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1 Introduction

This material includes some arguments which supplement our paper ‘Ex Ante
Collusion and Design of Supervisory Institutions’. Some proofs, which are
omitted in the paper, are also provided in this note.

2 Justification for EACP Allocations

In this section, we provide a justification for focusing attention on EACP
allocations. We use the notion of Perfect Bayesian Equilibrium (PBE) of the
subgame (C3) that follows any choice of a grand contract by P.2 As there are
typically multiple PBEs of the continuation game following any given GC
offer, we need to specify how these might be selected.

If the mechanism design problem is stated as selection of an allocation
by the Principal subject to the constraint that it can be achieved as the out-
come of some PBE following a choice of a grand contract, it is presumed that
the Principal is free to select continuation beliefs and strategies for nonco-
operative play of the grand contract following off-equilibrium path rejections
of offered side contracts by S to A. It can be shown that in such a setting
the problem of collusion can be completely overcome by the Principal, with
appropriate selection of off-equilibrium-path continuations.

A heuristic description of how the second-best payoff can be achieved by
the Principal as a PBE is as follows. P selects a grand contract and recom-
mends a noncooperative equilibrium of this contract in which (i) conditional
on participation by S, noncooperative play results in the second-best allo-
cation; (ii) S is paid nothing; and (iii) if S does not participate, P offers A
a ‘gilded’ contract providing the latter a high payoff in all states. On the
equilibrium path S always offers a null side contract. If A rejects any offer
of a non-null side-contract, they mutually believe that subsequently S will
not participate in the grand contract, and A will receive the gilded contract.
This forms a PBE as rejection of any non-null side contract is sequentially
rational for A given A’s belief that S will exit following any rejection. And
exit is sequentially rational for S given his belief that A will reject the side
contract and they will subsequently play the grand contract noncooperatively
where S will be paid nothing. More formally this is shown in the following
statement.

2For definition of PBE, see Fudenberg and Tirole (1991).
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Proposition 1 The second-best allocation can be achieved as the outcome
of a PBE of the collusion game.

Proof of Proposition 1: For second best allocation (uSBA , uSBS , qSB), let us
construct the following grand contract which is a revelation mechanism sat-
isfying

(XA(mA,mS), XS(mA,mS), q(mS,mA);MS,MA)

where MS = Π ∪ {eS} and MA = Θ ∪ {eA}.

(i) XS(mA,mS) = 0 for any (mA,mS).

(ii) q(θ, η) = qSB(θ, η) and XA(θ, η) = θqSB(θ, η) +uSBA (θ, η), if (mA,mS) =
(θ, η) ∈ K, otherwise both are set equal to zero.

(iii) XA(eA,mS) = q(eA,mS) = 0 for any mS.

(iv) (XA(θ, eS), q(θ, eS)) = (X̂A(θ), q̂(θ)), which satisfies the following prop-
erties: (a) X̂A(θ) − θq̂(θ) ≥ X̂A(θ

′
) − θq̂(θ

′
) for any θ, θ

′ ∈ Θ, (b)
X̂A(θ)− θq̂(θ) ≥ 0 for any θ ∈ Θ and (c) there exists θ

′ ∈ Θ such that
q̂(θ

′
) = q(θ, η) and X̂A(θ

′
) > XA(θ, η) for any (θ, η) ∈ Θ× Π.3

For this grand contract, we will check that the second best allocation is
achieved in PBE of collusion game. In Bayesian game induced by this grand
contract, both (mA(θ, η),mS(η)) = (θ, η) and (mA(θ, η),mS(η)) = (θ, eS) are
non-cooperative equilibria, regardless of S’s belief about θ. Let our focus be
provided to PBE such that (mA(θ, η),mS(η)) = (θ, η) is realized in the event
that a side-contract (SC) is not offered by S, while that (mA(θ, η),mS(η)) =
(θ, eS) is realized in the event that SC is offered by S and is rejected by A.
In the latter case, A earns X̂A(θ)− θq̂(θ). In order to check that S does not
benefit from offering a non-null side-contract, let us consider the following
problem:

maxE[XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η) | η]

subject to m̃(θ, η) ∈ ∆(MA ×MS),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ
′
, η))

3For instance, we can choose (X̂A(θ), q̂(θ)) such that (i) q̂(θ) is continuous and strictly
decreasing in θ with q̂(θ) = max(θ,η)∈Θ×Π q(θ, η) and q̂(θ̄) = min(θ,η)∈Θ×Π q(θ, η), and (ii)

X̂A(θ) = θq̂(θ) +
∫ θ̄
θ
q̂(y)dy +R for sufficiently large R > 0
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for any θ, θ
′ ∈ Θ(η) and

ũA(θ, η) ≥ X̂A(θ)− θq̂(θ)

for any (θ, η). By the construction of (X̂A(θ), q̂(θ)) in (iv), m̃(θ, η) = (θ, eS)
(meaning probability measure with concentration on (θ, eS)) and ũA(θ, η) =
X̂A(θ)− θq̂(θ) solve this problem. Then the maximum value is equal to zero.
Since A at least receives X̂A(θ)− θq̂(θ) in the continuation game for non-null
side-contract, this maximum value provides an upper bound of S’s payoff in
PBE from offering non-null side-contract. It means that S never benefits
from offering non-null side-contract. Consequently, there is a PBE of this
game in which S never offers any side contract. This implies that S and A
play (mA(θ, η),mS(η)) = (θ, η) and the second-best allocation is achieved,
concluding the statement of the proposition.

Collusion is overcome by the Principal here by exploiting a lack of co-
ordination among A and S over continuation beliefs and play of the side
contracting game. This denies the essence of collusive activity, which in-
volves coordination by the colluding parties ‘behind the Principal’s back’.
The concept of collusion proofness incorporates this by allowing S and A to
collectively coordinate on the choice of side-contracting equilibria that are
Pareto-undominated (for the coalition) relative to the given status quo.

Definition 1 Following selection of a grand contract by P, a PBE(c) is a
Perfect Bayesian Equilibrium (PBE) of the subsequent subgame (C3) with the
following property. There does not exist some signal realization η for which
there is some other Perfect Bayesian Equilibrium (PBE) of (C3) in which
(conditional on η) S’s payoff is strictly higher and A’s payoff not lower for
any type θ ∈ Θ(η).

Definition 2 An allocation (uA, uS, q) is EAC feasible if there exists a grand
contract and a PBE(c) of the subsequent game which results in this allocation.

We now show that the PBE(c) refinement corresponds to EACP alloca-
tions that satisfy interim participation constraints. Note that the PBE(c)
notion allows for collusion to occur (i.e., a non-null side contract to be of-
fered and accepted by some types of A), and also for side-contract offers to
be rejected by some types of A, both on and off the equilibrium path. Hence
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the EACP notion does not rest on arbitrary restrictions on side contract out-
comes, e.g., which rule out the possibility of equilibrium-path rejections by
A of the side contract offered by S. The problem discussed by Celik and Pe-
ters (2011) therefore does not apply to this setting.4 Moreover, we show the
restriction to EACP allocations which correspond to equilibrium outcomes
in which collusion does not occur on the equilibrium path, is also without
loss of generality.

Proposition 2 An allocation (uA, uS, q) is EAC feasible if and only if it is
a EACP allocation satisfying interim participation constraints

E[uS(θ, η)|η] ≥ 0 for all η (1)

uA(θ, η) ≥ 0 for all (θ, η) (2)

Proof of Proposition 2

Proof of Necessity

Suppose (uA, uS, q) is EAC feasible. Then it satisfies interim participation
constraints of A and S. Here we show that it is also a EACP allocation.
Suppose not. Then there exists η ∈ Π such that (m̃(θ | η), ũA(θ, η)) =
((θ, η), uA(θ, η)) does not solve the side-contracting problem P (η). Suppose
that (m̃∗(θ | η), ũ∗A(θ, η)) is the solution of P (η). Defining

ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− ũ∗A(θ, η),

we have
E[ũ∗S(θ, η) | η] > E[uS(θ, η) | η]

4They show in the context of a model of a two-firm cartel that such restrictions can
entail a loss of generality. Rejection of a side contract by some types of A can communicate
information to S about A’s type, affecting subsequent play and resulting payoffs in the
noncooperative play of the grand contract. Celik and Peters show that there can be
collusive allocations amongst cartel members which can only be supported by side-contract
offers which are rejected with positive probability on the equilibrium path. This problem
does not arise in our setting as the side contract is offered by S, and the side contract
does not have to satisfy interim participation constraints for S. However, the Celik-Peters
problem could conceivably arise in a setting where the side contract is offered by a third
party. Even in that context, it turns out that the problem can be overcome with a suitable
modification of the side contracting game, as explained in the next Section.
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and
ũ∗A(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η). Since (uA, uS, q) is achievable in the collusion game,
there exists a grand contract GC and an associated PBE(c) which results
in this allocation. Let this PBE involve beliefs b(η) and non-cooperative
equilibrium c(η) of GC based on beliefs b(η) resulting if A rejects the side
contract SC(η) offered on the equilibrium path. The payoff accruing to A
in this noncooperative equilibrium then cannot exceed uA(θ, η) in any state
(θ, η).

