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1 Introduction

A fundamental issue in contract law concerns restrictions on liability in the event of default.

When borrowers or tenants default on their contractual payment obligations, lenders have

various options available to extract resources and exert pressure for repayment. These op-

tions may include seizure of assets, appropriation of future earnings, and provision of inden-

tured labor services. Contract law typically imposes restrictions on bonding arrangements:

even ancient Greek and Roman societies imposed restrictions on debt bondage (Westermann

(1955)). Imprisonment of debtors was widespread in the United States and United Kingdom

until the 19th century; the death penalty was legal in England until 1820 for certain actions

by a failing debtor (Coleman (1974), Lester (1995)). Despite legal bans, bonded labor is still

widespread in the developing world, owing to weak enforcement.1 The Nepalese Kamaiya

system is a well-known example (Joshi (2003), Edmonds and Sharma (2005)), rendered il-

legal by the Nepal government in 2000.4 In general, the process of economic development

is associated with greater legal restrictions on ex post bonding, and modern international

norms on labor standards do not allow any bonding.

A plausible reason for this is growing concern for human rights along the process of

development. In this paper we focus instead on economic consequences of differing legal

restrictions on bonding. Standard formulations of contract theory assume that agents are

perfectly rational and can anticipate all relevant future consequences of contractual pro-

visions. With such an approach it is difficult explaining why there are any legal limits on

bonding at all. If borrowers voluntarily commit ex ante to an ex post bonding arrangement

they should internalize all future consequences of these and trade them off against their

ex ante advantages.5 Since bonding represents a form of precommitment, allowing a wider

4As the US Department of Labor report states: “Loans are a central feature for maintaining the Kamaiya

system. Since Kamaiyas are generally not paid enough to meet their basic needs, many have no choice but

to take loans from their master. Many also carry inherited debts, sometimes going back for three or four

generations, in addition to their own. A Kamaiya burdened by debt must continue to work for the same

landlord until the debt has been repaid. The Kamaiya remains bound to the landlord unless, at markets held

each winter, the Kamaiya finds a new master to pay off his debt or the original master sells off the Kamaiya

and his family to a new master”.
5Of course, this pertains to committing one’s own future labor services to pay off debts, rather than the
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range of bonding alternatives can widen access of agents to credit, tenancy or employment

opportunities.

From this perspective, legal restrictions on bonding restrict market access, especially

for poor borrowers. Indeed, it is frequently argued that default liability restrictions are

inefficient and significantly impair the functioning of credit markets.6 Empirical evidence

supporting these claims have been made both in cross-country as well as cross-U.S.-state

analysis of correlations between lender rights and access of borrowers to finance (La Porta

et al (1997, 1998), Gropp, Scholz and White (1997), Berkowitz and White (2004)). From

this perspective, the best legal regimes are those with the strongest possible protection of

lender rights and borrower rights.

Carrying this logic to an extreme, one is also led to question legal restrictions on bonded

labor. From a consequentialist perspective, it appears to make little sense to not allow

rational borrowers to commit themselves to providing indentured services to lenders should

they lack the resources to repay their loans.

The purpose of this paper is to argue that economic rationales for bonded labor pro-

visions do exist, even in a world of perfectly rational agents. The traditional argument

against legal restrictions is based on partial equilibrium reasoning, which overlooks general

equilibrium effects. Raising the legal limit on bonding (i.e., allowing more bonding) can

raise profits earned by principals, thereby raising interest rates, which generates a negative

pecuniary externality for all active agents. It turns out that the general equilibrium effect

(when present) always outweighs the partial equilibrium benefits. Hence all active agents

are worse off as a result of higher bonding limits, while principals are better off. Efficiency

may also decline if bonding is ex post distortionary.

The details of our model are as follows. We study equilibrium contracts with moral

hazard in a market with risk-neutral agents (tenants or borrowers) of heterogenous wealth

on the one side, and a fixed set of homogenous risk-neutral principals (landlords or lenders)

labor of others (such as one’s family members). Bonding the labor of other family members appears to be

quite common in both historical and modern times; these clearly raise obvious questions of exploitation. The

point we are raising concerns instead commitment of one’s own future services.
6Basu (2003) and Genicot (2002) refer to this as a ‘paradox of voluntary choice’.
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with given productive or lending capacities on the other. The agents seek to finance a project

for which they lack a necessary asset or sufficient funds, and need to lease or borrow these.

Project returns are ex ante uncertain and affected by costly effort they exert. After the

project is completed and returns are realized, the agents have the opportunity to work on a

spot labor market and earn a deterministic wage. If the law allows bonded labor, contracts

allow agents to promise to provide part of their ex post labor earnings in payments on

their project loans. These bonding arrangements may or not be distortionary, depending on

whether the legal limits on bonding lie below or above ex post efficient spot labor supply

levels. The limits on bonding define the limits of agent liability in the event that the project

returns are insufficient to repay principals.

In this setting, we provide a detailed characterization of equilibrium allocations, using

the solution concept of stability in the matching market for contracts between principals

and agents (cf. Roth and Sotomayor (1990)). Comparative statics with respect to increased

bonding limits include the partial equilibrium (PE) effect of agents’ ability to credibly

commit to bear greater liability in the event of project losses, and a general equilibrium

(GE) effect on profits earned by principals. The PE effect is the basis of the conventional

intuition of the beneficial effect of enlarging the set of feasible contracts for any agent.

The novel aspect of our paper is the GE effect, which arises owing to competition in the

market for contracts. When principals are on the short side of the market, they earn positive

profits, the opportunities for which increase when the law allows more bonding. This effect

counteracts the benign PE effects on agent payoffs, by generating a pecuniary externality.

Our main result is that whenever the GE effect operates (i.e., when enough agents are

able to enter the market that all available capacity is fully utilized), it outweighs the PE

effect, to render all agents worse off. The intuitive reason for this is clear in the case that

bonding is non-distortionary: while the GE effect operates uniformly for all active agents,

while the PE effect is stronger for poorer agents. And the poorest matched agent is worse

off when additional bonding is possible, since she has (almost) no bargaining power with

the principal she is matched with, given full utilization of capacity (i.e., the principals are

on the short side of the market for contracts, which allows principals to threaten to replace

any matched agent with an unmatched agent). Greater bonding opportunities therefore
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allow the principal matched with the poorest active agent greater opportunities to control

the agent’s incentives and limit the latter’s rents. Hence the poorest matched agent cannot

benefit, implying in turn (since the benefits are highest for poorer agents) that no matched

agent can benefit. In the case when bonding is distortionary, the logic is somewhat more

complicated, but continues to apply nonetheless.

Hence higher limits on bonding do not result in Pareto improvements, except in the case

where GE effects are altogether absent (i.e., so few agents enter the market that there is

unutilized capacity in the market). Political economy considerations (i.e., the interests of

agents) can thus explain why there exist restrictions on bonding. Specifically, agents and

principals have single-peaked preferences over the bonding limit, implying that bonding

limits favored by agents will prevail under majority voting if agents outnumber principals.

The equilibrium bonding limit will be the lowest consistent with allowing enough agents to

enter the market to fully utilize all available capacity. This limit depends on the distribution

of collaterizable wealth of agents. The model predicts higher levels of economic or financial

development associated with rightward shifts of this distribution will lead to a reduction in

the legal limit on bonding.

In contrast to payoff effects, efficiency and effort effects of higher bonding limits depend

on whether bonding is ex post distortionary. If bonding is non-distortionary, allowing more

bonding is shown to enhance effort and efficiency. But if it is distortionary, increasing

bonding limits can result in a decrease in inefficiency, which may take the form of excessive

supply of effort and ex post labor for a set of poor agents, or reduced efforts for some higher

ranges of wealth. In the latter case, greater bonding may lower efficiency, as well as raise

inequality (between the fortunes of agents and principals) and poverty (of agents). Hence

the welfare effects of greater bonding can be adverse as well.

Section 2 introduces the model, and describes feasible allocations corresponding to a

given legal limit on bonded labor. Section 3 provides a method for analyzing the equilib-

rium of the matching market for contracts between principals and agents, in terms of a set of

interlinked optimal contracting problems. Using this, Section 4 provides a detailed charac-

terization of equilibrium contracts. Comparative static effects of altering the bonding limit

on welfare and implications for political economy of bonding laws are studied in Sections 5
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and 6 respectively. Section 7 discusses related literature. Finally, Section 8 concludes.

2 Model

The economy has a given population of m principals and n agents, in the context of a

tenancy or credit market. Each agent can potentially operate a productive project of given,

indivisible size. Each principal owns an asset such as a plot of land, equipment or finance

that is needed for the project. Agents are prospective tenants or borrowers who do not own

the asset themselves or cannot self-finance the project; principals are asset owners who are

unable to provide the labor necessary to generate income from these assets. Principals may

own more than one asset (or funds required to finance one project), and there are at least

two distinct principals who compete with one another.2 The equilibrium is the same as the

case where each principal owns a single asset, so we shall consider this setting for simplicity.

In order to generate income, the agent needs to spend an amount I to purchase necessary

inputs at the beginning of the period. Each agent starts with a given collateralizable wealth

w. Principals have enough wealth to pay for the entire upfront investment. Consequently, a

principal and agent pair that are matched with one another will need to agree how to share

the investment costs, apart from how to share the incomes generated.

The returns to the project are stochastic. With probability e the project is a success;

the state of the world will be called good, and denoted by s. In that case the project return

is s. With probability 1−e the project fails, the state of the world is bad, denoted by f , and

the corresponding return is f < s. The success probability e depends on the agent’s effort,

which is not observable by the principal or any third party. Without loss of generality,

we can identify e with the effort of the agent, which generates a disutility D(e) for the

agent, which is strictly convex, thrice differentiable, strictly increasing, with D′′′(e) ≥ 0.3

We assume that f < I < s, so the project generates a net loss if the agents exerts no effort,

and generates a net profit if sufficient effort is expended. Moreover, there exists a level of

effort e at which the project is viable, i.e., e(s− f) + f > I +D(e).

With regard to pecuniary returns, principals and agents are risk-neutral. In case an

agent or principal does not participate in the project they each earn zero payoff. Agents are
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distinguished from one another only by their wealth, while all principals are identical.

After the project has been completed, the agent can work l hours on a spot labor

market and earn an income of Rl, where R > 0 is a given wage rate. This opportunity arises

irrespective of whether the agent participated in the project. The ex ante contract with the

principal can specify an extent of labor that the agent is required to provide the principal

ex post, depending on the outcome of the project and payments made by the agent. If b

units of labor are provided, the principal earns Rb.7 The agent then works a total of b+ l,

earns Rl and incurs a disutility of g(b+ l), where g is a strictly increasing, convex and twice

continuously differentiable function. There is an upper limit l̄ on ex post labor supply, so

b+ l ≤ l̄. We assume that g′(l̄) =∞.

