(q1(h)) ≥ h

and limε→0+
q1(h+ε)−q1(h)

ε ≤ 0. Because of left-continuity of Φ(h), it implies that Φ(h)

is non-increasing in h. Next to show Φ(h) is not constant, suppose otherwise. Then

Φ(h) = Φ(h̄−) = V (q1(h̄−)) − h̄q1(h̄−) which must be equal to W (G1). It means that

W (G1) is attainable with constant output schedule (q1(h) = q1(h̄−) for any h ∈ (h, h̄)).

We obtain a contradiction, since we supposed that q1(h) is not constant.

(iv) Now consider the contracting problem with cost distribution G2(h). Since q1(h) is

non-increasing in h, it is feasible for P to select this output schedule when the cost distribu-

tion isG2. HenceW (G2) ≥
∫ h̄
h Φ(h)dG2(h). Therefore if

∫ h̄
h Φ(h)dG2(h) >

∫ h̄
h Φ(h)dG1(h) =

W (G1), it follows that W (G2) > W (G1). Since Gi(h) (i = 1, 2) is right-continuous and

Φ(h) is left-continuous, we can integrate by parts:∫ h̄

h
Φ(h)dGi(h) +

∫ h̄

h
Gi(h)dΦ(h) = Φ(h̄).

Hence ∫ h̄

h
Φ(h)dG2(h)−

∫ h̄

h
Φ(h)dG1(h) =

∫ h̄

h
[G1(h)−G2(h)]dΦ(h).

By (iii) and G2(h) > G1(h) for h ∈ (h, h̄), this is positive.
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Proof of Proposition 6:

Step 1:

Define

A(θ | η) ≡ F (θ | η)

f(θ | η)
/
F (θ)

f(θ)
≡

∫ θ
θ(η) f(y)a(η|y)dy

a(η|θ)F (θ)
.

We show that there exist η∗∗ ∈ Π and a closed interval I = [θ
′
, θ
′′
] with positive measure

(conditional on η∗∗) such that A(θ | η∗∗) is increasing in θ over I.

Evidently this holds for η such that θ < θ(η), sinceA(θ(η) | η) is continuous, limθ→θ(η)A(θ |

η) = 0 and A(θ | η) > 0 for θ > θ. Suppose otherwise; then θ(η) = θ for all η. Using

l’Hôpital’s rule, limθ→θ A(θ | η) = 1. If A(θ | η) is non-increasing in θ for all η, A(θ | η) ≤ 1

or equivalently
∫ θ
θ f(y)a(η|y)dy ≤ a(η|θ)F (θ) for all (θ, η) ∈ K. Since

Ση

∫ θ

θ
f(y)a(η|y)dy = Σηa(η|θ)F (θ) = F (θ)

for all θ, A(θ | η) = 1 for all (θ, η) ∈ K. Then h(θ | η) = H(θ) for any (θ, η) ∈ K. This is a

contradiction, since η is informative about θ.

For η∗∗ and I, we choose λ > 0, closed intervals ΘL = [θL, θ̄L] ⊂ I and ΘH = [θH , θ̄H ] ⊂

I with θ̄L < θH such that

F (θ)

f(θ)
/
F (θ | η∗∗)
f(θ | η∗∗)

< λ <
F (θ̃)

f(θ̃)
/
F (θ̃ | η∗∗)
f(θ̃ | η∗∗)

for θ̃ ∈ ΘL, θ ∈ ΘH .

These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗∗) > 0 for θ ∈ ΘL

and

H(θ)− (1− λ)θ − λh(θ | η∗∗) < 0 for θ ∈ ΘH .

Step 2: Construction of z(· | η)

Now let us construct z(· | η) which satisfies the following conditions.

(A) For η 6= η∗∗, z(θ | η) = θ for any θ ∈ Θ(η).

(B) For η∗∗, z(· | η∗∗) ∈ Z(η∗∗) which satisfies

45



(i) z(θ | η∗∗) = θ for any θ /∈ ΘH ∪ΘL

(ii) For θ ∈ ΘL, z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≤ θ with strict inequality for some

subinterval of ΘL of positive measure, and (b) H(z)− (1−λ)z−λh(θ | η∗∗) > 0

for any z ∈ [z(θ | η∗∗), θ].