For m̃∗(θ | η) ∈ ∆(K ∪ e), there exists m̃c(θ, η) ∈ ∆(MA×MS) such that

(X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))) = (XA(m̃c(θ, η)) +XS(m̃c(θ, η)), q(m̃c(θ, η))).

Given GC and η, consider the side-contract SCc(η) in which the report to
P is selected according to m̃c(θ

′
, η) on the basis of A’s report of θ

′ ∈ Θ(η),
associated with the transfer to A:

tcA(θ
′
, η) = ũ∗A(θ

′
, η)− [XA(m̃c(θ

′
, η))− θ′q(m̃c(θ

′
, η)))].

Now construct a different Perfect Bayesian Equilibrium (PBE) which differs
from the previous one only in state η, where on the equilibrium path S offers
instead SCc(η), and this is accepted by all types of A. Rejection of this offer
results in the same noncooperative equilibrium c(η) of the grand contract.
What occurs in the continuation of any other side contract offer remains the
same as in the previous PBE. To check this is a PBE, note that it is optimal
for A to accept SCc(η), and then report truthfully. Moreover, given that
this side contract is accepted by all types of A, it is optimal for S to offer it
(since offering SC(η) was optimal in state η in the previous PBE).

Hence (ũ∗A(θ, η), ũ∗S(θ, η)) can be realized as a PBE outcome. Since S
is better off without making any type of A worse off, it contradicts the
hypothesis that (uA, uS, q) is realized as the outcome of a PBE(c).

Proof of Sufficiency

Step 1: Construction of grand contract

Suppose that (uA, uS, q) is a EACP allocation satisfying interim participa-
tion constraints. We show that there exists a grand contract which achieves
(uA, uS, q) as a PBE(c) outcome.
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The grand contract is constructed as follows:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where
MA = K ∪ {eA}
MS = Π ∪ {eS}

XA(eA,mS) = XS(eA,mS) = q(eA,mS) = XS(mA, eS) = 0

for any (mA,mS).

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA, with T sufficiently large

• (XA((θA, ηA), eS), q((θA, ηA), eS)) = (X̂(m̃∗(θA)), q̂(m̃∗(θA))) where m̃∗(θ)
maximizes X̂(m̃)−θq̂(m̃) subject to m̃ ∈ ∆(K∪{e}) and the definition
of (X̂(m̃), q̂(m̃)) is provided in Section 3.5 of the paper.

Step 2: Non-cooperative equilibrium

First we argue (mA(θ, η),mS(η)) = ((θ, η), η) is a non-cooperative equilib-
rium of the grand contract based on prior beliefs (denoted by bφ(η)) for
η. EACP and A’s participation constraint imply that A always has an in-
centive to participate and report truthfully: mA(θ, η) = (θ, η). Since S’s
interim participation constraint (E[uS(θ, η) | η] ≥ 0) holds, taking A’s strat-
egy mA(θ, η) = (θ, η) as given, S also has an incentive to participate and
report truthfully.

This equilibrium results in allocation (uA(θ, η), uS(θ, η), q(θ, η)). By offer-
ing a null side-contract, S can always realize the allocation (uA(θ, η), uS(θ, η), q(θ, η))
and achieve interim payoff E[uS(θ, η) | η]. Therefore S would have an incen-
tive to offer a non-null side-contract only if the deviation results in a higher
payoff. We show that there exists a PBE of (C3) following the GC con-
structed above, in which S’s interim payoff from any deviating side contract
offer cannot exceed E[uS(θ, η) | η].

Consider any deviating side contract offer in state η, and let b(η) denote
beliefs of S regarding θ which result following rejection of this side contract
by A. S and A then play GC noncooperatively with beliefs b(η). By con-
struction, A has an incentive to report truthfully and participate in GC
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irrespective of what S does, i.e., irrespective of the beliefs b(η) held by S (as
well as irrespective of the particular deviating side contract offered). If T is
sufficiently large, it is then a best response for S to report truthfully, con-
ditional on participating. We focus on PBEs satisfying these two properties
following rejection by A of any deviating side contract.

In what follows, there are two cases to consider. (a) Eb(η)[uS(θ, η)] ≥ 0,
in which case it is a best response for S to participate (and report truthfully)
in GC when it is played noncooperatively with beliefs b(η). We refer to this
as the T case. (b) Eb(η)[uS(θ, η)] < 0, whereby S exits from GC following
rejection of the side contract and attains zero payoff. We refer to this as the
E case.

Step 3: Side-contract choice.

Now we argue that without loss of generality, the choice of deviating side
contract can be limited to those where in every state (θ, η): either A and
S both participate and submit consistent reports ηA = ηS, or where they
both exit. That they should submit consistent reports conditional on joint
participation, follows if T is sufficiently large. Suppose there is some state in
which the side contract prescribes an exit for S alone. Given the construction
of the grand contract, for any (mA,mS) = ((θ, η), eS), there exists m̃

′ ∈
∆(MA ×MS\{(θ, η), eS}) such that

(XA(mA,mS) +XS(mA,mS), q(mA,mS)) = (XA(m̃
′
) +XS(m̃

′
), q(m̃

′
)),

given

(XA((θ, η), eS) +XS((θ, η), eS), q((θ, η), eS)) = (X̂(m̃∗(θA)), q̂(m̃∗(θA)))

and the definition of (X̂, q̂). Therefore m̃
′

and (mA,mS) = ((θ, η), eS) gen-
erate the same total payment and output target for the coalition. A similar
argument ensures that outcomes involving exit for A alone can be elimi-
nated without loss of generality, since (mA,mS) = (eA, η) generates the same
outcome XA = XS = q = 0 in the GC as (mA,mS) = (eA, eS).

Step 4: Continuation payoffs following non-null side-contract

Suppose that S offers some non-null side-contract SC for η, which is de-
scribed as (m̃(θ, η), ũA(θ, η)) which satisfies

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ
′
, η))
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for any θ, θ
′ ∈ Θ(η) and m̃(θ, η) ∈ ∆(M̂). Let κ∗(θ) ∈ [0, 1] denote the

probability that θ ∈ Θ(η) accepts SC. We focus on PBE’s with the property
that A reports truthfully to S conditional on accepting the SC. The inequality
above ensures that this is optimal for A. In any such PBE, the payoff resulting
for S when A accepts the SC equals (in state (θ, η)):

XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η).

If A rejects SC, A and S play the grand contract non-cooperatively with
belief b∗(η), which is consistent with Bayes rule as required in a PBE. Se-
quential rationality of A’s participation decision κ∗(θ), given beliefs b∗(η) and
the non-cooperative equilibrium associated with b∗(η), implies the following.
In the T-case, κ∗(θ) = 0 (or 1 or ∈ [0, 1]) if and only if uA(θ, η) > (or < or
=) ũA(θ, η). A ends up with payoff

max{uA(θ, η), ũA(θ, η)},

and S’s interim payoff is

E[κ∗(θ){XA(m̃(θ, η))+XS(m̃(θ, η))−θq(m̃(θ, η))−ũA(θ, η)}+(1−κ∗(θ))uS(θ, η) | η].

Conversely, in the E-case, κ∗(θ) = 0 (or 1 or ∈ [0, 1]) if and only if

X̂(m̃∗(θA))− θq̂(m̃∗(θA)) > (or < or =)ũA(θ, η).

A’s payoff is
max{X̂(m̃∗(θA))− θq̂(m̃∗(θA)), ũA(θ, η)}.

while S’s interim payoff is

E[κ∗(θ){XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η)} | η].