There is a legal limit B on the extent of bonded labor that the agent can provide

to the principal. Let l∗ denote the ex post efficient labor supply of the agent, i.e., where

g′(l∗) ≤ R, with equality holding if l∗ = 0. If l∗ = 0, all bonded labor provided by the agent

is ex post distortionary. If on the other hand l∗ > 0 and 0 < B < l∗, all bonded labor is

nondistortionary, and is equivalent to an ex post transfer of assets or lumpsum redistribution

from the agent to the principal. If B > l∗ then some bonding (up to l∗) is nondistortionary,

and supplementary bonding (beyond l∗) is distortionary.

2.1 Contracts, Legal Regimes and Sequence of Moves

At Stage 1 there is matching of principals and agents. Then, the principal and the agent

write a contract which specifies their respective contributions to the upfront investment I,

financial transfers and bonded labor obligations, contingent on the outcome of the project.

A contract specifies IA, the contribution of the agent to the upfront investment, and for

each outcome i = s, f the financial transfer t̃i from the agent to the principal, and bi the

bonded labor services provided ex post. A contract is feasible if IA ≤ w, t̃i ≤ w− IA + i and

7In our set up, the agent earns a wage rate of zero as a bonded laborer. In principle, the agent can earn

any wage rate below R. This possibility will not change our results because any such contract can be replaced

with a contract with a wage rate of zero and less bonded labor leaving the principal unaffected and making

the agent (weakly) better off.
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bi ≤ min{B, l̄}. 8

At Stage 2, the agent selects effort e and then the outcome i is realized; the agent pays

the mandated transfer t̃i, and provides the mandated labor services bi.4

Finally at Stage 3, the agent decides on supplementary labor supply ls to the spot labor

market, subject to the constraint that the aggregate labor supplied does not exceed l̄.

2.2 Feasible Allocations

We are interested in describing allocations that may result from feasible contracts in this

setting. An allocation will specify a particular matching of agents with principals, and for

any specific matched pair a state-contingent allocation of financial returns, ex post labor

provided, and ex ante effort induced by these. Specifically, an allocation for a given matched

pair is (e, {ti, bi, lsi }i=s,f ) which satisfies the following conditions for feasibility: 0 ≤ ti ≤

w − IA + i; 0 ≤ bi ≤ B; lsi ∈ [0, l̄ − bi] and 0 ≤ e ≤ 1.

Such an allocation generates state contingent payoffs for the agent and principal respec-

tively: Vi ≡ w− IA + i− ti +Rlsi −D(e)− g(bi + lsi ), πi ≡ ti − (I − IA) +Rbi. Let vi denote

w− IA + i− ti +Rlsi − g(bi + lsi ), the agent’s payoff net of the effort disutility. Let li denote

the aggregate ex post labor supplied bi + lsi . We may then restate the state i payoffs for the

agent and the principal as Vi ≡ vi −D(e);πi ≡ w − I + i− vi + Rli − g(li). The feasibility

constraints above then reduce to

vi ≥ Rlsi − g(li) (FT )

which corresponds to restrictions on financial transfers, and

0 ≤ bi ≤ B (BL)

the restriction on bonded labor. Incentive compatibility includes an ex ante constraint

vs − vf = D′(e) (EAIC)

8If the legal regime permits the contract to mandate a payment exceeding w− IA + i, this is tantamount

to allowing bonded labor, as the agent would be compelled to work on the spot labor market to be able to

meet this obligation.
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and an ex post constraint

lsi = max{l∗ − bi, 0} (EPLS)

equivalent to

li = max{l∗, bi} (EPIC)

on supply of project effort and of subsequent spot market labor respectively. Moreover,

neither agent nor the principal should be worse off compared with autarky:

ΠA ≡ vf + eD′(e)−D(e) ≥ w + S(R) (PCA)

ΠP ≡ w + S(R)− I + es+ (1− e)f − vf − eD′(e)− eQ(lS)− (1− e)Q(lf ) ≥ 0 (PCP )

Here S(R) ≡ Rl∗ − g(l∗) denotes the maximum surplus resulting from the opportunity of

the agent to supply labor to the spot market, and Q(l) ≡ S(R) − [Rl − g(l)] denotes the

deadweight loss or reduction in surplus that results when the agent supplies a given level l

which may differ from the ex post efficient level l∗.

Definition. For a given agent, a contract is feasible if it satisfies (FT),(BL),(EAIC),

(EPIC), (PCA) and (PCP ). Let F(w;B) denote the set of pair-wise feasible contracts for

an agent with wealth w.

Feasibility incorporates physical, incentive and legal constraints, and ensures that both

the agent and the principal who happens to provide the contract to the agent will earn at

least their autarkic payoffs.

Definition. An agent with wealth w is said to be viable with bonded labor limit B if F(w;B)

is non-empty.

Clearly, non-viable agents cannot receive a contract from any principal: they must per-

force be excluded from the market. This holds irrespective of the relative number of agents

and principals, or the wealth distribution across agents. In specifying the pattern of match-

ing, attention can therefore be restricted to the set of viable agents.

Definition. A feasible allocation is a matching of principals with viable agents, and for

each matched agent a feasible contract.
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Attention can be further restricted to allocations in which for every matched pair, the

contract offered to the agent cannot be Pareto dominated (among the pair) by another

feasible contract. This motivates the following definition.

Definition. A feasible allocation is pair-wise Pareto-efficient (PE) if for every matched

agent, there exists no other feasible contract which makes either the agent or the concerned

principal better off ex ante without making the other worse off.

Pair-wise PE allocations can be found by maximizing linear welfare-weighted sum

of utilities of the concerned principal and agent subject to the feasibility constraints

(FT),(BL),(EAIC), (EPIC), (PCA) and (PCP ). The following properties of Pair-wise PE

allocations will turn to be useful later.

Proposition 1 (a) An agent with wealth w who is viable with bonded labor limit B, is

also viable with wealth w′ ≥ w at any bonded labor limit B′ ≥ B.

(b) Attention can be restricted to pair-wise PE allocations in which bi ≥ min{l∗, B}.

(c) In any pair-wise PE allocation, distortionary bonded labor (bi > l∗) will not be used in

the success state i = s, and is distortionary in the failure state (bf > l∗) only if there

is no further scope for increasing transfers: tf = w − IA + f .

Part (a) says that increasing the bonded labor limit enlarges the range of credible

commitments, and may thus allow some previously non-viable agent to become viable.

Part(b) states that bonded labor allowed by the law upto the limit l∗ of non-distortionary

bonding will always be utilized, as an increase in non-distortionary bonding is akin to

increasing the collateral that can be posted upfront by each agent. And part (c) says that

distortionary bonded labor will only be used in the failure state, and only if maximal use

of financial transfers in that state is being made. These results follow from the need to

minimize the deadweight losses associated with provision of ex ante effort incentives.
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3 Market Equilibrium

Let the n agents be ordered so that w1 ≥ w2 ≥ w3 . . . ≥ wn. Let n(B) be the largest integer

k between 1 and n such that the agent with wealth wk is viable at bonded labor limit B.

Then the market will realize matches between the m principals and n(B) agents, and assign

a contract to each matched pair. We shall use the following standard definition of a stable

allocation of a matching market:

Definition. An allocation is said to be stable if there does not exist any principal agent

pair who can deviate to a pair-wise feasible allocation which makes at least one of them

better off, and neither worse off.9

Our characterization of stable allocations will make use of the following definitions of po-

lar types of contracts that correspond to allocating all bargaining power to either principals

or agents. 10

Definition. A P-optimal contract for an agent with wealth w is a contract which maxi-

mizes the principal’s payoff ΠP over the feasible set F(w;B). Let the corresponding level of

profit be denoted ΠP (w,B).

An A-optimal contract for agent with wealth w relative to profit target Π̄ for the prin-

cipal is a contract which maximizes the agent’s payoff ΠA over the feasible set F(w;B),

subject to the additional constraint that the concerned principal earns a payoff of at least Π̄.

Proposition 2 In any stable allocation:

(i) If n(B) < m, all principals attain zero profit, and every agent with k ≤ n(B) obtains

an A-optimal contract relative to Π̄ = 0. Agents with k > n(B) are not matched.

(ii) If n(B) ≥ m, all principals attain the same profit Π∗ which lies in the interval

[ΠP (wm+1, B),ΠP (wm, B)]. All agents with k ≤ m obtain an A-optimal contract rel-

ative to Π∗. Agents with k > m are not matched.
9In the previous version of this paper we showed the same characterization obtains if we require both

deviators to be better off.
10A similar characterization is obtained under more general conditions by Dam and Perez-Castrillo (2006).
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Proof. In any stable allocation all principals must earn the same profit. Otherwise some

principals will earn less than others, and the former can undercut the contracts offered by

the latter to the agents they match with (i.e., offer a contract in which both vs and vf are

increased by some common ε > 0, while all other details of the contract are unaffected).

If there are fewer viable agents than principals, then some principals will not be matched,

and there will be principals that earn zero profit. Hence all principals must earn zero profit.

Every agent with k ≤ n(B) must obtain an A-optimal contract relative to zero profits,

otherwise there exists a contract which gives the agent a higher expected utility and breaks

even for the principal. Agents with k > n(B) cannot be matched since they are not viable.

If there are at least as many viable agents as principals, then the number of agents that

will be matched will equal m, the number of principals. The m wealthiest agents must be

matched, otherwise an agent k with wealth higher than the wealth of a matched agent k′

will not be matched. The former can then offer the principal matched with agent k′ the

same contract, which generates the principal a higher profit owing to the higher wealth of

agent k. Hence all agents with k > m will not be matched. Moreover, all agents with k ≤ m

will receive an A-optimal contract relative to Π∗. Finally Π∗ ≤ ΠP (wm, B) since the latter

is the highest possible profit that can be attained by a principal contracting with the agent

with wealth wm. In addition, Π∗ ≥ ΠP (wm+1, B) otherwise any principal would do better

offering a P-optimal contract with the agent m+ 1.

Hence competitive allocations can be described as follows: if principals are on the long

side of the market, they make zero profits. If they are on the short side they make positive

profits. The equilibrium profit equals the P-optimal profit with the marginal matched agent.

All wealthier agents appropriate the entire surplus accruing from their wealth exceeding that

of the marginal matched agent.

Note that the equilibrium profit is indeterminate if the principals are on the short side

and the marginal matched agent has strictly higher wealth than the next wealthier agent

who is excluded. This indeterminacy disappears if they have the same wealth (wm = wm+1).

When instead wm > wm+1, there is some surplus to be split between the marginal agent and

the principal this agent is matched with. The principal’s outside option is to contract with

the agent with wealth wm+1, while the outside option of the agent with wealth wm is autarky.
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We shall adopt the convention from now on that all the surplus will go to the principal in

this case, i.e., the equilibrium profit rate Π∗ equals ΠP (wm, B). All qualitative results of

this paper will remain unaltered if we replace this by an assumption of an exogenously

fixed split of the surplus, as in a Nash bargaining solution. Moreover, the indeterminacy

disappears as the economy becomes large and the distribution over wealth converges to a

continuous distribution over the real line (though we eschew an explicit formulation of a

large economy to keep the exposition simple and avoid purely technical complications).

With this convention, all the bargaining power is allocated to the principal in the match

with the marginal agent. For an intramarginal agent on the other hand it is allocated entirely

to the agent in question.