(iii) For θ ∈ ΘH , z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≥ θ with strict inequality for some

some subinterval of ΘH of positive measure, (b) z(θ | η∗∗) < h(θ | η∗∗) and (c)

H(z)− (1− λ)z − λh(θ | η∗∗) < 0 for any z ∈ [θ, z(θ | η∗∗)].

(iv) E[(z(θ | η∗∗)− h(θ | η∗∗))qNM (z(θ | η∗∗)) +
∫ θ̄(η∗∗)
z(θ|η∗∗) q

NM (z)dz | η∗∗] = 0.

It is shown in the online Appendix that there exists z(· | η∗∗) ∈ Z(η∗∗) which satisfies

(B(i)-(iv)).

Step 3

For z(· | η) constructed in Step 2, consider the following allocation (uA, uM , q):

q(θ, η) = qNM (z(θ | η))

uA(θ, η) =

∫ θ̄

θ
qNM (z(y | η))dy

uM (θ, η) = XNM (z(θ | η))− θqNM (z(θ | η))−
∫ θ̄(η)

θ
qNM (z(y | η))dy −

∫ θ̄

θ̄(η)
qNM (y)dy.

where

XNM (z(θ | η)) ≡ z(θ | η)qNM (z(θ | η)) +

∫ θ̄

z(θ|η)
qNM (z)dz.

In the online Appendix it is shown that (uA, uM , q) is a EAC feasible allocation.

Now we show that this allocation generates a higher payoff to P than the optimal

allocation in NM. Define ΦP (z) and ΦM (z, θ) as

ΦP (z) ≡ V (qNM (z))− zqNM (z)−
∫ θ̄

z
qNM (z̃)dz̃

and

ΦM (z, θ) ≡ (z − h(θ | η∗∗))qNM (z) +

∫ θ̄(η∗∗)

z
qNM (z̃)dz̃.

P’s resulting expected payoff conditional on η∗∗ is E[ΦP (z(θ | η∗∗)) | η∗∗]. P’s expected

payoff conditional on η∗∗ in the optimal allocation in NM is E[ΦP (θ) | η∗∗]. By the definition
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of ΦM (z, θ) and E[uM (θ, η∗∗) | η∗∗] = 0, E[ΦM (z(θ | η∗∗), θ) | η∗∗] = E[ΦM (θ, θ) | η∗∗] = 0.

Then the difference between two payoffs is

E[ΦP (z(θ | η∗∗)) | η∗∗]− E[ΦP (θ) | η∗∗]

= E[ΦP (z(θ | η∗∗)) + λΦM (z(θ | η∗∗), θ) | η∗∗]− E[ΦP (θ) + λΦM (θ, θ) | η∗∗]

= E[

∫ z(θ|η∗∗)

θ
{Φ′P (z) + λ∂ΦM (z, θ)/∂z}dz | η∗∗]

= E[

∫ z(θ|η∗∗)

θ
[V
′
(qNM (z))− {(1− λ)z + λh(θ | η∗∗)}]qNM ′(z)dz | η∗∗]

= E[

∫ z(θ|η∗∗)

θ
[H(z)− {(1− λ)z + λh(θ | η∗∗)}]qNM ′(z)dz | η∗∗].

The last equality follows from V
′
(qNM (z)) = H(z). From the construction of z(θ | η∗∗) in

Step 2 and qNM
′
(z) < 0, this is positive. We have thus found an EAC feasible allocation

which generates a higher payoff to P compared to the optimal allocation in NM.

Proof of Proposition 7:

Conditions (i) and (ii) imply h(θ | η) satisfies the following properties:

• h(θ | η∗) = ĥ(θ | η∗) is strictly increasing and continuously differentiable in θ

• ĥ(θ | η∗) > ĥ(θ | η) for θ ∈ (θ, θ̄] and ĥ(θ | η∗) = ĥ(θ | η) = θ for any η 6= η∗

• Define G(h | η) ≡
∫
{θ|ĥ(θ|η)≤h} f(θ | η)dθ. Then G(h | η∗) is a mean-preserving spread

of G(h | η) for any η 6= η∗

The first one is evident, since f(θ | η∗) is decreasing in θ and h(θ | η∗) is increasing in θ.

Then q∗(ĥ(θ | η∗)) is also continuously differentiable and strictly decreasing in θ. By the

second property, the range of ĥ conditional on η∗ (which is denoted by H) includes the

range of ĥ conditional on η. The proof of the second and third properties are provided in

the online Appendix.