Step 5: Upper bound on S’s interim payoff in continuation play following
non-null side-contract

Here we establish an upper bound of S’s interim payoff in PBE of the
continuation game for non-null side-contract.

(i) T-Case
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Consider the following problem: select (m̂(θ, η), ûA(θ, η)) to

maxE[XA(m̂(θ, η)) +XS(m̂(θ, η))− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and

ûA(θ, η) ≥ uA(θ, η).

for any θ ∈ Θ(η).
This is equivalent to problem P (η) (in our paper) used to characterize

EACP allocations. The EACP property implies that (m̂(θ, η), ûA(θ, η)) =
((θ, η), uA(θ, η)) solves this problem and the maximum value is E[uS(θ, η) | η].

We now show that this is an upper bound on S’s interim payoff from the
deviating side contract in the T-case. Suppose that non-null side-contract
(m̃(θ, η), t(θ, η)) is associated with acceptance probability κ∗(·) and the T-
case applies. Select (m̂(θ, η), ûA(θ, η)) as follows:

m̂(θ, η) = κ∗(θ)m̃(θ, η) + (1− κ∗(θ))I(θ, η)

and
ûA(θ, η) = max{ũA(θ, η), uA(θ, η)}

where I(θ, η) is the probability measure concentrated on (θ, η). In this al-
location, A earns exactly the same payoffs as in the continuation following
offer of side-contract (m̃(θ, η), t(θ, η)). Hence the agent’s incentive constraint
is satisfied, and so is the participation constraint by construction. Hence the
continuation play following offer of side-contract (m̃(θ, η), t(θ, η)) results in
an interim payoff for S which cannot exceed E[uS(θ, η) | η].

(ii) E-Case

Now consider the following problem: select (m̂(θ, η), ûA(θ, η)) to

maxE[XA(m̂(θ, η)) +XS(m̂(θ, η))− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))
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and
ûA(θ, η) ≥ X̂(m̃∗(θ))− θq̂(m̃∗(θ)).

In order to derive the solution of this problem, consider the problem of
maximizing

XA(m̂) +XS(m̂)− θq(m̂)

subject to m̂ ∈ ∆(M̂). Denoting its solution by m̂∗(θ), we have

XA(m̂∗(θ)) +XS(m̂∗(θ))− θq(m̂∗(θ)) = X̂(m̃∗(θ))− θq̂(m̃∗(θ)),

because of the definition of (X̂, q̂) and m̃∗(θ). Therefore in the above problem,
an upper bound of objective function is given by

E[XA(m̂∗(θ)) +XS(m̂∗(θ))− θq(m̂∗(θ))− {X̂(m̃∗(θ))− θq̂(m̃∗(θ))}|η] = 0

This upper bound can be achieved by selecting

(m̂(θ, η), ũA(θ, η)) = (m̂∗(θ), X̂(m̃∗(θ))− θq̂(m̃∗(θ))).

Since this also satisfies all the constraints of the problem, this is a solution
of the problem. It follows that the maximum value is equal to zero.

Next check that this maximum value provides an upper bound on S’s
payoff in the continuation play following the offer of the deviating side con-
tract (m̃(θ, η), t(θ, η)) in which the E-case arises. Select (m̂(θ, η), ûA(θ, η)) as
follows:

m̂(θ, η) = κ∗(θ)m̃(θ, η) + (1− κ∗(θ))m̃∗(θ)
and

ûA(θ, η) = max{ũA(θ, η), X̂(m̃∗(θ))− θq̂(m̃∗(θ))}.
This generates the same payoffs for A as in the continuation play following the
offer of the deviating side contract (m̃(θ, η), t(θ, η)), and is therefore feasible
in the maximization problem above. Hence zero is an upper bound to S’s
interim expected payoff when the E-case applies.

Step 6: PBE in collusion game

We can construct a PBE in the overall collusion game as follows. If S offers
null side-contract, he receives E[uS(θ, η) | η]. If S offers any non-null side-
contract, it follows from Step 5 that his subsequent continuation payoff is
not larger than E[uS(θ, η) | η]. Since E[uS(θ, η) | η] ≥ 0, there exists a PBE
in which S offers a null side-contract on the equilibrium path, resulting in
allocation (uA(θ, η), uS(θ, η), q(θ, η)).
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Step 7: Check PBE(c) property

Finally check that PBE constructed in the above argument is also a
PBE(c). Otherwise there would exist a PBE resulting in a Pareto supe-
rior allocation for the coalition. This would violate the EACP property of
the allocation we started with.

Note, however, that while the EACP allocation satisfying interim partic-
ipation constraints is the outcome of some PBE(c) in some grand contract
designed by P, it is possible that there also exist other PBE(c) resulting
in distinct allocations (which are also EACP allocations satisfying partic-
ipation constraints). Hence any given grand contract may be associated
with multiple EACP allocations satisfying participation constraints, that are
Pareto-noncomparable. Che and Kim (2009) provide a different definition
of collusion proofness, by assuming that players revert to noncooperative
play with prior beliefs whenever collusion breaks down. This notion can be
compatible with the notion of Weak Perfect Bayesian Equilibrium (WPBE),
which is a weaker concept than PBE.5 PBE requires the beliefs to be based on
Bayes rule whenever available even in the continuation of the off-equilibrium
side-contract. Similar to PBE(c), we can define WPBE(c) as a WPBE with
the property that there does not exist some signal realization η for which
there is some other WPBE of (C3) in which (conditional on η) S’s payoff is
strictly higher and A’s payoff not lower for any type θ ∈ Θ(η). Then if the
noncooperative equilibrium payoffs corresponding to prior beliefs are unique,
status quo payoffs for negotiation between A and S over the side contract are
pinned down, thereby eliminating multiplicity of corresponding WPBE(c)
payoffs satisfying their restriction. However, a disadvantage of this defini-
tion is that it would be subject to the Celik-Peters (2011) criticism described
above. Nevertheless, both definitions give rise to the same characterization
of collusion proof allocations.

3 Justification for EACP Allocations When

Contracts are Offered by Third Party

To overcome the problem highlighted by Celik and Peters (2011) in the con-
text where the side-contract is designed by a third party, we model side-

5For definition of WPBE, see Mas-Colell, Whinston and Green (1995, p.285).

12



contracts as a two stage game played by S and A. The first stage is a ‘par-
ticipation’ stage where they communicate their participation decisions in the
side contract, in addition to some auxiliary messages in the event of agreeing
to participate. The role of these messages is to allow A to signal informa-
tion about his type while agreeing to participate, which can help replicate
whatever information is communicated by side-contract rejection in a setting
where communication concerning participation decisions is dichotomous. A
and S observe the messages sent by each other at the end of the first stage.
At the second stage, A and S submit type reports, conditional on having
agreed to participate at the first stage.

Let (Dp
A, D

p
S) denote the message sets of A and S at the participation

stage (or p-stage). eA ∈ Dp
A and eS ∈ Dp

S are the exit options of A and
S respectively. The message sets at this stage may include other auxiliary
messages as well.

What occurs at the second stage (‘execution’ or e-stage) depends on dp =
(dpA, d

p
S) chosen at the first stage.

• If dpA 6= eA and dpS 6= eS, A and S select (deA, d
e
S) ∈ De

A(dp) × De
S(dp)

respectively, where the conditional message sets De
A(dp), De

S(dp) are
specified by the side contract. The report to P is selected according
to m̃(dp, de) ∈ ∆(MA ×MS), associated with the transfers to A and S,
tA(dp, de) and tS(dp, de) respectively. Owing to wealth constraint of the
third party, these are constrained to satisfy tA(dp, de) + tS(dp, de) ≤ 0.

• If either dpA = eA or dpS = eS, A and S play GC non-cooperatively.

Given GC and η, the third party decides whether to offer a side-contract
SC(η) or not (i.e., offer a null side-contract NSC). If a non-null side-contract
is offered, A and S play a game denoted by GC ◦ SC(η) with two stages as
described above. On the other hand, if the third party offers a null side-
contract NSC at the first stage, A and S play GC non-cooperatively based on
prior beliefs bφ(η). The third-party’s objective is to maximize E[αuA(θ, η) +
(1− α)uS(θ, η) | η] in state η.

The refinement PBE(c) introduced in the paper for the case where the
side contract is offered by S, can now be extended as follows.