It is easy to check that we would obtain the same results from a Walrasian equilibrium

of the contract market, where agents and principals take the ‘going profit rate’ as given and

form utility or profit-maximizing demands and supplies of contracts respectively, and the

profit rate is chosen so that the market for contracts clears.

4 Characterization of Stable Allocations

In this section we provide detailed properties of stable allocations, and the way they are

affected by a change in the bonded labor limit. Before proceeding to the details, it will be

helpful to gain some intuition for the contrasting effects associated with a change in the

limit.

The first is the partial equilibrium (PE) or precommitment effect of allowing an en-

largement of the set of feasible allocations, by relaxing the constraint (BL). For a given

equilibrium profit level Π∗, every matched agent who obtains an A-optimal contract rel-

ative to Π∗ can now attain a higher level of expected utility. Moreover, the set of viable

agents expands, by virtue of Proposition 1. So if viable agents are on the short side of the

market, some agents who may have been previously excluded from the market because they

were not viable, may now gain access because of the relaxation of constraint (BL) which

may now allow a feasible contract to exist. The relaxation of (BL) relaxes the limited li-

ability constraint, allowing the agent to now commit to accepting a lower level of utility
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in the failure state. The consequences of a greater bonded labor obligation in the event of

project failure motivates the agent to exercise greater ex ante effort. Principals contracting

with this agent now reduce their losses associated with project failure in two ways: first, by

limiting their loss in the event of failure owing to their ability to compel the agent to work

for them; second, by reducing the likelihood of project failure.

The second effect is the general equilibrium (GE) or profit effect. If principals are on the

short side of the market and earn positive profit Π∗, an increase in the bonded labor limit

B may cause this profit to increase. An increase in B enlarges the set of feasible contracts

with the marginal agent m. For the very same reasons as above, the principal contracting

with the marginal agent is able to earn a higher profit, thus raising the equilibrium profit

rate. This lowers the utility of all intra-marginal agents. The net effect on the latter then

depends on the relative intensity of the PE and GE effects.

The effects on access and profits are unambiguous in contrast, and do not require a

detailed analysis of the nature of the PE and GE effects:

Proposition 3 An increase in the bonded labor limit B to B′ > B is associated with a

(weak) increase in the number of matched agents, and in the equilibrium profit.

The first part follows from the expansion in the set of viable agents as B increases, since

the number of agents matched equals min{m,n(B)} and n(B) is nondecreasing by virtue

of Proposition 1. The second part follows from the fact that the equilibrium profit equals

the P-optimal profit for the marginal agent: the latter must be nondecreasing in B as an

increase in B enlarges the set of feasible contracts in the optimization exercise describing

the P-optimal contract.

Hence principals always benefit (weakly) from relaxing limits on bonded labor. If access

expands, agents that gain access will also be (weakly) better off. These follow from the

PE effects alone. If agents are on the short side of the market both with B and B′, there

is no GE effect, as equilibrium profits are zero both with B and B′, so all intra-marginal

agents must continue to attain the same utility. In that case an increase in B is (weakly)

Pareto-improving.
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4.1 Detailed Characterization: Nondistortionary Bonding

Now consider the case where the bonding limit is high enough to allow at least m agents

to be viable, so all capacity will be fully utilized, and principals can earn positive profits.

To address the question of how a change in B affects agents payoffs, default rates or social

surplus, we need to understand how the trade-off between conflicting PE and GE effects are

resolved. This requires us to first understand detailed characteristics of the stable allocation

at any given limit B with this property; subsequently we can examine the comparative static

effects of raising B. In this sub-section we focus on the simpler case where all bonding is

nondistortionary (B < l∗).

To focus on the nature of the GE effect, consider the P-optimal contract with the

marginal agent with wealth wm. This is a standard exercise in the analysis of profit-

maximizing contracts with moral hazard and limited liability (see, e.g., Aghion and Bolton

(1997), Holmstrom and Tirole (1997) or Mookherjee (1997)). The principal confronts two

constraints: a participation constraint and an incentive constraint. Limits on the agent’s

liability constrains the extent to which incentives can be provided by imposing a strong

punishment in the event of a failure. They need to be provided instead by paying the agent

a reward in the event of success. Consequently, with strong limits on the agent’s liability,

providing the agent with high effort incentives requires paying a large enough ‘carrot’ for

success, which allows the agent to earn an ‘informational rent’ above his autarkic outside op-

tion. This happens to be the case when the marginal agent is poor enough that his autarkic

payoff is low.

The P-optimal contract in this case corresponds to the solution to a relaxed version of the

principal’s profit-maximizing problem, with the agent’s participation constraint dropped.

This relaxed version corresponds to choosing an effort level which maximizes e(s − f) −

eD′(e), since the marginal benefit of raising effort is the output difference s − f between

the success and failure states, while the marginal (expected) cost for the principal is the

increase in the ‘carrot’ (measured by D′(e), the marginal disutility of the agent of higher

effort) weighted by e, the probability of the success state where this carrot is paid. Let ẽ

denote the effort that maximizes e(s− f)− eD′(e).
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The contract that solves the relaxed problem then provides the agent with the minimum

consumption of 0 in the failure state, and a consumption of D′(ẽ) in the success state. This

generates a profit to the principal of wm − I + RB − ẽD′(ẽ), and an expected utility of

ẽD′(ẽ) +S(R)−RB−D(ẽ) to the agent. Since the agent’s autarkic payoff is wm +S(R), it

follows that (PC) is satisfied at this solution if α(ẽ) ≡ ẽD′(ẽ)−D(ẽ) exceeds wm +RB. In

other words, the solution to the relaxed problem is indeed the solution if wm < α(ẽ)−RB.

A small increase in the bonded labor limit (to some B′ ≤ l∗ which also satisfies wm <

α(ẽ) − RB′) in this case allows the principal matched with the marginal agent to earn a

higher profit, as it leaves the optimal effort unchanged at ẽ. Recall from Proposition 1 that in

the case of nondistortionary bonding, it is optimal for the agents to bond themselves to the

limit. Hence a higher limit amounts to a lump-sum transfer from the marginal agent to the

principal. Since the agent’s participation constraint still does not bind (given wm < α(ẽ)−

RB′), a higher transfer still allows this constraint to be be satisfied. Hence the principal

can extract a higher profit at a constant rate R, while all other aspects of the P-optimal

contract are unaffected. And the marginal agent is strictly worse-off, as its informational

rent is reduced.

What about the impact on contracts of intra-marginal agents? Competition between

principals now implies that the equilibrium profit rate must go up, as the principal con-

tracting with the marginal agent is earning a higher profit, and all principals must earn

the same profit. There are then two effects on the welfare of intra-marginal agents. The PE

effect is favorable, as greater bonding allows the agents to commit credibly to higher efforts.

On the other hand, the GE effect is unfavorable. As shown in the Appendix (Lemma 14),

the A-optimal problem can be simplified to selection of effort to maximize the agent’s payoff

f + e(s− f)−D(e) +w− I −Π subject to the constraint of generating enough ‘pledgeable

income’ to meet the profit target for the corresponding principal:

P (e) + w +RB − I ≥ Π (1)

where P (e) denotes f + e(s− f)− eD′(e).

In the A-optimal problem, the entire economic surplus at the margin accrues to the

agent, so the agent’s payoff varies in the same way as the first-best surplus e(s− f)−D(e),
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which is maximized at the first-best effort eF . The range of feasible efforts that the agent

can credibly commit to, is described by the constraint (1). If the first-best effort meets this

target, which would be the case for instance if the agent were sufficiently wealthy, the A-

optimal effort would be eF . If the agent is not so wealthy, the effort will be selected to be the

highest level consistent with (1). In either case note that a small rise in the bonding limit

does not alter the credibility constraint (1), since the left-hand-side rises by exactly the same

amount that the right-hand-side rises (as per the analysis of the P-optimal profit with the

marginal agent). The former represents the PE effect and the latter the GE effect, and they

exactly neutralize each other. Hence the A-optimal effort is left unaffected. Consequently

the effect of a small rise in bonding on intra-marginal agents is the same as for the marginal

agent: akin to a lumpsum transfer to their respective principals.

We summarize this discussion below.

Proposition 4 Suppose agent with wealth wm is viable at B < l∗, and wm < α(ẽ) − RB.

Then the stable allocation is as follows (where ẽ denotes the level of e which maximizes

e(s− f)− eD′(e), and α(e) denotes eD′(e)−D(e):)

The equilibrium profit rate is

Π∗ = wm − I + f + ẽ(s− f)− ẽD′(ẽ) +RB (2)

which increases in B at a constant rate R.

(i) The agent with wealth wm obtains a contract with bonded labor and effort bf (wm) =

B, e(wm) = ẽ independent of B, and receives payoff ΠA(wm) = α(ẽ) − RB which is

strictly decreasing in B at a constant rate R.

(ii) All agents with w > wm receive a contract with bonded labor bf (w) = B and effort

(where ê(w,Π|B) denotes the largest solution for e in equation (1):

e(w) = min{eF , ê(w,Π∗|B)} (3)

independent of B, and payoff ΠA(w) = α(e(w))− RB which also decreases locally in

B at constant rate R.
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Next we turn to the case where the marginal agent is not so poor as to earn an in-

formational rent in the P-optimal contract. Then the PC binds in the P-optimal problem

for the marginal agent, i.e., the agent receives exactly his autarkic payoff. Owing to the

convexity of the P-optimal problem, this will continue to be the case when the bonding

limit is raised. In contrast to the case covered by Proposition 4 above, a small rise in B

will leave the expected utility of the marginal agent unaffected. At the same time, it will

raise the effort of this agent, as greater bonding enables an increase in effort. Specifically,

in this case both the participation and incentive constraints bind simultaneously (unless

the marginal agent is wealthy enough that the first-best effort is optimal). An increase in

bonding leaves the autarkic payoff and hence the participation constraint unaffected, while

lowering the cost of providing incentives. The rise in the extent of bonding allows the limit

on the agent’s liability to be lowered, i.e., the ‘stick’ for failure to be sharpened, so the same

‘carrot’ elicits higher incentives. Accordingly, it pays the principal to raise effort incentives,

while continuing to preserve the participation constraint by compensating the agent exactly

for the costs of additional effort.5 In turn this implies that the profit rate rises, but at a

rate slower than R, owing to the need for the principal to compensate the marginal agent

for higher effort.

How are intra-marginal agents affected? Again we have a contrast between the PE and

GE effects which move in opposite directions. Since the profit rises at a slower rate than

R, the right-hand-side of (1) rises more slowly than the rise in the left-hand-side. Hence

the PE effect on the effort of wealth-constrained agents outweighs the GE effect, and their

effort rises. The effect on their payoff is more difficult to sign, however. It turns out that

in contrast to the effect on effort, the GE effect on agent payoffs outweighs the PE effect.

The reason for this is that the payoff effect of rising B for intra-marginal agents is less

than it is for the marginal agent with wealth wm. In turn this is because: (a) the effort

of intra-marginal agents is closer to the first-best (since they are wealthier and can thus

commit to greater effort), and (b) the increase in effort for these agents is smaller than it is

for the marginal agent, owing to the concavity of the function P (e). It follows from this that

intra-marginal agents must be left worse off as B rises, since the marginal agent’s payoff is

unchanged.
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Finally, in the case where the marginal agent is wealthy enough to achieve the first-best

effort, the same is true for all intra-marginal agents, and a rise in B leaves all contracts

unaffected. We summarize this below.