Suppose the result is false, and the second best allocation (uSBA , uSBM , qSB) is EAC

feasible. Then Proposition 5 implies the existence of π(· | η) ∈ Y (η) such that for any

(θ, η), (θ
′
, η
′
) ∈ K,

qSB(θ, η) = q∗(ĥ(θ | η))

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ 0

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ XSB(θ
′
, η
′
)− z(θ | η)qSB(θ

′
, η
′
)
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where z(· | η) is an ironing transformation of π(· | η) based on F (θ | η), and

XSB(θ, η) ≡ uSBA (θ, η) + uSBM (θ, η) + θqSB(θ, η).

Step 1: Existence of (X̃(h), φ(h)).

Consider (θ, η), (θ
′
, η
′
) such that ĥ(θ | η) = ĥ(θ

′ | η′). Then qSB(θ, η) = qSB(θ
′
, η
′
).

The coalitional incentive constraint implies XSB(θ, η) = XSB(θ
′
, η
′
), since otherwise the

coalition would misrepresent a state with higher payment in the other state where the same

output is produced. It guarantees the existence of X̃(h) such that XSB(θ, η) = X̃(ĥ(θ | η))

for any (θ, η).

Next suppose that ĥ(θ
′′ | η′′) = ĥ(θ

′ | η′) and z(θ
′′ | η′′) > z(θ

′ | η′) for some

(θ
′
, η
′
), (θ

′′
, η
′′
). The ironing procedure ensures z(θ | η) and ĥ(θ | η) are continuous and

non-decreasing for θ on Θ. Since ĥ(θ | η) = θ < θ̄ < ĥ(θ̄ | η), ĥ(θ | η) is not constant on

Θ. Then by adjusting θ
′

and θ
′′
, we can find (θ̃

′
, θ̃
′′
) such that ĥ(θ̃

′′ | η′′) < ĥ(θ̃
′ | η′) and

z(θ̃
′′ | η′′) > z(θ̃

′ | η′). We obtain a contradiction, since the coalition incentive constraint

implies that whenever z(θ̃
′′ | η′′) > z(θ̃

′ | η′), qSB(θ̃
′′
, η
′′
) ≤ qSB(θ̃

′
, η
′
) or equivalently

ĥ(θ̃
′′ | η′′) ≥ ĥ(θ̃

′ | η′). Hence there exists φ(h) which satisfies z(θ | η) = φ(ĥ(θ | η)) for

any (θ, η). Since ĥ(θ | η∗) and z(θ | η∗) are continuous and non-decreasing for θ, φ(h) is

continuous and non-decreasing on H.

The coalitional incentive constraint implies that for any h ∈ H, h maximizes X̃(h
′
) −

φ(h)q∗(h
′
) subject to h

′ ∈ H. By the continuity of φ(h) and the differentiability of q∗(h),

we obtain the differentiability of X̃(h) and the first order condition X̃
′
(h) = φ(h)q∗

′
(h).

Step 2: Properties of φ(h)

Here we show that (a) φ(h) ≥ 0 on H and (b) h−φ(h) is non-negative and increasing in h.

Since qSB(θ, η∗) = q∗(ĥ(θ | η∗)) is strictly decreasing in θ, the pooling region Θ(π(· |

η∗), η∗) must be empty. Hence it must be the case that

z(θ | η∗) = φ(ĥ(θ | η∗)) = θ +
F (θ | η∗)− Λ(θ | η∗)

f(θ | η∗)
.

Since φ(ĥ(θ | η∗)) is non-decreasing in θ and Λ(θ | η∗) ≤ 1,

φ(ĥ(θ | η∗)) ≥ φ(θ) ≥ θ − 1/f(θ | η∗) > 0
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by property (iii), which implies (a). The above equality can be rewritten as

Λ(θ | η∗)
f(θ | η∗)

= ĥ(θ | η∗)− φ(ĥ(θ | η∗)).

The LHS is non-negative and increasing in θ, since f(θ | η∗) is decreasing in θ and Λ(θ | η∗)

is non-negative and non-decreasing in θ. It implies (b).

Step 3: M earns positive rent.

Define L(h) ≡ X̃(h)− hq∗(h). M’s interim payoff is

E[XSB(θ, η)− h(θ | η)qSB(θ, η) | η] = E[L(ĥ(θ | η)) | η],

utilizing a property of the ironing transformation. If the second best allocation is EAC

feasible, E[L(ĥ(θ | η)) | η] = 0 holds for any η. The first derivative of L(h) is

L
′
(h) = (φ(h)− h)q∗

′
(h)− q∗(h).