Definition 3 Following the selection of a grand contract by P, a PBE(c)
is a Perfect Bayesian Equilibrium (PBE) of the subsequent game in which
side-contracts are designed by a third party, which has the following property.

13



There does not exist some η for which there is a Perfect Bayesian Equilibrium
(PBE) of subgame C3 in which (conditional on η) the third-party’s payoff is
strictly higher, without lowering the payoff of S and any type of A.

Definition 4 An allocation (uA, uS, q) is EAC feasible when side contracts
are designed by a third party assigning welfare weight α to A, if there exists a
grand contract and a PBE(c) of the subsequent side contract subgame which
results in this allocation.

Proposition 3 An allocation (uA, uS, q) is EAC feasible when side contracts
are designed by a third party assigning welfare weight α to A, if and only if
it is a EACP(α) allocation satisfying the interim participation constraints
uA(θ, η) ≥ 0 and E[uS(θ, η) | η] ≥ 0.

Proof of Proposition 3

Proof of Necessity

For some GC, suppose that allocation (uA, uS, q) is achieved in the game with
collusion. Suppose the allocation is achieved as the outcome of a PBE(c)
of subgame C3 in which a non-null side contract SC∗(η) is offered on the
equilibrium path in some state η, which is rejected either by some types of
A, or by S. We show it can also be achieved as the outcome of a PBE(c)
in which a non-null side contract is offered in state η and always accepted
by A and S. Let dpA(θ, η) and dpS(η) denote A and S’s participation decisions
respectively (whether or not they chose the exit option at the first stage).
Following rejection by either A or S, they play the grand contract GC based
on updated beliefs b(· | dpA(θ, η), dpS(η), η). Let dp∗A (θ, η) denote A’s decision,
and dp∗S (η) S’s participation decisions on the equilibrium path.

Now construct a new side-contract S̃C(η) which differs from SC∗(η) by
replacing the message space Dp

A for A at the first stage by Dp
A×D

p
A. Similarly

S’s message space is now Dp
S × Dp

S. The interpretation is that the first
component of this message dpA is a participation decision, while the second
component d̃pA is a ‘signal’. This allows a decoupling of the participation
decision from sending a signal to the other player which changes beliefs with
which they play the grand contract noncooperatively in the event that the
side contract is rejected by someone. For example, if A selected dpA = eA
in the previous side-contract in order to send a signal about his type θ to
S, the same signal can be sent now through the second component of the

14



message, while opting to participate in the choice of the first component (by
selecting dpA 6= eA, d̃

p
A = eA). The first component of the message dpA now

matters only insofar as it is an exit decision or not; conditional on it not
being an exit decision the precise message does not matter. If both decide
to participate (i.e., not exit), they move on to the second stage of the game,
where the mechanism replicates the allocation resulting on the equilibrium
path of the original PBE associated with SC∗(η) (i.e., agrees with the second
stage mechanism in SC∗(η) whenever both agreed to participate in SC∗(η),
and otherwise assigns the allocation resulting from noncooperative play of
GC in the original PBE). If one or both decides not to participate in S̃C(η),
they play GC noncooperatively with beliefs based on first stage messages
according to b(· | d̃pA(θ, η), d̃pS(η), η). Note that these beliefs do not depend
on dpA or dpS.

It is easily verified that there exists a PBE where the third party offers
S̃C(η) in state η, in which A and S always accept the side-contract (i.e., in
state (θ, η) they respectively select dpA(θ, η) 6= eA, d

p
S(η) 6= eS while choosing

d̃pA(θ, η) equal to dpA(θ, η) in the original PBE, and d̃pS(η) equal to dpS(η) in
the original PBE). The underlying idea is that since A’s first stage report d̃pA
now affects beliefs at the second stage in exactly the same way that dpA did
in the original PBE, it is optimal for A to choose d̃pA(θ, η) equal to dpA(θ, η)
in the original PBE. Moreover, the first stage dpA report now affects only A’s
participation decision at the second stage, and by construction has no effect
on second stage allocations (conditional on participation). So it is optimal
for A to decide to participate. The same logic applies to S. Hence the newly
constructed strategies and beliefs constitute a PBE. It can also be verified
that since the original equilibrium was a PBE(c), so is the newly constructed
equilibrium.

Next we show that if allocation (uA, uS, q) is realized in a PBE (c) in which
the offered side contract is not rejected on the equilibrium path, it must be
a EACP(α) allocation. Suppose not: the allocation resulting from some
non-null side contract (ũ∗A(θ, η), m̃∗(θ, η)) 6= (uA(θ, η), (θ, η)) solves problem
TP (η;α) for some η. Define ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η)) − θq̂(m̃∗(θ | η)) −
ũ∗A(θ, η). It is evident that

E[αũ∗A(θ, η) + (1− α)ũ∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η],

ũ∗A(θ, η) ≥ uA(θ, η)

and
E[ũ∗S(θ, η) | η] ≥ E[uS(θ, η) | η].
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There exists mc(θ, η) ∈ ∆(MA ×MS) in GC such that

(XA(mc(θ, η)) +XS(mc(θ, η)), q(mc(θ, η))) = (X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))).

Now construct a new side-contract SC(η) which realizes

(ũ∗A(θ, η), ũ∗S(θ, η), q̂(m̃∗(θ | η)))

as a PBE outcome, contradicting the hypothesis that (uA, uS, q) is realized
in a PBE (c). SC(η) is specified as follows:

• Dp ≡ Dp∗ where Dp∗ = (Dp∗
A , D

p∗
S ) are A and S’s message sets at the

participation stage of the original side-contract SC∗(η).

• De
A = Θ(η) and De

S = φ

• A’s choice of deA = θ ∈ Θ(η) generates the report mc(θ, η) to P, and
side transfers to A and S respectively as follows:

tA(θ, η) = ũ∗A(θ, η)− [XA(mc(θ, η))− θq(mc(θ, η))]

and
tS(θ, η) = ũ∗S(θ, η)−XS(mc(θ, η)).

Given any (dpA, d
p
S) with dpA 6= eA and dpS 6= eS at the participation stage, it

is optimal for A to always select deA = θ, since θ
′
= θ maximizes

XA(mc(θ
′
, η))− θq(mc(θ

′
, η)) + tA(θ

′
, η) = ũ∗A(θ

′
, η) + (θ

′ − θ)q̂(m̃∗(θ′ | η)).

At the participation stage, A is indifferent among any dpA ∈ D
p
A\{eA} as the

optimal response to dpS 6= eS, since the outcome in the continuation game does
not depend on this choice. Select beliefs consequent on non-participation by
either A or S in the same way as in the original equilibrium; then participation
continues to be optimal for both. In state η, responses to all other side
contract offers are unchanged. In all other states η′ 6= η, strategies and
beliefs are unchanged. Hence this is a PBE resulting in (ũ∗A(θ, η), ũ∗S(θ, η)),
contradicting the PBE(c) property of the equilibrium resulting in (uA, uS, q).
This completes the proof of necessity.

Proof of Sufficiency
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Take an allocation which is EACP(α) and satisfies interim participation con-
straints. We show it is achievable as a PBE(c) outcome following choice of
the following grand contract GC:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where
MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))
for ηA = ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6=
ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA

where T > 0 is sufficiently large. The EACP(α) property implies that
uA(θ, η) ≥ uA(θ

′
, η) + (θ

′ − θ)q(θ′ , η) for any θ, θ
′ ∈ Θ(η). The interim par-

ticipation constraints imply that this grand contract has a non-cooperative
pure strategy equilibrium

(m∗A(θ, η),m∗S(η)) = ((θ, η), η)

based on prior beliefs.
For this grand contract, we claim there exists a PBE(c) resulting in

(m∗A(θ, η),m∗S(η)) = ((θ, η), η). Let the third party offer a null side con-
tract, following which A and S play truthfully in the GC noncooperatively
with prior beliefs. If the third party offers any non-null side contract, all
types of A and S reject it and subsequently play truthfully in the noncoop-
erative game with prior beliefs. This is clearly a PBE. That it is a PBE(c)
follows from the property that the allocation is EACP(α).
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4 Proof of Results Used in Proving Proposi-

tions 6 and 7

We first prove the following result invoked in the proof of Proposition 6 in
the Appendix to the paper.

Result 1 There exists z(· | η∗∗) ∈ Z(η∗∗) which satisfies the following con-
ditions.