Proposition 5 Suppose agent with wealth wm is viable at B < l∗, and wm ≥ α(ẽ) − RB.

Then the stable allocation is as follows.

(a) If wm ∈ [α(ẽ)−RB,α(eF )−RB): then

Π∗ = wm − I + f + em(s− f)− emD′(em) +RB (4)

where em solves α(em)−RB = wm and is strictly increasing in B.

(i) The agent with wealth wm obtains a contract with bonded labor bf (wm) = B, effort

e(wm) = em which is less than eF and strictly increasing in B, and receives a

payoff ΠA(wm) = wm + S(R) which is independent of B.

(ii) All agents with w > wm receive a contract with bonded labor bf (w) = B, effort

e(w) as given by (3) above, which is strictly increasing in B if e(w) < eF . The

payoff of this agent is ΠA(w) = α(e(w))−RB, which is strictly decreasing in B.

(b) If wm ≥ α(eF ) − RB: every matched agent attains a contract with first-best effort

eF , the bonded labor limit is not binding for any agent and a rise in B leaves the

equilibrium unaffected.

In summary, a rise in bonded labor limit within the nondistortionary range generally

raises (or leaves unchanged) payoffs of principals and efforts of agents, and lowers (or leaves

unchanged) payoffs of agents. Efforts rise only for those agents that are under-providing ef-

fort. Hence the net result is to raise efficiency (i.e., social surplus), while benefiting principals

and hurting agents.

4.2 Detailed Characterization: Distortionary Bonding

Now we turn to the case where the bonding limit B exceeds l∗. With distortionary bonding,

the analysis becomes considerably more complicated, owing to a fundamental non-convexity
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in the P-optimal and A-optimal contracting problems. As shown in Proposition 1, distor-

tionary bonding arises only in the failure state. The ex ante cost of these distortions equals

(1− e)Q(bf ), where bf > l∗ if bonding is distortionary.11 Expressing the extent of bonding

required to credibly commit to effort e by an agent of wealth w as bf (e, w), the expected

distortionary cost of bonded labor entailed in implementing e for an agent with wealth w

is (1− e)Q(bf (e, w)). This cost is non-convex in e: a rise in e necessitates a higher level of

bonded labor, but at the same time it makes it less likely that the project will fail, i.e., the

bonded labor obligation will have to be discharged. The marginal cost of effort e equals

D′(e)−Q(bf (e, w)) + (1− e)
∂Q(bf (e, w))

∂bf

∂bf (e, w))
∂e

(MCE)

and it is difficult to say how this varies with e or with w. Moreover, first-order conditions

do not suffice to identify solutions to P-optimal or A-optimal contracting problems.

Despite this, we are able to obtain a characterization of stable allocations analogous to

the case of nondistortionary bonding which enables us to evaluate the effects of changing

the bonding limit.

As in the previous sub-section, we start with the analysis of the P-optimal contract in

the case where the marginal agent is poor enough that the participation constraint does

not bind. In this situation, an increase in bonding of the agent in the failure state is always

advantageous for the principal, as it strengthens the agent’s incentives without jeopardizing

the agent’s participation. Hence the marginal agent is bonded at the limit bf = B, resulting

in an expected profit for the principal which can be shown equal to 6

Π = P (e)− (1− e)Q(B) + g(B) + w + S(R)− I. (5)

The optimal effort is then e∗(B) which maximizes P (e) − (1 − e)Q(B). Note that this is

strictly increasing in B. Intuitively, one of the benefits of higher effort is that it reduces the

chances of having to incur the bonded labor obligation B, which arises in the failure state.

The higher the bonding limit, the more pressing this consideration becomes, and the agent is

induced to select higher effort. Note the contrast with the case of nondistortionary bonding,

11In this case the agent oversupplies labor to the principal, and will therefore not supplement it with

additional supply to the spot market. Hence aggregate labor supply equals bf when it exceeds l∗.
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where a local increase in the limit B left all aspects of the contract with the marginal agent

unaffected, including the induced effort.

In this case there will be a GE effect: profits will rise, as verified by applying the Envelope

Theorem to (5). The higher extent of bonding as well as the higher effort ensures that the

marginal agent is worse off.

Evaluating the effect on intra-marginal agents is more complicated, owing to the non-

convexity of the A-optimal problem. In particular it is difficult to identify whether (or

which) agents will be bonded at the limit B, i.e., whether there is a PE effect associated

with a rise in B. While an interval of wealth levels in a right neighborhood of wm can be

shown to be bonded at the limit just like the marginal agent, once wealth rises sufficiently

the distortionary costs of bonding may not be worthwhile for the agent to bond at the

limit (since she can commit anyway to high levels of effort by posting enough wealth as

collateral). The nonconvexity of the costs of bonding however makes it possible that agents

of still higher wealths may again wish to bond at the limit. The pattern of bonding may

be non-monotone in wealth, which makes it difficult to identify when the PE effect does or

does not arise.

Nevertheless the effect on the payoffs of all these agents can be signed, using the following

approach. Partition the set of matched agents into those that are bonding at the limit, and

those that are not. For the latter group, there is no PE effect at the margin as B is raised,

so these agents must be hurt at the margin owing to the adverse GE effect. The former

group are all using the same amount of bonded labor as the marginal agent, so it is possible

to compute their efforts and payoffs, and assess directly how these change as B rises. It

turns out that the intra-marginal agents are also adversely affected, though the reasoning

underlying this is quite involved; the details are available in the Appendix. Not surprisingly,

for this set of agents as well, an increase in B induces an increase in effort.

This discussion is summarized as follows.

Proposition 6 Suppose agent with wm is viable at B > l∗, and wm < γ(B) − S(R),

where e∗(B) denotes the solution to the equation P ′(e∗) + Q(B) = 0, and γ(B) denotes

α(e∗(B))− g(B), a function which is strictly decreasing in B. Then stable allocations have
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the following properties:

The equilibrium profit is

Π∗ = wm − I + P (e∗(B)) + e∗(B)Q(B) +RB (6)

which is strictly increasing in B.

(i) The agent with wealth wm gets a contract with bonded labor bf (wm) = B, effort e∗(B)

both strictly increasing in B, and payoff ΠA = γ(B) strictly decreasing in B.

(ii) There exists ε > 0 such that for all w ∈ [wm, wm + ε), agents with wealth w receive a

contract with bonded labor bf (w) = B, effort e(w) = ê(w,Π∗|B) both strictly increasing

in B (where ê(w,Π|B) denotes the largest solution for e in the equation f +e(s−f)−

eD′(e) = Π + I − w − RB − eQ(B)), and payoff ΠA(w) = α(e(w)) − g(B) which is

strictly decreasing in B.

(iii) Agents with w > wm + ε receive a payoff ΠA(w) which is strictly decreasing in B.

(iv) For w sufficiently large, bf (w) = l∗, e(w) = eF and payoff ΠA(w) = f + eF (s − f) −

D(eF ) + w − I −Π∗.

It remains to consider the case where the marginal agent is not poor enough to earn

informational rents. Here, too, the analysis is quite involved and the details are available in

the Appendix. The structure of the argument used is similar to the previous Proposition,

and the results concerning payoff effects are similar.

Proposition 7 Suppose agent with wm is viable at B > l∗, and wm ≥ γ(B)−S(R). Define

B∗1 by the condition wm = γ(B∗1)−S(R) (so we have B ≥ B∗1 in this case, whilst B < B∗1 in

the case considered in Proposition 6 above). There exists B∗2 ≥ B∗1 such that if B ∈ [B∗1 , B
∗
2),

the stable allocation is as follows.

(i) There exists δ > 0 such that for all w ∈ [wm, wm + δ), an agent gets a contract with

bf (w) = B, effort e(w) = ê(w,Π∗|B) both strictly increasing in B, while equilibrium

profit Π∗ = wm− I+RB+P (e(wm)) + e(wm)Q(B) is strictly increasing in B. For all

agents with wealth w ∈ (wm, wm + δ), utility ΠA is strictly decreasing in B and utility

of agents with wm is constant in B.
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(ii) All agents with w > wm + δ get a payoff ΠA(w) which is strictly decreasing in B.

(iii) For w sufficiently large, bf (w) = l∗, e(w) = eF and payoff ΠA(w) = f + eF (s − f) −

D(eF ) + w − I −Π∗.

Finally, if B > B∗2 then bf (w) < B for all matched agents, and local variations in B

have no effect on the allocation.

5 Welfare Effects of Raising Bonding Limits

While the case with distortionary bonding differs from the non-distortionary case in many

respects, the effects on equilibrium payoffs therefore turn out to be similar: whenever there

is some effect on the allocation, agents are worse off while principals are better off. Again,

with respect to payoffs, the GE effects outweigh the PE effects. The payoff effects can be

summarized simply as follows:

Corollary 1.

(i) Suppose the agent with wealth wm is not viable at bonding limit B. Then the equilib-

rium profit is zero, unaffected by local variations in B, while agent payoffs are locally

nondecreasing in B.

(ii) Suppose the agent with wealth wm is viable at bonding limit B. If an increase in B

has any effect on the equilibrium allocation, it raises equilibrium profits, makes all

principals (strictly) better off, and all agents (weakly) worse off, with some agents

strictly worse off.

In case (i), capacity is underutilized and principals are on the long side of the market.

Profits are zero, and increases in B only have a favorable PE effect, allowing agents at

or near the margin to become viable and thus enter the market. This is the basis of the

conventional intuition concerning a relaxation of limits on contract liability: by enlarging

the set of feasible contracts, they enable a Pareto improvement.
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The picture changes if the principals are on the short side of the market, which requires

the wealth of the marginal agent (i.e., with wealth wm) to be high enough relative to

the bonding limit so as to render this agent viable. In this case, an increase in bonding

allows principals to attain a higher profit, by increasing instruments of control available

to the principal contracting with the marginal agent. This generates a GE effect, which

overwhelms the PE effect for all matched agents. Here the interests of principals and agents

are opposed, while all agents are affected the same way.12

Of course, there is a case where the GE effect disappears, even when the marginal agent

is viable: this is when the marginal agent is wealthy enough that the bonding limit does

not bind even in the P-optimal contract. This can happen if the marginal agent can achieve

the first-best effort by offering enough financial collateral, so labor bonding is unnecessary.

Alternatively, it can happen if the distortionary costs of bonding at the limit B are too

high, that not even the marginal agent operates at the limit. Such cases are uninteresting

as changes in the bonding limit have no effect at all on the equilibrium.

Figure 1 provides a graphical illustration of the payoff implications of changes in laws

regulating bonding. Bonding limits are represented on the horizontal axis, while the vertical

axis plots the common payoff of principals, and the payoff of agents with differing wealths.