Since q∗(h) is continuously differentiable and φ(h) is continuous and almost everywhere

differentiable, L
′
(h) is continuous and also differentiable almost everywhere and

L
′′
(h) = (φ

′
(h)− 1)q∗

′
(h) + (φ(h)− h)q∗

′′
(h)− q∗′(h).

By using V
′
(q∗(h)) = h, we can show that V

′′′
(q) ≤ 0 implies q∗

′′
(h) ≤ 0, and 0 < V

′′′
(q) ≤

(V
′′

(q))2

V ′ (q)
implies q∗

′′
(h) > 0 and hq∗

′′
(h) + q∗

′
(h) < 0. By φ

′
(h)− 1 < 0 and 0 ≤ φ(h) ≤ h,

it follows that L
′′
(h) > 0.

By the strict convexity of L and the mean-preserving spread property of G(h | η∗),

E[L(ĥ(θ | η∗)) | η∗] =

∫
L(h)dG(h | η∗) >

∫
L(h)dG(h | η) = E[L(ĥ(θ | η)) | η] ≥ 0

for any η 6= η∗. Therefore M must earn a positive rent in state η∗. This is a contradiction.

Proof of Proposition 8:

We show that the set of EACP(α) is independent of α ∈ [0, 1]. Suppose otherwise that

(uA(θ, η), uM (θ, η), q(θ, η)) is a EACP(α) allocation, but not a EACP(α
′
) (α 6= α

′
) al-

location. It implies that for some η, (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) is not the
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solution of TP (η;α
′
) defined for (uA(θ, η), uM (θ, η), q(θ, η)). If (m̃∗(θ | η), u∗A(θ, η))(6=

((θ, η), uA(θ, η))) is a solution of TP (η;α
′
), it satisfies all constraints of TP (η;α

′
) and

realizes a higher payoff to the third party than in the choice of (m̃(θ | η), ũA(θ, η)) =

((θ, η), uA(θ, η)):

E[(1− α′)[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η)] + α
′
u∗A(θ, η) | η]

> E[(1− α′)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + α
′
uA(θ, η) | η].

It also satisfies A and M’s participation constraints:

u∗A(θ, η) ≥ uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] ≥ E[uM (θ, η) | η].

On the other hand, since (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves TP (η;α),

E[(1− α)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + αuA(θ, η) | η]

≥ E[(1− α)[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η)] + αu∗A(θ, η) | η]

Let us consider three cases: (i) α ∈ (0, 1), (ii) α = 1 and (iii) α = 0.

(i) α ∈ (0, 1)

The last three inequalities imply

u∗A(θ, η) = uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η) | η] = E[uM (θ, η) | η].

But this is not compatible with the first inequality. We obtain a contradiction.

(ii) α = 1

With α = 1, the above four inequalities imply

E[uA(θ, η) | η] = E[u∗A(θ, η) | η]

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] > E[uM (θ, η) | η].
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But for sufficiently small ε > 0, the choice of

(m̃(θ | η), ũA(θ, η)) = (m̃∗(θ, η), u∗A(θ, η) + ε)

(instead of ((θ, η), uA(θ, η))) in TP (η;α = 1) generates a higher value of the objection

function without violating any constraint. We obtain a contradiction.

(iii) α = 0

With α = 0, the four inequalities imply

E[uM (θ, η) | η] = E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η]

and

E[u∗A(θ, η) | η] > E[uA(θ, η) | η].

Since u∗A(θ, η) ≥ uA(θ, η) for any θ, there is a subset of θ with the positive measure such that

u∗A(θ, η) > uA(θ, η). Consider a modified problem of TP (η;α = 0) such that the constraint

ũA(θ, η) ≥ uA(θ, η) is replaced by ũA(θ, η) ≥ u∗A(θ, η) in TP (η;α = 0). Since the optimal

solution (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) in TP (η;α = 0) violates the constraint, the

maximum value of the objective function in the modified problem would become lower. On

the other hand, (m̃∗(θ | η), u∗A(θ, η)) satisfies all the constraints of the modified problem,

and brings

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

The argument implies

E[uM (θ, η) | η] > E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

We obtain a contradiction.
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