(B-i) z(θ | η∗∗) = θ for any θ /∈ ΘH ∪ΘL

(B-ii) For θ ∈ ΘL, z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≤ θ with strict inequality
for some subinterval of ΘL of positive measure, and (b) H(z) − (1 −
λ)z − λh(θ | η∗∗) > 0 for any z ∈ [z(θ | η∗∗), θ].

(B-iii) For θ ∈ ΘH , z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≥ θ with strict
inequality for some some subinterval of ΘH of positive measure, (b)
z(θ | η∗∗) < h(θ | η∗∗) and (c) H(z) − (1 − λ)z − λh(θ | η∗∗) < 0 for
any z ∈ [θ, z(θ | η∗∗)].

(B-iv) E[(z(θ | η∗∗)−h(θ | η∗∗))qNS(z(θ | η∗∗))+
∫ θ̄(η∗∗)
z(θ|η∗∗) q

NS(z)dz | η∗∗] = 0.

Proof:

Step A: For any η ∈ Π and any closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), there exists δ > 0 such that z(·) ∈ Z(η) for any z(·)

satisfying the following properties:

(i) z(θ) is increasing and differentiable with |z(θ)− θ| < δ and
|z′(θ)− 1| < δ for any θ ∈ Θ(η)

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ
′′
].

Proof of Step A

For arbitrary η ∈ Π and arbitrary closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)
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and
ε2 ≡ max

θ∈[θ′ ,θ′′ ]
|f ′(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive
on Θ(η), ε1 > 0, and ε2 is positive and bounded above. We choose δ > 0
such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, it is obvious that there exists z(θ) which satisfies conditions (i)
and (ii) of the statement. Define

Λ(θ | η) ≡ (θ − z(θ))f(θ | η) + F (θ | η).

Since z(θ) is differentiable on Θ(η), Λ(θ | η) is also so. It is equal to Λ(θ |
η) = F (θ | η) on θ /∈ [θ

′
, θ
′′
]. For θ ∈ [θ

′
, θ
′′
],

∂Λ(θ | η)

∂θ
= (2− z′(θ))f(θ | η) + (θ − z(θ))f

′
(θ | η) > (1− δ)f(θ | η)− δ|f ′(θ | η)|

≥ (1− δ)ε1 − δε2.

This is positive by the definition of (ε1, ε2, δ). Then Λ(θ | η) is increasing in θ
on Θ(η) with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1. Since z(θ) is increasing in θ
by the definition, it is preserved even by ironing rule. Therefore z(·) ∈ Z(η).

Step B

For η∗∗ and the closed interval I = [θ
′
, θ
′′
] ⊂ Θ(η∗∗) which are selected in

Step 1 of the paper’s Appendix, we select δ > 0 according to the procedure
in Step A. By the continuity of F (θ)

f(θ)
and F (θ|η∗∗)

f(θ|η∗∗) and the closedness of ΘL

and ΘH , we can select ε > 0 such that

λ < [
F (θ)

f(θ)
− ε]/F (θ | η∗∗)

f(θ | η∗∗)
for θ ∈ ΘL ≡ [θL, θ̄L]

λ > [
F (θ)

f(θ)
+ ε]/

F (θ | η∗∗)
f(θ | η∗∗)

for θ ∈ ΘH ≡ [θH , θ̄H ].

These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗∗) > ε for θ ∈ ΘL
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and
H(θ)− (1− λ)θ − λh(θ | η∗∗) < −ε for θ ∈ ΘH .

By the continuity of H(θ) − (1 − λ)θ for θ and closedness of ΘL and ΘH ,
there exists εL > 0 and εH > 0 such that

H(θ)− (1− λ)θ − ε ≤ H(z)− (1− λ)z

for any z ∈ [θ − εL, θ] and any θ ∈ ΘL, and

H(θ)− (1− λ)θ + ε ≥ H(z)− (1− λ)z

for any z ∈ [θ, θ+ εH ] and any θ ∈ ΘH . Equivalently, there exists εL > 0 and
εH > 0 such that

H(z)− (1− λ)z − λh(θ | η∗∗) > 0 for any θ ∈ ΘL and any z ∈ [θ − εL, θ]

and

H(z)− (1− λ)z − λh(θ | η∗∗) < 0 for any θ ∈ ΘH and any z ∈ [θ, θ + εH ].

Step C

We select z(· | η∗∗) such that

(i) z(θ | η∗∗) is increasing and differentiable with |z(θ | η∗∗)−θ| < min{δ, εL, εH}
and |zθ(θ | η∗∗)− 1| < δ for any θ ∈ Θ(η∗∗)

(ii) z(θ | η∗∗) = θ for any θ /∈ ΘH ∪ΘL

(iii) For θ ∈ ΘL, z(θ | η∗∗) ≤ θ with strict inequality for some subinterval of
ΘL of positive measure.

(iv) For θ ∈ ΘH , θ ≤ z(θ | η∗∗) with strict inequality for some some subin-
terval of ΘH of positive measure, and z(θ | η∗∗) < h(θ | η∗∗).

It is evident that such a z(· | η∗∗) exits. The argument in Step A and B
ensures that z(· | η∗∗) is in Λ(η∗∗), and satisfies (B-(ii)) (c) and (B-(iii)) (c).
By the construction, it is evident that this satisfies all other conditions.

Step D
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Suppose z(· | η∗∗) ∈ Z(η∗∗) which satisfies (B(i)-(iii)). Since

(z − h(θ | η∗∗))qNS(z) +

∫ θ̄(η∗∗)

z

qNS(y)dy

is increasing in z for z < h(θ | η∗∗), and

E[(θ − h(θ | η∗∗))qNS(θ) +

∫ θ̄(η∗∗)

θ

qNS(y)dy | η∗∗] = 0,

the choice of z(θ | η∗∗) ≤ θ on ΘL (or z(θ | η∗∗) ≥ θ on ΘH) reduces (or
raises)

E[(z(θ | η∗∗)− h(θ | η∗∗))qNS(z(θ | η∗∗)) +

∫ θ̄(η∗∗)

z(θ|η∗∗)
qNS(z)dz | η∗∗]

away from zero. For any pair of parameters αH , αL lying in [0, 1], define
a function zαL,αH (θ|η∗∗) which equals (1 − αL)z(θ|η∗∗) + αLθ on ΘL, equals
(1 − αH)z(θ|η∗∗) + αHθ on ΘH and equals θ elsewhere. It is easily checked
that any such function also is in Z(η∗∗) and satisfies conditions (B(i)-(iii)).
Define

Q(αL, αH) ≡ E[(zαL,αH (θ | η∗∗)−h(θ | η∗∗))qNS(zαL,αH (θ | η∗∗))+
∫ θ̄(η∗∗)

zαL,αH (θ|η∗∗)
qNS(z)dz | η∗∗].

Then Q is continuously differentiable, strictly increasing in αL and strictly
decreasing in αH with Q(1, 1) = 0. The Implicit Function Theorem ensures
existence of α∗L, α

∗
H both smaller than 1 such that Q(α∗L, α

∗
H) = 0. Hence the

function zα∗L,α∗H (θ|η∗∗) is in Z(η∗∗) and satisfies (B(i)-(iv)).

Result 2 For z(· | η) constructed in Step 2, consider the following allocation
(uA, uS, q):

q(θ, η) = qNS(z(θ | η))

uA(θ, η) =

∫ θ̄

θ

qNS(z(y | η))dy

uS(θ, η) = XNS(z(θ | η))−θqNS(z(θ | η))−
∫ θ̄(η)

θ

qNS(z(y | η))dy−
∫ θ̄

θ̄(η)

qNS(y)dy.
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where

XNS(z(θ | η)) ≡ z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz.

Then (uA, uS, q) is a EAC feasible allocation.

Proof: The construction of z(θ | η) implies that z(θ̄(η) | η) ≤ θ̄ for any
η ∈ Π. Hence

XNS(z(θ | η))− z(θ | η)qNS(z(θ | η)) ≥ 0

for any (θ, η) ∈ K. It is evident that the construction of z(θ | η) implies
E[uS(θ, η) | η] = 0.