The agent with wealth wi becomes viable at bonding limit Bi, i = 1, 2, .., and the agent

with wealth wm becomes viable at limit B∗. The limit B∗ is the threshold for full capacity

utilization. Below this threshold, agents with successively lower wealths can enter and ex-

perience a discrete upward jump in payoffs at the point of entry. Subsequent increases in B

allow their payoffs to increase smoothly as a result of the PE effect, while the GE effect is

inoperative over this range. As soon as the bonding limit is raised above B∗, the GE effect

12This result relies on the assumption of a fixed number of principals, i.e., the absence of any effects of the

profit rate on the number of active principals. Consider an extension of our model where principals incur

heterogenous fixed costs, whence a rise of the profit rate on contracts will invite greater entry of principals.

In this case poorer agents may prefer higher bonding limits, owing to the effect of bonding limits on their

access to contracts. Nevertheless, our main qualitative result below will continue to hold: as the distribution

of w shifts to the right, the ideal policy of every agent will entail a lower bonding limit, while all principals

will continue to prefer higher bonding limits. Hence the majority rule equilibrium policy will entail lower

bonding limits following a rightward shift in the distribution of w.
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Figure 1: Payoff of Agents and Principals as Bonded Labor Limit Varies

starts operating as principals can now earn positive profits owing to full capacity utilization,

and the payoffs of all active agents decline. Hence local increases in B below B∗ are (weakly)

Pareto improving, while those above B∗ result in opposite effects on payoffs of principals

and agents. This payoff pattern obtains irrespective of whether bonding is distortionary or

non-distortionary.

In contrast, the effects on effort and efficiency of greater bonding opportunities do de-

pend on whether it is distortionary. For an agent with wealth w, we can measure efficiency

by the sum of the agent’s equilibrium payoff and the payoff of the principal this agent is

matched with, i.e., the equilibrium profit rate.

Proposition 8 (A) Suppose bonded labor is non-distortionary B < l∗ and agent with

wealth wm is viable at B. Then, in any stable allocation, effort and efficiency of every

matched agent are locally (weakly) increasing in B.
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(B) Suppose bonded labor is distortionary: B > l∗, and agent with wealth wm is viable at

B.

1. The range of wealth levels over which the first best is implementable is strictly

decreasing in B.

2. If g is strictly convex at l∗ and ŵ denotes the smallest wealth level at which

the first best is implementable, there exists a right-neighborhood of ŵ for which

efficiency and effort will decline for all agents in that neighborhood following a

small rise in B.

3. Suppose further that the bonded labor limit B is ‘sufficiently’ distortionary in the

sense that

Q(B) > eFD
′′(eF ) (7)

and the marginal agent is poor in the sense that wm < γ(B)− S(R). Then there

exists ε > 0 such that all agents with w ∈ [wm, wm + ε) receive a contract with

effort e(w) exceeding first-best effort eF and maximal bonded labor in the failure

state (bf (w) = B). For agents in this wealth range, both effort and bonded labor

are strictly increasing in B, implying that efficiency is decreasing in B.

In the non-distortionary case, we saw that an increase in bonding limits cause efforts

to generally increase or remain unchanged. Moreover, in this case effort is always under-

provided if it is not already at the first-best (in which case the rise in bonding limit has no

effect). Hence efficiency always rises or remains unchanged with an increase in nondistor-

tionary bonding. Part (B) of the above Proposition shows this is no longer true if bonding is

distortionary. The adverse GE effect of a higher bonding limits causes some wealthy agents

operating at the first-best to stop doing so, with a reduction in effort and use of distortionary

bonded labor. Efficiency also declines amongst the poorest matched agents. If the marginal

agent is viable but poor enough to earn informational rents, the case covered in Proposition

6 above, we saw that the equilibrium effort of this agent is e∗(B). If bonding at the limit

is sufficiently distortionary (as described by condition (7)), the effort of the marginal agent

exceeds the first-best level. Proposition 6 also established that agents belonging to an entire

interval of wealths constituting a right-neighborhood of wm choose a level of effort higher
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than the marginal agent. Hence there is an interval of (low) wealths which over-provide

effort. An increase in bonding limits causes all these agents to raise efforts even further,

as well as raise the extent of bonding, both of which cause a decline in efficiency. Figure

2 illustrates effort effects of a rise in B, for cases where the effort varies continuously or

discontinuously with wealth.

One respect in which our characterization of the equilibrium is not complete in the

case of distortionary bonding pertains to predictions concerning efforts of agents with an

intermediate level of wealth, i.e., those who are credit-constrained, yet do not belong to

either of the two groups considered in Propositions 6 or 7. These agents are not operating

at the bonded labor limit, and at the same time are utilizing some bonded labor. In the

case considered in Proposition 8, it is clear that equilibrium effort will be non-monotonic

in wealth (as shown in Figure 2): for very poor agents operating at the bonded labor limit,

effort is above the first-best. At the same time for a range of wealths close to those large

enough to permit achievement of the first-best, effort lies below the first-best level. In

between these two ranges, effort must be somewhere decreasing. These non-monotonicities

reflect the underlying non-convexity of the contracting problem with distortionary bonded

labor: the pattern of contracts and corresponding efforts may exhibit discontinuous changes

over this intermediate region. If there exists some range of wealths in the intermediate

region where effort is smoothly decreasing in wealth, an increase in bonding limits serves

to redistribute wealth between the agents concerned and the principals they are matched

with, which will induce their efforts to rise. This will contrast with the effect on agents at

or ‘close’ to the first-best, for whom efforts will decline. Hence it is difficult to predict the

effects on efforts, bonded labor or efficiency for agents with intermediate wealth.

6 Political Economy Implications

The preceding results concerning effects of changes in the bonding limit on equilibrium

payoffs have interesting implications for the political economy of bonding regulations.

Corollary 2. All agents have single-peaked preferences over the bonding limit, with the

peak located at B∗. All principals have single-peaked preferences over the bonding limit,
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Figure 2: Effort Effects Resulting From Higher Bonding Limit B
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located at B∗2 .

The single-peakedness of preferences is evident in Figure 1.13 If agents outnumber prin-

cipals, the bonding limit that will prevail under majority rule will be B∗, under some weak

assumptions about how ties are resolved.14

Now consider how the majority-winning policy B∗ varies with the wealth distribution.

Suppose we compare two societies identical in all respects, except that agents are wealthier

in society R than in society P in the sense of first order dominance. Then the marginal

matched agent in society R will be wealthier than in society P, i.e., society R will have a

lower bonding limit.15 This is illustrated in Figure 3.

This provides an explanation for the process of development to be generally associated

with an evolution towards lower limits on bonding. The process of financial development is

typically associated with greater availability of liquid assets that agents can use as collateral

to precommit to high effort (cf. as described for the United States in the first half of the 19th

century by Coleman (1974)). This represents a shift in the distribution of collateralizable

wealth of borrowers, which the model predicts will give rise to laws restricting bonding

(which was observed in the case of the United States in the 19th century).

A similar line of reasoning is used in Klein and Roberts (1994). They argue that the

13Of course we are excluding the uninteresting case where the marginal agent is wealthy enough to achieve

the first-best at every positive bonding limit, in which case B∗ = 0 and a rise in B has no effect on the

equilibrium.
14Note that we made the extreme assumption that each principal has the capacity to fund one project.

More realistically, principals will be able to fund more than one project, and there will be more agents that

could be potentially active than principals, so B∗ will be the majority-rule-winning policy. Even in the case

of unit capacity per principal, agents k > m will never obtain a contract so will be indifferent between all

bonding limits, while there will be an equal number (m) of matched agents and principals with opposing

preferences. Hence there will be a tie between B∗ and B∗2 . It is reasonable to suppose that agents with

wealth below wm will vote for B∗ e.g., if they vote at a prior stage where they are uncertain about what

their initial wealth will be, they will strictly prefer B∗ over B∗2 . Alternatively, they are more likely to be

altruistic towards other agents rather than principals, so the same result obtains if they resolve ties to favor

agents rather than principals.
15Recall from the definition of B∗ that it is the largest B such that πP (wm, B) = 0. The result follows

from the fact that the P-optimal profit is rising in wealth and in the bonding limit.
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resurgence of ‘pawning’ of family members in French West Africa in the 1930s owed to the

economic misery following the collapse of crop prices, combined with absence of alternative

means of security. As they describe the institution, a ‘pawn was a person transferred from

one kinship group to another as security for a loan...the decision was usually taken by the

household head...In the absence of clear title to land or any other mortgageable possessions,

people became the only possible form of security...The creditor fed and lodged the pawn, who

worked for him until such time as the debt was repaid.’ (Klein and Roberts (1994, p.305))

The incidence of pawning rose sharply in the early 1930s, owing partly to poor harvests,

collapsing peanut prices, and inflexible tax demands of the French colonial administration.

They go on to state that ‘In societies where famine was a regular occurrence, pawning was

a traditional survival mechanism....The problem, however, was in the process of resolving
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itself. Incomes were already rising, and they were to rise even more after World War II....Our

oral sources have suggested that in French West Africa it disappeared quickly after the

war....When disaster struck again in the years after 1968, pawning seems not to have been

a serious option to those in need. By this time, fathers no longer had the same control over

their families, there were relief supplies available, and for most, there were other sources of

credit available.’ (op.cit., p. 316).

Of course, the ceteris paribus assumption underlying our explanation can be questioned:

higher levels of development are associated not just with a rightward shift of the distribution

of wealth or of collateralizable assets. The supply of assets and credit can expand, i.e., m

can increase, which tends to lower wm for a given wealth distribution, and thus raise B∗.

Expansion on the supply-side can moderate the effects of rightward shifts in the distribution

of wealth or of alternative collateral instruments. On the other hand, the political power

of borrowers relative to lenders often grows with increasing democratization, which can

also lead to progressive imposition of limits on bonding. Apart from providing detailed

predictions concerning the effects of changes in different parameters, our model allows for a

multitude of ways that the development process can affect the evolution of restrictions on

bonding.

7 Related Literature

Braverman and Stiglitz (1982) discuss the role of bonded labor in motivating effort incen-

tives and risk-taking, but do not provide a welfare analysis. Srinivasan (1980, 1989) exam-

ines determinants of worker preferences for bonded labor clauses vis-a-vis credit contracts

where default is followed by denial of credit in the future, and their effects on technological

innovation. However, he does not provide a welfare analysis of bonded labor laws.

Our analysis is more closely related to Genicot (2002), who provides an argument for

banning bonded labor used by a monopolistic landlord to preempt competition from a mon-

eylender who cannot employ bonded labor. In her model, banning bonded labor generates

greater competition between the landlord and the moneylender, and thus may increase wel-

fare for poor farmers. This is analogous to our GE effect. However the specific nature of the
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GE effect is quite different. Genicot’s analysis is based on a specific market structure (with

three parties) and an exogenous allocation of bargaining power. The effect on competition

among principals arises in her framework owing to the assumed asymmetry of capacity to

employ bonded labor across different principals: the restriction on bonded labor “levels the

playing field”. In our setting all principals have the same capacity to employ bonded labor,

so the effect of restricting bonded labor does not induce greater symmetry among princi-

pals. Moreover, in our framework the allocation of bargaining power between any matched

principal-agent pair is endogenous. Our GE effect is thus not driven through an ad hoc

asymmetry in contractual instruments and bargaining power.

Genicot and Ray (2006) consider the impact of improving contract enforcement in a

credit market. In their model, the impact of improved enforcement depends crucially on

the allocation of bargaining power. If agents have all the bargaining power a contract corre-

sponding to our A-optimal contract will be employed. Consequently, agents cannot be worse

off. In contrast, if principals have all the bargaining power, a P-optimal contract will be

employed. Then, agents can be worse off due to improved enforcement if their participation

constraint is not binding to begin with. Our analysis departs from theirs in several impor-

tant dimensions. First of all, we endogenize the allocation of bargaining power in a general

equilibrium framework. Furthermore, we are able to derive the political economic implica-

tions of changes in the wealth distributions and show that agents with different wealth are

affected differently from a ban of bonded labor.16 Finally, we show that banning bonded

labor may lead to a reduction in productive efficiency, a result not possible in the Genicot

and Ray (2006) framework.

The contrast between partial equilibrium and general equilibrium effects of imposing

legal restrictions on contracts is also similar to arguments in Basu (2003) and Basu and Van

(1998).17 Basu (2003) investigates the welfare implications of banning sexual harassment

in the workplace. In Basu and Van (1998) a ban of child labor is analyzed. While banning

child labor renders every family worse off in partial equilibrium, these effects might be

overturned by the general equilibrium impact on the wage rate. However, Basu and Van

16In Genicot and Ray (2006) agents have no wealth that can be used as collateral.
17See also the related discussions in Kanbur (2004).
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employ a Walrasian model in which there are multiple equilibria all of which are productively

and Pareto-efficient. Hence the issue of productivity or efficiency implications of child labor

restrictions cannot be addressed in their framework.

Our focus on the political determinants of the law is shared by a number of recent papers

on law and finance. Lilienfeld-Toal and Mookherjee (2008) examine the role of general

equilibrium effects in explaining standard observed features of personal bankruptcy law

(interpreted as a restriction on default liability, combined with a ban on bonded labor).

That paper also employs a model of matching with contracts subject to moral hazard, and

incorporates (in contrast to this paper) a context of variable loan or project size. Pagano

and Volpin (2005) and Biais and Mariotti (2008) use feedback effects from the labor market

to firms profits to understand opposing interests of firms and workers when it comes to

different regulatory regimes. Pagano and Volpin (2005) ask how investor protection and

employment protection are determined in a political process. Biais and Mariotti (2008)

consider the wage rate dynamics due to a change of corporate bankruptcy law.

Our paper also relates to the more broader question of inalienability of human capital

and restrictions to the freedom of contracting. Bond and Newman (2006) rationalize prohi-

bitions on punishments in private contracts by referring to a negative externality. A strong

punishment in a private contract today (for example a privately stipulated stay in prison)

may lead to the inability of the punished party to work tomorrow. This in turn creates a

negative externality w.r.t. tomorrow’s potential trading partner. This externality may then

make it optimal to limit privately stipulated punishments. Anderlini, Felli and Postlewaite

(2009) give a rationale why courts do not always enforce every contractual term. In their

model, a reluctant court can serve as a commitment device to overcome problems due to

informational asymmetries. Andolfatto (2002) sheds light on the question why the law limits

the alienability of human capital. In his model, there are two classes of agents, the patient

and the impatient. The impatient only care about consumption today and and will therefore

enter the contract that maximizes their consumption today - even if this contract will leave

them with minimum consumption tomorrow. The patient agents do not only care about

their own consumption today and tomorrow but also about other agents’ consumption. In

the absence of regulation the impatient agents will end with the minimal consumption to-
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morrow which creates a negative externality to the patient agents. This negative externality

is then the reason why there is political demand for a restriction of private contracts. Our

explanation for banning bonded labor is not based on an externality but on the general

equilibrium implications.

8 Conclusion

To summarize, this paper presents a tractable general equilibrium contracting model in

which changes in bonding regulations give rise to contrasting PE and GE effects. With

regard to payoffs we find that the GE effects overwhelm PE effects, and all agents are

affected the same way by a rise in the bonding limit, which is opposite to the way that all

principals are affected. Increases in the ‘demand side’ of the model — a rise in the number

of agents relative to principals, or a rise in their collateralizable wealths — will cause all

agents to favor a reduction in the legal limit on bonding. If bonding is distortionary, this can

enhance efficiency, as well as reduce inequality between welfares of agents and principals.

In future work, we hope to extend the model of this paper to a dynamic framework,

where debt can be carried forward into the future. This kind of framework may be useful to

understand the impact of varying legal rules concerning lender rights in the event of default,

on savings and the dynamics of the distribution of wealth.
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Notes

1. For a description of bonded labor contracts in different developing countries see U.S.

Department of Labor (2005).

2. Corresponding results for the case of a single monopolist principal who owns all the

land can be derived from analysis of the P-optimal contracts. In this case the general

equilibrium effects will not appear, and the comparative statics with respect to liability

rules will be quite different.

3. The assumption on convexity of marginal disutility of effort simplifies the analysis

considerably, as it implies that the cost of providing the agent with appropriate effort

incentives (i.e., inclusive of the incentive rents) is convex.

4. Note that we are assuming that the contract is not defaulted upon, or renegotiated

ex post. The previous version of this paper showed that the analysis extends straight-

forwardly if we allow such renegotiation. Moreover, if default is possible but subject

to penalties imposed by third-party enforcers, similar results apply to the effects of

varying legal limits on such penalties. See the earlier version of this paper for an ex-

tended discussion of the relation between limits on contractual liability and default

penalties repectively. We focus on contract liability since this is the common-sense

interpretation of bonded labor: i.e., bans on bonded labor are usually taken to mean

restriction on contracts, rather than rule out imprisonment as a penalty for breach of

contract.

5. As the proof shows, this is the case where the agent is being offered the ‘kink’ contract

characterized by the effort where both incentive and participation constraints are

binding. This effort level at the kink contract rises as the incentive cost function

drops, and the cost of ensuring the agent’s participation is unchanged.

6. Ignoring the PC constraint, the minimum expected cost C(e, w;B) to the principal

of implementing effort e is obtained by selecting bf and vf to minimize vf + eD′(e) +

(1−e)Q(bf ) subject to vf ≥ −g(bf ), l∗ ≤ bf ≤ B. As a result, the principal maximizes

Π = f + e(s − f) + g(bf ) − eD′(e) − (1 − e)Q(bf ) + w + S(R) − I by choice of e, bf .
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Hence Π = P (e)+S(R)+g(bf )−(1−e)Q(bf )+w−I = P (e)+R ·bf +e ·Q(bf )+w−I

is increasing in bf at any e, so it is optimal to set bf = B, and the principal’s profit

reduces to (5).
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Appendix: Proofs

Proof of Proposition 1: To prove (a), note that an increase in w or B enlarges the set of allocations

satisfying constraints (FT),(BL),(EAIC), (EPIC), (PCA) and (PCP ). For an increase in B this is

obvious: only constraint (BL) is affected and this is relaxed. With an increase in w, a corresponding

increase in vs and vf preserves all the constraints apart from (PCP ), and relaxes (PCP ).

To prove (b), suppose instead bi < min{B, l∗}. Then it is feasible to raise bi to l∗ without

creating any deadweight loss. Supplementary labor supply lsi then falls to 0, while li is unchanged

at l∗. So constraint (FT) is relaxed, and all others are preserved.

For the first part of (c), note first that every feasible allocation requires e > 0. Otherwise if e = 0,

and the principal’s payoff is w+S(R)−I+f−vf −Q(lf ), while the agent’s payoff is vf . Now (PCA)

implies vf ≥ w + S(R), so the principal’s payoff is bounded above by f − I − Q(lf ) ≤ f − I < 0,

and (PCP ) must be violated.

Next, note that (FL) cannot bind in both states in any pairwise PE allocation. Otherwise in

both states vi = Rlsi − g(li) ≤ Rli − g(li) ≤ S(R), so ΠA = evs + (1− e)vf −D(e) < S(R) as e > 0,

and (PCA) must be violated. Hence (FL) can bind in at most one state.

We claim this must be state i = f . Otherwise vs = Rlss − g(ls) ≤ Rls − g(ls) ≤ S(R), and e > 0

implies via (EAIC) that vf < vs ≤ S(R), so (PCA) must be violated.

Finally, the second part of (c) follows from the fact that if bf > l∗ and tf < w − IA + f , it is

possible to lower bf slightly, and raise tf so as to leave vf = w − IA + f − tf − g(bf ) unchanged.

This contract is feasible, generates the same expected payoff for the agent, but raises the principal’s

expected payoff ΠP = w+ S(R)− I + es+ (1− e)f − vf − eD′(e)− (1− e)Q(bf ) since Q is strictly

increasing at any bf > l∗. This completes the proof of Proposition 1.

The Proof of Propositions 4 – 7 rely on the following set of Lemmas.

Lemma 9 Suppose B > l∗. The P-optimal contract for an agent of wealth w with bonded labor limit
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B involves selecting effort e to maximize Π ≡ f + e(s− f)− C(e, w;B) + w + S(R)− I where

C(e, w;B) =


eD′(e)− g(B) + (1− e)Q(B), if w < α(e)− S(R)− g(B);

w + S(R) +D(e), if w > α(e)− S(R)− g(l∗);

w + S(R) +D(e) + (1− e)Q(g−1(α(e)− w − S(R))), otherwise.

(8)

and α(e) ≡ eD′(e)−D(e).

Proof. Part (b) of Proposition 1 implies lf ≥ min{l∗, B} = l∗, since B > l∗. Hence lsf = 0,

and the minimum expected cost C(e, w;B) to the principal of implementing effort e is obtained

by selecting lf and vf to minimize vf + eD′(e) + (1 − e)Q(lf ) subject to vf ≥ −g(lf ), l∗ ≤ lf ≤
B, vf +eD′(e)−D(e) ≥ w+S(R). It is obvious that in the solution vf = max{−g(lf ), w+S(R)−α(e)}.
Then the problem is to select lf ∈ [l∗, B] to minimize the maximum of two functions γ(lf ) ≡
(1−e)[S(R)−Rlf ]−eg(lf ) and δ(lf ) ≡ w+S(R)−α(e)+(1−e)Q(lf ). Note that γ is decreasing and δ

is increasing. Also δ(lf ) > γ(lf ) if and only if w+S(R)−α(e) > (1−e)[S(R)−Rlf ]−eg(lf )−−g(lf ).

Hence the optimal solution entails selecting lf according to

lPf (e, w;B) =


B, if w < α(e)− S(R)− g(B);

l∗, if w > α(e)− S(R)− g(l∗);

g−1(α(e)− w − S(R))), otherwise.

(9)

From this we obtain expression (8) for the expected cost of implementing e.