Since z(θ | η∗∗) is increasing in θ, there is no pooling region with Θ(π(· |
η∗∗), η∗∗) = φ. The coalition incentive constraint is satisfied, since

X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

= XNS(z(θ
′ | η′))− z(θ | η)qNS(z(θ

′ | η′))

=

∫ θ̄

z(θ′ |η′ )
qNS(z)dz + (z(θ

′ | η′)− z(θ | η))qNS(z(θ
′ | η′))

≤
∫ θ̄

z(θ|η)

qNS(z)dz = X(θ, η)− z(θ | η)q(θ, η).

The A’s incentive constraint is satisfied, since

uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

=

∫ θ̄

θ′
qNS(z(y | η))dy + (θ

′ − θ)qNS(z(θ
′ | η))

≤
∫ θ̄

θ

qNS(z(y | η))dy = uA(θ, η).

The inequality is obtained from the fact that qNS(z(θ | η)) is non-increasing
in θ. These arguments guarantee that (uA, uS, q) is a EAC feasible allocation.

Now we prove the following result invoked in the proof of Proposition 7
in the Appendix.
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(i) ĥ(θ | η∗) > ĥ(θ | η) for θ ∈ (θ, θ̄] and ĥ(θ | η∗) = ĥ(θ | η) = θ for any
η 6= η∗

(ii) Define G(h | η) ≡
∫
{θ|ĥ(θ|η)≤h} f(θ | η)dθ. Then G(h | η∗) is a mean-

preserving spread of G(h | η) for any η 6= η∗

Proof of (i): Since f(θ|η∗)
f(θ|η)

is strictly decreasing in θ for any η 6= η∗, f(θ
′ |η∗)

f(θ|η∗) >

f(θ
′ |η)

f(θ|η)
for θ > θ

′
. Θ(η) = Θ(η∗) = Θ then implies

F (θ | η∗)
f(θ | η∗)

=

∫ θ

θ

f(θ
′ | η∗)

f(θ | η∗)
dθ
′
>

∫ θ

θ

f(θ
′ | η)

f(θ | η)
dθ
′
=
F (θ | η)

f(θ | η)
.

Hence h(θ | η∗) > h(θ | η) for θ ∈ (θ, θ̄] and h(θ | η∗) = h(θ | η) = θ. The
property of the ironing procedure (explained in later section) ensures that
ĥ(θ | η∗) > ĥ(θ | η) for any θ > θ and ĥ(θ | η∗) = ĥ(θ | η) = θ for any η 6= η∗.

Proof of (ii): Since∫ h̄

h

hdG(h | η) =

∫ θ̄

θ

ĥ(θ | η)dF (θ | η) =

∫ θ̄

θ

h(θ | η)dF (θ | η) = θ̄

for each η, the two distribution has the same mean. For any convex function
u(h) (which is not a linear function),∫ h̄

h

u(h)dG(h | η∗) =

∫ θ̄

θ

u(h(θ | η∗))f(θ | η∗)dθ

>

∫ θ̄

θ

[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− h(θ | η∗))]f(θ | η∗)dθ

=

∫ θ̄

θ

[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ

u
′
(ĥ(y | η))dy]f(θ | η∗)dθ

>

∫ θ̄

θ

[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ

u
′
(ĥ(y | η))dy]f(θ | η)dθ

=

∫ θ̄

θ

u(ĥ(θ | η))f(θ | η)dθ =

∫ h̄

h

u(h)dG(h | η)
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The first inequality uses the convexity of u(h): u(h) ≥ u(h
′
)− u′(h′)(h′ − h)

for any h, h
′ ∈ H. The second inequality is the result that

u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ

u
′
(ĥ(y | η))dy

is non-increasing in θ and is not constant on Θ, and F (θ | η) first order
stochastically dominates F (θ | η∗) (because of the MLRP assumption). Ac-
cording to the definition, G(h | η∗) is a mean-preserving spread of G(h | η)
for any η 6= η∗.

5 Optimality of Conditional Delegation

Here we provide the formal proof of the following statement in terms of the
optimality of the conditional delegation.

Proposition 4 Any EAC allocation satisfying interim PCs can also be achieved
as a PBE(c) outcome of the subgame (C3) of the modified delegation mecha-
nism, in which P communicates and transacts with S alone on the equilibrium
path.

Proof of Proposition 4:

Step 1: Construction of grand contract

For EACP allocation (uA, uS, q) which satisfies interim participation con-
straints of A and S, define X(θ, η) ≡ uA(θ, η) +uS(θ, η) + θq(θ, η) for (θ, η) ∈
K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π} and (X(e), q(e)) = (0, 0). Let us construct
the following grand contract GC with sufficiently large T > 0:

(XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA = {φ} ∪ M̃A and MS = K ∪ {e} ∪ M̃S, associated with M̃A ≡
K ∪ {eA} and M̃S ≡ Π ∪ {eS}, as follows:

• For (mA,mS) ∈ M̃A × M̃S, (XA(mA,mS), XS(mA,mS), q(mA,mS)) is
equal to that used in the proof of the sufficiency of the above Proposi-
tion 2.
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• For (mA,mS) = (φ, (θ, η)), (φ, e),

(XA(mA,mS), XS(mA,mS), q(mA,mS)) = (0, X(mS), q(mS))

• For any other (mA,mS) ∈MA ×MS,

(XA, XS, q) = (0,−T, 0)

Let us check that this mechanism achieves (uA, uS, q) in PBE(c) where P
receives the message only from S on the equilibrium path.

Step 2: Non-cooperative equilibrium based on prior beliefs and non-prior
beliefs

First we argue (mA(θ, η),mS(η)) = ((θ, η), η) is a non-cooperative equilib-
rium of the grand contract based on prior beliefs bφ(η) for η. EACP and
A’s participation constraint imply that A always has an incentive to partici-
pate and report truthfully: mA(θ, η) = (θ, η). Since S’s interim participation
constraint (E[uS(θ, η) | η] ≥ 0) holds, taking A’s strategy mA(θ, η) = (θ, η)
as given, S also has an incentive to participate and report truthfully. This
equilibrium results in allocation (uA(θ, η), uS(θ, η), q(θ, η)).

Suppose that some side contract is offered in state η, and let b(η) denote
beliefs of S regarding θ which result following rejection of this side contract by
A. S and A then play GC noncooperatively with beliefs b(η). By construction,
A has an incentive to report truthfully and participate in GC irrespective of
the beliefs b(η) held by S. If T is sufficiently large, it is then a best response
for S to report truthfully, conditional on participating. There are two cases
to consider. (a) Eb(η)[uS(θ, η)] ≥ 0, in which case it is a best response for S to
participate (and report truthfully) in GC when it is played noncooperatively
with beliefs b(η). Then A receives uA(θ, η). (b) Eb(η)[uS(θ, η)] < 0, whereby
S exits from GC following rejection of the side contract and attains zero
payoff. Then A receives X̂(m̃∗(θ))− θq̂(m̃∗(θ)) (denoted by ūA(θ) hereafter).
We focus on a PBE where A receives either uA(θ, η) or ûA(θ) whenever the
collusion breaks down in the continuation of any side-contract.

Step 3: Side-contract choice.

Now we argue that without loss of generality, the choice of side contract can
be limited to those where in every state (θ, η): A reports nothing (mA = φ)
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and S reports either (θ, η) or e. It is evident that the side contract never
selects reports which generate penalty T to S if T is sufficiently large. Given
the construction of the grand contract, for any (mA,mS) ∈ MA ×MS such
that XS 6= −T , there exists m̃

′ ∈ M̂ ≡ {(φ, (θ, η)) | (θ, η) ∈ K} ∪ {e} such
that

(XA(mA,mS) +XS(mA,mS), q(mA,mS)) = (XA(m̃
′
) +XS(m̃

′
), q(m̃

′
)).

It means that we can restrict attention to a side-contract which selects a
message from M̂ to be sent to P, whenever a non-null side-contract is offered.

Step 4: Upper bound of the S’s payoff

Consider the following problem: select (m̂(θ, η), ûA(θ, η)) to

maxE[X(m̂(θ, η))− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and

ûA(θ, η) ≥ uA(θ, η).

for any θ ∈ Θ(η). This is equivalent to problem P (η) (in our paper) used to
characterize EACP allocations. The EACP property implies that (m̂(θ, η), ûA(θ, η)) =
((θ, η), uA(θ, η)) solves this problem and the maximum value is E[uS(θ, η) | η].

Next consider the problem: select (m̂(θ, η), ûA(θ, η)) to

maxE[X(m̂(θ, η))− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))

and
ûA(θ, η) ≥ ūA(θ).