Lemma 10 Suppose B ≤ l∗. The P-optimal contract for an agent of wealth w with bonded labor

limit B involves selecting effort e to maximize Π ≡ f + e(s− f)−C(e, w;B) +w + S(R)− I where

C(e, w;B) = max{w + S(R) +D(e), eD′(e) + S(R)−RB} (10)

Proof. B ≤ l∗ implies lf = l∗ and lsf = l∗ − bf . Now effort e will be implemented at minimum

cost to P by selecting vf , bf to minimize vf + eD′(e) subject to vf ≥ R[l∗ − bf ] − g(l∗) = S(R) −
Rbf , bf ∈ [0, B], vf + α(e) ≥ w + S(R). Clearly the optimal solution involves bf = B and so

vf = max{S(R)−RB,w + S(R)− α(e)}, from which (10) follows.

Lemma 11 The A-optimal contract relative to Π for an agent of wealth w with bonded labor limit

B involves selecting effort e to maximize U ≡ f+e(s−f)−D(e)−(1−e)Q(lf (e, w,Π, B))+[S(R)+

w − I −Π] subject to e ∈ [e1(w,Π, B), e2(w,Π, B)], an interval corresponding to the inequality

f + e(s− f) + w − I − eD′(e)−Π ≥ −RB − eQ(B). (EFF )

where the function lf (e, w,Π, B) is defined below in (13).
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Proof. The problem is to find vf , e, bf to maximize vf + α(e) subject to bf ∈ [0, B] and

S(R) + f + e(s− f)− eD′(e) + w − I −Π− (1− e)Q(lf ) ≥ vf ≥ Rlsf − g(lf ) (FEA)

where lsf = max{l∗ − bf , 0} and lf = max{l∗, bf}. Clearly e is implementable if and only if there

exists vf , bf ∈ [0, B] such that

S(R) + f + e(s− f)− eD′(e) + w − I −Π ≥ (1− e)Q(lf ) +Rlsf − g(lf ). (FEA′)

Note that

Rlsf − g(lf ) + (1− e)Q(lf ) = Rmax{l∗ − bf , 0} − g(lf ) + (1− e)[Rl∗ − g(l∗)−Rlf + g(lf )] (11)

is decreasing in bf , since the first term on the RHS is non-increasing in bf , and the derivative of the

RHS with respect to lf is −(1− e)R− eg′(lf ) < 0, and lf ≡ max{l∗, bf} in turn is non-decreasing in

bf . Hence a necessary and sufficient condition for e to be implementable is that (FEA’) is satisfied

at bf = B, i.e., that

S(R)+f+e(s−f)−eD′(e)+w−I−Π ≥ (1−e)Q(max{l∗, B})+Rmax{l∗−B, 0}−g(max{l∗, B}).
(12)

In the case where B > l∗, the RHS of (12) reduces to (1−e)Q(B)−g(B) = −eg(B)+(1−e)[S(R)−
RB], so e is implementable if and only if (recall P (e) denotes f + e(s− f)− eD′(e)):

w − I −Π− P (e) ≥ −eS(R)− (1− e)RB − eg(B) = −eQ(B)−RB

which is condition (EFF). On the other hand, if B ≤ l∗ the RHS of (12) reduces to r[l∗−B]−g(l∗) =

S(R)−RB, so in this case also we obtain the condition (EFF).

The set of implementable efforts forms an interval because the left hand side of (12) is concave

in e, while the right hand side is linear in e. Let this interval be denoted [e1(w,Π, B), e2(w,Π, B)].

Note that e is not implementable if and only if

w − I −Π + P (e) < −RB − eQ(B)

or

w < w1(Π, e, B) ≡ I + Π− P (e)−RB − eQ(B).

In the case where B ≤ l∗, we have Q(lf ) = Q(l∗) = 0. Hence vf = S(R) +P (e) +w− I −Π and

the A-optimal contract reduces to maximizing vf + α(e) = f + e(s− f)−D(e) +w− I + S(R)−Π

subject to e ∈ [e1(w,Π, B), e2(w,Π, B)].
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Now consider the case B > l∗. Given an implementable e, the smallest lf ∈ [l∗, B] will be selected

to implement it, since the LHS of (FEA) is decreasing in lf and it is optimal to set vf equal to the

LHS of (FEA). This is given by

lf (e, w,Π, B) =

 l∗, if w ≥ w2(Π, e);

l(e, w,Π), if w ∈ (w1(Π, e, B), w2(Π, e));
(13)

where l(e, w,Π) solves for l in the equation

w − I −Π + P (e) = −Rl − eQ(l) (BLE)

and w2(Π, e) ≡ I + Π− P (e)−Rl∗.

Moreover, vf will be set equal to S(R)+f+e(s−f)+w−I−eD′(e)−(1−e)Q(lf (e, w,Π, B))−Π.

Therefore the objective function reduces to expression U .

Lemma 12 Suppose B > l∗. The A-optimal contract relative to Π for an agent with wealth w has

the following properties.

(a) If e is implementable (i.e., w > w1(Π, e, B)), its implementation necessitates distortionary

bonded labor (lf (e, w,B) > l∗) if and only if w < w2(Π, e).

(b) If w > w2(Π, eF ) then the A-optimal contract relative to Π achieves the first-best utility UF ≡
f + eF (s− f)−D(eF ) + w − I −Π + S(R) , i.e., sets e = eF and l = l∗.

(c) If w < w2(Π, eF ) then the first-best is not implementable.

Proof. (a) is obvious. For (b) note that if w > w2(Π, eF ) then l(ef , w,Π) = l∗, and it is feasible

to achieve first-best utility with e = eF and l = l∗. For (c) then l > l∗ is needed to implement eF ,

so the first-best utility is not achievable.

Lemma 13 Suppose B ≤ l∗. Then the P-optimal profit of a principal contracting with an agent

with wealth w equals

πP (w,B) = w − I −max
e
{eD′(e) + S(R)−RB,w + S(R) +D(e)} (POP )

and optimal effort is given as follows:

(a) If w < α(ẽ)−RB then e = ẽ.

(b) If w ∈ (α(ẽ)−RB,α(eF )−RB) then e = e(w), the solution for e in α(e)−RB = w.
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(c) If w > α(eF )−RB then e = eF .

The agent’s expected utility in case (a) equals α(ẽ) − RB + S(R) which strictly exceeds w + S(R).

In cases (b) and (c) the expected utility equals w + S(R).

Proof. In the case where B ≤ l∗, we have Q(l) = 0 for every l ≤ B. Therefore expression (8)

for the expected cost to the principal of implementing e reduces to max{eD′(e) + S(R)− RB,w +

D(e) + S(R)}. This is a convex function, the upper envelope of the functions eD′(e) + S(R)− RB
and w + D(e) + S(R) corresponding to the (BL) and (PCA) constraints respectively. Now ẽ is the

maximizer of e(s − f) − eD′(e), while eF is the maximizer of e(s − f) − D(e). It follows that ẽ is

the P-optimal effort if ẽD′(ẽ) − RB > w + D(ẽ) + S(R), whence only the (BL) constraint binds.

This corresponds to case (a). On the other hand eF is the P-optimal effort if eFD
′(eF ) − RB <

w+S(R)+D(eF ), whence only the (PCA) constraint binds (case (c)). In case (b), the optimal effort

lies at the kink point where the two functions are equal, and both constraints bind.

Lemma 14 Suppose B ≤ l∗. Then the A-optimal problem (for a viable agent with wealth w) relative

to profit Π reduces to selecting e to maximize f+e(s−f)−D(e)+w−I−Π subject to the constraint

P (e) + w +RB − I −Π ≥ 0 (AOP )

and the optimal effort is described as follows:

eA(w; Π, B) = min{eF , ê(w,Π|B)} (AOPE)

where ê(w,Π|B) denotes the largest solution for e in the equation P (e) = Π + I − w −RB.

Proof. The first part follows from applying Lemma 11 to the case where B ≤ l∗. For the second

part, note that if an agent is viable, there will exist at least one level of e at which (AOP) is satisfied.

Since ẽ is the level of e where P (e) is maximized, it will be satisfied at ẽ. Since P is concave, the set

of implementable efforts will be an interval. If eF is implementable then the unconstrained optimum

which is achieved at eF , is implementable. This happens when P (eF ) +w+RB − I −Π ≥ 0. If this

condition does not hold we have P (eF ) + w + RB − I − Π < 0. Recall that eF is the maximizer

of e(s − f) − D(e), so P (.) is strictly decreasing at eF . Hence the set of implementable efforts is

bounded above by eF , implying that the A-optimal effort is the highest e which is implementable,

i.e., must equal ê(w,Π|B).
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Proof of Propositions 4 and 5: Proposition 4 follows from the derivation of the P-optimal

contract as derived in Lemma 13. Proposition 5 follows from the derivation of the A-optimal contract

in Lemma 14. Note that e(w) is constant in B since Π∗B = R and hence the RHS of f + e(s− f)−
eD′(e) = Π∗ + I − w −RB) is unaffected by a change in B.

Proof of Proposition 6

Part (i): Consider the P-optimal contract for the agent with wealth wm.

Ignoring the PC constraint, the minimum expected cost C(e, w;B) to the principal of imple-

menting effort e is obtained by selecting bf and vf to minimize vf + eD′(e) + (1− e)Q(bf ) subject to

vf ≥ −g(bf ), l∗ ≤ bf ≤ B. As a result, the principal maximizes Π = f + e(s− f) + g(bf )− eD′(e)−
(1−e)Q(bf )+w+S(R)−I by choice of e, bf . Since Π = P (e)+S(R)+g(bf )−(1−e)Q(bf )+w−I =

P (e) +R · bf + e ·Q(bf ) + w − I is increasing in bf at any e it is optimal to set bf = B. Hence, the

P-optimal problem which ignores the PC constraint for an agent with wm is equivalent to:

maxeP (e)− (1− e)Q(B) + g(B). (14)

This is solved at e∗. The PC constraint is satisfied at e∗ because α(e∗) − g(B) ≥ wm + S(R) by

assumption. Hence, this is the P-optimal contract and

Π∗ = P (e∗) + e∗ ·Q(B) + wm +R ·B − I.

Optimal effort e∗ is increasing in B since e∗ solves P ′(e) +Q(B) = 0, Q(B) increases in B and

P ′(e) is decreasing in e at e∗. The profit effect is Π∗B = e∗ · Q′(B) + R > 0 due to the Envelope

Theorem.

Using γ(B) to denote the marginal agent’s payoff,

γ(B) = f + e∗(s− f)−D(e∗)− (1− e∗)Q(B) + S(R) + w − I −Π∗(B)

= f + e∗(s− f)−D(e∗)− (1− e∗) ·Q(B) + S(R) + wm − I

−P (e∗)− e∗Q(B)− wm −RB + I (using equation (6))

= α(e∗)−Q(B) + S(R)−R ·B = α(e∗)− g(B)

The marginal agent’s payoff decreases in B since (upon using e∗B(B) to denote ∂e∗(B)/∂B):

γ′(B) = α′(e∗(B)) · e∗B(B)− g′(B) = e∗(B) ·D′′(e∗) · e∗B(B)− g′(B).

From

P ′(e∗) +Q(B) = 0

⇔ s− f +Q(B) = e∗ ·D′′(e∗) +D′(e∗) (15)
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we get Q′(B) = [e∗D′′′(e∗) + 2 ·D′′(e∗)] · e∗B ≥ 2D′′(e∗) · e∗B .