As shown in the proof of the sufficiency of Proposition 2, the solution of this
problem is

(m̂(θ, η), ũA(θ, η)) = (m̂∗(θ), ūA(θ)).
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The maximum value is equal to zero.
Applying the same argument as in the proof of the sufficiency of Proposi-

tion 2, we can conclude that E[uS(θ, η) | η] is upper bound value of S’s payoff
in PBE with the property that A receives either uA(θ, η) or ûA(θ) whenever
the collusion breaks down.

Step 5: PBE(c) in collusion game

We can construct a PBE in the overall collusion game as follows. On the
equilibrium path, S offers a side-contract (m(θ, η), t(θ, η)) such thatm(θ, η) =
(θ, η) ∈ ∆(M̂) and t(θ, η) = uA(θ, η) + θq(θ, η), and all types of A accept it
and has the truthful report about θ. This is sequential rational for A if A and
S play non-cooperative equilibrium based on prior beliefs whenever A rejects
it. S receives E[uS(θ, η) | η]. If S offers any other side-contract (including null
side contract), it follows from Step 4 that his subsequent continuation payoff
is not larger than E[uS(θ, η) | η]. Therefore there exists a PBE in which S
offers the above side-contract on the equilibrium path, resulting in allocation
(uA(θ, η), uS(θ, η), q(θ, η)). Finally check that PBE constructed in the above
argument is also a PBE(c). Otherwise there would exist a PBE resulting in
a Pareto superior allocation for the coalition. This would violate the EACP
property of the allocation we started with. In this PBE, P communicates
and transacts with S alone on the equilibrium path.

6 Effect of Reallocating Bargaining Power:

Proof of Proposition 8

Proof of Proposition 8:

We show that the set of EACP(α) is independent of α ∈ [0, 1]. Sup-
pose otherwise that (uA(θ, η), uS(θ, η), q(θ, η)) is a EACP(α) allocation, but
not a EACP(α

′
) (α 6= α

′
) allocation. It implies that for some η, (m̃(θ |

η), ũA(θ, η)) = ((θ, η), uA(θ, η)) is not the solution of TP (η;α
′
) defined for

(uA(θ, η), uS(θ, η), q(θ, η)). If (m̃∗(θ | η), u∗A(θ, η))(6= ((θ, η), uA(θ, η))) is a
solution of TP (η;α

′
), it satisfies all constraints of TP (η;α

′
) and realizes a

higher payoff to the third party than in the choice of (m̃(θ | η), ũA(θ, η)) =
((θ, η), uA(θ, η)):

E[(1− α′)[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η)] + α
′
u∗A(θ, η) | η]

> E[(1− α′)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + α
′
uA(θ, η) | η].
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It also satisfies A and S’s participation constraints:

u∗A(θ, η) ≥ uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] ≥ E[uS(θ, η) | η].

On the other hand, since (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves
TP (η;α),

E[(1− α)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + αuA(θ, η) | η]

≥ E[(1− α)[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η)] + αu∗A(θ, η) | η]

Let us consider three cases: (i) α ∈ (0, 1), (ii) α = 1 and (iii) α = 0.

(i) α ∈ (0, 1)

The last three inequalities imply

u∗A(θ, η) = uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η) | η] = E[uS(θ, η) | η].

But this is not compatible with the first inequality. We obtain a contradic-
tion.

(ii) α = 1

With α = 1, the above four inequalities imply

E[uA(θ, η) | η] = E[u∗A(θ, η) | η]

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] > E[uS(θ, η) | η].

But for sufficiently small ε > 0, the choice of

(m̃(θ | η), ũA(θ, η)) = (m̃∗(θ, η), u∗A(θ, η) + ε)

(instead of ((θ, η), uA(θ, η))) in TP (η;α = 1) generates a higher value of the
objection function without violating any constraint. We obtain a contradic-
tion.

28



(iii) α = 0

With α = 0, the four inequalities imply

E[uS(θ, η) | η] = E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η]

and
E[u∗A(θ, η) | η] > E[uA(θ, η) | η].

Since u∗A(θ, η) ≥ uA(θ, η) for any θ, there is a subset of θ with the pos-
itive measure such that u∗A(θ, η) > uA(θ, η). Consider a modified prob-
lem of TP (η;α = 0) such that the constraint ũA(θ, η) ≥ uA(θ, η) is re-
placed by ũA(θ, η) ≥ u∗A(θ, η) in TP (η;α = 0). Since the optimal solution
(m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) in TP (η;α = 0) violates the con-
straint, the maximum value of the objective function in the modified problem
would become lower. On the other hand, (m̃∗(θ | η), u∗A(θ, η)) satisfies all the
constraints of the modified problem, and brings

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

The argument implies

E[uS(θ, η) | η] > E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

We obtain a contradiction.

7 Ironing Rule and Related Results

Here we summarize the ironing procedure and its related properties which are
frequently used throughout the paper. We specify an ironing rule to construct
π̂(x) from two functions π(x) and G(x), and explain some properties about
π̂(x). According to Myerson (1981) and Baron and Myerson (1982), the
ironing rule is described as follows.

Definition 1 Suppose that π(x) and G(x) defined on [x, x̄] have the following
properties:

(i) π(x−) ≥ π(x+) for any x ∈ [x, x̄].

(ii) G(x) is distribution function with G(x) = 0 and G(x̄) = 1. G(x) is
strictly increasing and continuously differentiable on [x, x̄].
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Then π̂(x) ≡ π̂(x | π(·), G(·)) is constructed from π(x) and G(x) as follows.

(i) Π(φ) =
∫ φ

0
π(h(y))dy where h(φ) satisfies G(h(φ)) = φ for φ ∈ [0, 1].

(ii) Π(φ) is maximum convex function so that Π(φ) ≥ Π(φ).

(iii) π̂(x) satisfies (i) π̂(x) = Π
′
(G(x)) whenever the derivative Π

′
(G(x)) is

defined,6 and (ii) π̂(x) = Π
′
(G(x−)) for any x ∈ (x, x̄].

We provide two lemmata, which show some properties used in the paper.

Lemma 1 π̂(x) = π̂(x | π(·), G(·)) constructed from π(x) and G(x) satisfies:

(i) π̂(x) is continuous and non-decreasing in x. If π(x) is non-decreasing
in x, π̂(x) = π(x).

(ii)
∫ x̄
x
q(x)π̂(x)dG(x) =

∫ x̄
x
q(x)π(x)dG(x) if q(x) is constant for each inter-

val of x such that Π(G(x)) > Π(G(x)) (or π̂(x) takes constant value).

(iii) If π(x) > x on (x, x̄], π̂(x) > π̂α(x) on (x, x̄] for πα(x) ≡ (1−α)π(x)+
αx with α ∈ (0, 1].

(iv) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄). If there exists an increasing v(x) so
that v(x) < π(x) for any x > x, v(x) < π̂(x) for any x > x and if
there exists an increasing v(x) so that v(x) > π(x) for any x > x,
v(x) > π̂(x) for any x > x.

(v) Suppose that q∗(x) is the solution of the following problem:

max

∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x)

subject to q(x) is non-increasing. Then q∗(x) solves

max

∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

Then∫ x̄

x

[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x

[V (q∗(x))− π̂(x)q∗(x)]dG(x).

6Since Π(φ) is convex, it is almost everywhere differentiable.
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Proof of Lemma 1

The proof of (i)

Since Π(φ) is convex and G(x) is increasing, π̂(x) is non-decreasing. Suppose
that there exists x so that π̂(x) < π̂(x+). It means that Π

′
(G(x−)) <

Π
′
(G(x+)). Then Π(G(x)) = Π(G(x)), since otherwise you can find a higher

convex function than Π(φ). This implies that

π(x−) = Π
′
(G(x−)) ≤ Π

′
(G(x−)) < Π

′
(G(x+)) ≤ Π

′
(G(x+)) = π(x+)

This is contradiction since we assume that π(x−) ≥ π(x+). Therefore π̂(x)
is continuous.

Suppose that π(x) is non-decreasing in x. With Π(φ) =
∫ φ

0
π(h(y))dy,

Π
′
(φ) = π(h(φ)). Then Π(φ) is convex and Π(φ) = Π(φ), implying π(x) =

π̂(x).