From this it follows that D′′(e∗) · e∗B ≤
Q′(B)

2 < Q′(B) and hence

γ′(B) < e∗ ·Q′(B)− g′(B) < Q′(B)− g′(B) = −R < 0.

(ii): Suppose to the contrary that every w in a right neighborhood of wm chooses bf (w) < B.

Then, Lemma 11 implies that for every such w it is true that e(w) < e2(w,Π∗, B), i.e.:

s− f −D′(e(w)) +Q(lf (e(w), w,Π∗, B))− (1− e(w)) ·Q′(lf (e(w), w,Π∗, B)) · ∂lf
∂e
≤ 0.

The A-optimal problem relative to Π∗ satisfies the conditions for the Maximum Theorem, hence the

optimal solution is u.s.c. in w. Taking limits as w → wm, we must have e(w) → e∗ and lf → B

implying

s− f −D′(e∗) +Q(B) ≤ 0 (16)

since ∂lf (e∗,w,Π∗,B)
∂e = −P ′(e∗)+Q(B)

e∗·Q′(B)+R = 0. This contradicts (15) since s − f + Q(B) − D′(e∗) =

e∗D′′(e∗) > 0.

We now show that the A-optimal payoff of any agent ΠA(w) with wealth w who is bonding at

the limit (bf (w) = B) equals α(e(w)) − g(B). For any such agent, the induced effort is the largest

solution to

P (e) + eQ(B)− I + w +RB = Π∗(B). (17)

Hence

ΠA = f + e(w) · (s− f)−D(e(w))− (1− e(w)) ·Q(B) + S(R) + w − I −Π∗(B) (18)

Using equation (17),

ΠA = f + e(w) · (s− f)−D(e(w))− (1− e(w)) ·Q(B) + S(R) + w

−P (e(w))− e(w) ·Q(B)− w + I −R ·B

= α(e(w))− g(B).

We claim that this payoff is decreasing in B. Differentiating with respect to B, we obtain

∂ΠA

∂B
= α′(e(w)) · eB(w)− g′(B) = e ·D′′(e) · eB − g′(B) (19)

where e = e(w) and eB = ∂ê(w,Π∗|B)
∂B . Using (17) and differentiating w.r.t. B, we obtain

[P ′(e) +Q] · eB + e ·Q′(B) +R = Π∗B (20)
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where Q = Q(B) and Q′ = Q′(B). Using (6) we get

Π∗B = e∗Q′(B) +R (21)

and hence (20) implies

eB =
(e− e∗)Q′

−(P ′ +Q)
. (22)

Thus
∂ΠA

∂B
=
eD′′(e)(e− e∗)
−(P ′ +Q)

Q′ − g′. (23)

Now define the function F (e) ≡ −[P ′(e)+Q(B)]
eD′′(e) and note that F (e∗(B)) = 0 and F (e) > 0 for any

e > e∗(B). Moreover we have at any e > e∗(B)

F ′(e) =
eD′′[eD′′′ + 2D′′]− [eD′′ +D′ − (s− f +Q)][eD′′′ +D′′]

(eD′′)2
> 1 (24)

since by hypothesis bf = B, implying

s− f +Q−D′ ≥ (1− e) ·Q′ · ∂lf
∂e

∣∣∣∣
lf =B

(25)

= (1− e) ·Q′ · −[P ′ +Q]
R+ eQ′

> 0. (26)

From (23), we obtain
∂ΠA

∂B
=

(e− e∗)
F (e)

Q′(B)− g′(B). (27)

Now e−e∗

F (e) = e−e∗

F (e)−F (e∗) < 1 since F (e∗) = 0 and F ′(e) > 1 for every e > e∗. Hence

∂ΠA

∂B
< Q′(B)− g′(B) = −R < 0, (28)

i.e., the payoff of agents bonding at the limit B is strictly decreasing in B.

(iii): For agents using bf (w) = B, the argument follows from (ii) above. For other agents, the

constraint (EFF) does not bind and only the GE effect operates, so ∂ΠA

∂B = −Π∗B < 0.

(iv): follows from Lemma 12. This completes the proof of Proposition 6.

Proof of Proposition 7: Define B∗2 as the largest B for which lf (wm) = B (and B∗1 ≤ B∗2 by

construction).

(i): In this case the contract described in part (a) for wm violates the PC constraint for wm.

Hence, the PC constraint is binding in the P-optimal contract with wm and the wm agent is offered

the ’kink’ contract where

em ·D′(em) + (1− e) ·Q(B)− g(B) = w + S(R) +D(em) + (1− em) ·Q(B)

⇔ α(em)− g(B) = w + S(R) (29)
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Hence,

Π∗ = f + em(s− f)− emD
′(em)− (1− em)Q(B) + g(B) + wm + S(R)− I

= P (em) + emQ(B) +RB + wm − I (30)

and it must be the case that em > e∗ or −(P ′(em) +Q) > −(P ′(e∗) +Q) = 0. From equation (29)

we have

emD
′′(em)emB = g′

⇔ emB =
g′

emD′′(em)
> 0 (31)

Differentiating equation (30) we get

Π∗B = [P ′(em) +Q] · emB + emQ
′ +R (32)

Furthermore, Π∗B > 0 follows from the fact that the ’kink’ contract is offered. Existence of δ > 0

again follows similar to the argument used in part a) ii) above. Moreover, eB > 0 since g′ > 0, α′ > 0

and e(w) is determined in equation (29).

The utility of any such agent bonding at the limit is

ΠA = α(e(w))− g(B) (33)

for a similar reason as provided for part ((ii)) of Proposition 6. All agents with w = wm obtain their

reservation utility which is locally independent of B.

It remains to show that ∂ΠA

∂B < 0 for w ∈ (wm, wm + δ). Since P (e) + eQ(B) +w− I +RB = Π∗

and hence

−[P ′(e) +Q]eB − eQ′ −R = −Π∗B

= −[P ′(em) +Q]emB − (emQ
′ +R) due to equation (32)

= − [P ′(em) +Q] · g′

emD′′(em)
− emQ

′ −R due to equation (31)

Hence,

eB =
(e− em) ·Q′ − [P ′(em) +Q] · g′

emD′′(em)

−[P ′(e) +Q]
(34)

Since bf (w) = B for all w in this interval, and w > wm, we have e > em and P ′ + Q < 0. Hence

eB > 0 for this interval of wealth levels. As a result

∂ΠA

∂B
= e ·D′′(e) · eB − g′

=
e ·D′′(e)
−[P ′(e) +Q]

{
(e− em)Q′ −

[
P ′(em) +Q

emD′′(em)
− P ′(e) +Q

eD′′

]
· g′
}

(35)

=
1

F (e)
[(e− em)Q′ − {F (e)− F (em)}g′] (36)

48



Since Q′ < g′ and F (e)− F (em) > e− em for any e > em ≥ e∗(B), equation (35) implies ∂ΠA

∂B < 0.

Hence agents of wealth w ∈ [wm, wm + δ) are strictly worse off.

(ii): Agents using bf (w) = B are worse off since ∂ΠA

∂B < 0 as shown in part (ii) of Proposition 6.

For other agents there is no PE effect, only an adverse GE effect: ∂ΠA

∂B = −Π∗B < 0.

(iii): This follows from Lemma 12.

For B > B∗2 , the (EFF) constraint does not bind for wm and hence Π∗B = 0. We now show that

it is not possible that bf (w) = B over any interval (w′, w′′) with w′′ > w′ > wm. Over such an

interval, eB = eQ′

−(P ′(e)+Q) . Hence,

∂ΠA

∂B
=

eD′′ · eQ′

−(P ′(e) +Q)
− g′ =

e

F (e)
Q′ − g′ =

eQ′ − F (e)g′

F (e)
(37)

Over any such interval, e is rising in w. Since bf (w) = B and e > e∗(B), we have F ′(e) > 1. So the

numerator of (37) is non-increasing in w, while the denominator is strictly increasing. Moreover, in

this case, ∂ΠA

∂B must be nonnegative, since there is only a PE effect which is always favorable. Since

e will be strictly increasing in w over (w′, w′′), it follows that ∂ΠA

∂B is strictly decreasing in w over

this interval.

Now, by hypothesis, bf (w) = B for all w ∈ (w′, w′′), and bf < B for all w in a left neighborhood

of w′ and all w in a right neighborhood of w′′. Then ∂ΠA

∂B (w′) = ∂ΠA

∂B (w′′) = 0 for all w in a left

neighborhood of w′ and all w in a right neighborhood of w′′. The argument above shows that ∂ΠA

∂B (w)

is positive and strictly decreasing in w over (w′, w′′). This implies that the A-optimal payoff must

exhibit a discontinuity at either w′ or w′′, contradicting the property that the A-optimal contracting

problem varies continuously with B. This completes the proof of Propsition 7.

Proof of Proposition 8:

Part (A): This follows from the characterization results in Propositions 4 and 5.

Part (B):

1. From Lemma 12 we know that the first best is implementable if and only if w ≥ w2(Π∗, eF ) =

I + Π∗ − P (eF )−R · l∗ and ∂w2
∂B = −Π∗B .

2. Part 1. above ensures that the threshold for first-best implementation is locally increasing in

B. It therefore suffices to show that A-optimal effort for agents with wealth in a left neighborhood

of the threshold ŵ ≡ w2(Π∗, eF ) for first-best implementation is less than the first-best effort eF to

show the decrease in effort.

Recall from Lemma 11 that the A-optimal effort e(w) for an agent with wealth w satisfies the
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first-order condition

s− f −D′(e(w)) +Q(lf (e(w), w))− (1− e)Q′(lf (e(w), w))
∂lf (e(w), w)

∂e
≥ 0 (38)

with equality if e(w) is in the interior of the implementable interval. As w converges to ŵ from

the left, we know that e(w) is converging to eF , and lf is converging to l∗ from the right. Hence

Q(lf (e(w), w)) and Q′(lf (e(w), w)) are converging to 0, while ∂lf (e(w),w)
∂e is converging to −P ′(eF )

R

which is positive and bounded. Hence [Q(lf (e(w), w))−(1−e)Q′(lf (e(w), w))∂lf (e(w),w)
∂e ] is converging

to 0. Moreover it must be converging to 0 from the left, as

lim
lf→l∗+

Q′(lf )
Q(lf )

= lim
lf→l∗+

Q′′(lf )
Q′(lf )

= lim
lf→l∗+

g′′(lf )
−R+ g′(lf )

=∞. (39)

Hence (38) ensures that s− f −D′(e(w)) is converging to 0 from the right.

At B the first-best threshold is ŵ. If B goes up slightly to B′, the threshold ŵ goes up, say to w̃.

Then over the interval (ŵ, w̃) effort is less than the first-best as shown above. Now, owing to Lemma

12, the agent selects bf (w) > l∗ over this interval. Previously they were at l∗. So efficiency falls over

this interval.

3. We know that wm receives a contract involving e∗(B) which solves s− f −D′(e)− eD′′(e) +

Q(B) = 0. Hence, if −eFD
′′(eF ) + Q(B) > 0 it follows that e∗(B) > eF . The rest of the state-

ment follows directly applying the results presented in Proposition 6. This completes the proof of

Proposition 8.
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