The proof of (ii)

Define I by
I ≡ {x ∈ [x, x̄] | Π(G(x)) > Π(G(x))}.

For any x ∈ I, there exists d(x) and u(x) such as

Π(G(x
′
)) > Π(G(x

′
))

on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))).

Then Π(φ
′
) is a linear function of φ

′
on [G(d(x)), G(u(x))] and π̂(x

′
) is con-

stant on x
′ ∈ [d(x), u(x)]. Then since q(x

′
) is constant on x

′ ∈ [d(x), u(x)],∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)) =

∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)).

Therefore it implies that∫ x̄

x

q(x)π(x)dG(x) =

∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

q(x)dΠ(G(x)).

Since Π(φ) is convex, it is almost everywhere differentiable with Π
′
(G(x)) =

π̂(x) almost everywhere. This means that∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

q(x)π̂(x)dG(x).
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It is concluded that∫ x̄

x

q(x)π̂(x)dG(x) =

∫ x̄

x

q(x)π(x)dG(x).

The proof of (iii)

Since the linear combination of two convex functions is convex, (1−α)Π(φ)+

α
∫ φ

0
h(y)dy is convex function. Defining Πα(φ) by

Πα(φ) ≡
∫ φ

0

πα(h(y))dy = (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

Since

Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0

h(y)dy,

Πα(φ), which is the maximum convex function such that Πα(φ) ≥ Πα(φ),
satisfies

Πα(φ) ≥ Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

Here our proof is composed of the analysis of two cases: (a) the region of x
such that Π(G(x)) > Π(G(x)) and (b) the region of x such that Π(G(x)) =
Π(G(x)).

(a) For arbitrary x such that Π(G(x)) > Π(G(x)), there exists d(x) and
u(x) such as

Π(G(x
′
)) > Π(G(x

′
))

on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))).

At φ = G(d(x)) and φ = G(u(x)),

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

It implies that

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0

h(y)dy

at φ = G(d(x)) and φ = G(u(x)). Then since (i) of this lemma implies that
Π
′

α(φ) and Π(φ) are differentiable with respect to φ for any φ ∈ [0, 1], the
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derivatives of both sides of the above equation with respect to φ, if evaluated
at G(u(x)), have the following relationship:

Π
′

α(G(u(x))) ≤ (1− α)Π
′
(G(u(x))) + αu(x) = (1− α)π̂(u(x)) + αu(x).

Since π̂(u(x)) = π(u(x)) > u(x) (by u(x) > x) and π̂α(u(x)) = Π
′

α(G(u(x))),

π̂α(u(x)) < π̂(u(x))

for any α ∈ (0, 1]. For any x
′ ∈ (d(x), u(x)), π̂(x

′
) = π̂(u(x)) and π̂α(x

′
) ≤

π̂α(u(x)) (since π̂α(x) is non-decreasing in x). Therefore

π̂α(x
′
) < π̂(x

′
)

for any x
′ ∈ (d(x), u(x)).

(b) For any x > x such that Π(G(x)) = Π(G(x)),

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0

h(y)dy.

It implies

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0

h(y)dy

and
π̂α(x) = Π

′

α(G(x)) = (1− α)π̂(x) + αx < π̂(x)

for any α ∈ (0, 1], since π̂(x) = π(x) > x for x > x such that Π(G(x)) =
Π(G(x)).

The argument in (a) and (b) implies the statement of (iii).

The proof of (iv)

(a) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄) are obtained from Π
′
(φ = 0) ≥ Π

′
(φ = 0),

Π
′
(φ = 1) ≤ Π

′
(φ = 1) and Π

′
(G(x)) = π(x).

(b) The case of v(x) < π(x): For x > x such that Π(G(x)) = Π(G(x)),
π̂(x) = π(x) > v(x). For x > x such that Π(G(x)) > Π(G(x)), and for
u(x) that is defined in the proof of (iii), π̂(x) = Π

′
(G(u(x))) = π(u(x)) >

v(u(x)) ≥ v(x). It implies π̂(x) > v(x) for any x > x such that Π(G(x)) =
Π(G(x)). Therefore π̂(x) > v(x) for any x > x.
(c) The case of v(x) > π(x): For x > x such that Π(G(x)) = Π(G(x)),
π̂(x) = π(x) < v(x). For x > x such that Π(G(x)) > Π(G(x)), and for
d(x) that is defined in the proof of (iii), π̂(x) = Π

′
(G(d(x))) = π(d(x)) ≤

v(d(x)) < v(x). It implies π̂(x) < v(x) for any x > x such that Π(G(x)) >
Π(G(x)). Therefore π̂(x) < v(x) for any x > x.
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The proof of (v)

Step 1:

For any non-increasing q(x),∫ x̄

x

π(x)q(x)dG(x) =

∫ x̄

x

q(x)dΠ(G(x)) ≥
∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

π̂(x)q(x)dG(x)

Proof of Step 1

Since Π(G(x)) and Π(G(x)) are continuous, applying the integration by parts,∫ x̄

x

q(x)dΠ(G(x)) +

∫ x̄

x

Π(G(x))dq(x) = Π(1)q(x̄)− Π(0)q(x)

and ∫ x̄

x

q(x)dΠ(G(x)) +

∫ x̄

x

Π(G(x))dq(x) = Π(1)q(x̄)− Π(0)q(x).

With Π(1) = Π(1) and Π(0) = Π(0),∫ x̄

x

q(x)dΠ(G(x))−
∫ x̄

x

q(x)dΠ(G(x))

=

∫ x̄

x

(Π(G(x))− Π(G(x)))dq(x) ≥ 0

Step 2:∫
[x,x̄]

[V (q∗∗(x))− π(x)q∗∗(x)]dG(x) =

∫
[x,x̄]

[V (q∗∗(x))− π̂(x)q∗∗(x)]dG(x)

for q∗∗(x) ∈ arg maxq V (q)− π̂(x)q.

Proof of Step 2:

By the definition, q∗∗(x) is constant for each interval of x where π̂(x) is
constant. Then by (ii) of the lemma,∫ x̄

x

π(x)q∗∗(x)dG(x) =

∫ x̄

x

π̂(x)q∗∗(x)dG(x).

This completes the proof of Step 2.
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Step 3:

By Step 1, for any non-decreasing q(x),∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x) ≤
∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

By Step 2, if q∗(x) is the solution of

max

∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x)

subject to q(x) is non-increasing, then q∗(x) solves

max

∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

Then∫ x̄

x

[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x

[V (q∗(x))− π̂(x)q∗(x)]dG(x).

It completes the proof of (v).

Lemma 2 ĥ(θ | η) is non-increasing and continuous in θ on Θ(η) with
ĥ(θ(η) | η) = θ(η) and ĥ(θ | η) > θ for θ > θ(η).

Proof of Lemma 2

Since h(θ | η) is continuous, Lemma 1(i) implies that ĥ(θ | η) is continuous
and non-decreasing in θ. Since θ < h(θ | η) for θ > θ(η), Lemma 1(iv)
implies that θ < ĥ(θ | η) for θ > θ(η). By the continuity of ĥ(θ | η),
θ(η) ≤ ĥ(θ(η) | η). Lemma 1(iv) also implies ĥ(θ(η) | η) ≤ h(θ(η) | η) = θ(η).
Therefore ĥ(θ(η) | η) = θ(η).

References

Baron, B., and R. B. Myerson (1982), “Regulating a Monopolist with Un-
known Costs”, Econometrica, 50(4), 911-930.

35



Celik, G. and M. Peters (2011), “Equilibrium Rejection of a Mechanism”,
Games and Economic Behavior, 73(2), 375-387.

Che, Y. K. and J. Kim (2009), “Optimal Collusion-Proof Auctions”, Journal
of Economic Theory, 144(2), 565-603.

Faure-Grimaud, A., J. J. Laffont and D. Martimort (2003), “Collusion, Del-
egation and Supervision with Soft Information”, Review of Economic
Studies, 70(2), 253-279.

Fudenberg, D., and J. Tirole (1991), “Perfect Bayesian Equilibrium and
Sequential Equilibrium,” Journal of Economic Theory, 53(2), 236-260.

Mas-Colell, A., M. D. Whinston, and J. Green (1995), “Microeconomic
Theory”, Oxford University Press, New York.

Myerson, R. (1981), “Optimal Auction Design,” Mathematics of Operations
Research 6, 58–73.

36


