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1 Introduction

This material includes some arguments which supplement our paper ‘Ex Ante
Collusion and Design of Supervisory Institutions’. Some proofs, which are
omitted in the paper, are also provided in this note.

2 WPBE(wc) vs PBE(wc)

In the paper, our justification of WCP was based on the adoption of Weak
Perfect Bayesian Equilibrium (WPBE) as an equilibrium concept. This can
be provided also when we replace WPBE by the stronger notion of Perfect
Bayesian Equilibrium (PBE) in the sense of Fudenberg and Tirole (1991).
PBE differs from WPBE in imposing some restrictions on off-equilibrium-
path beliefs. In our context, there are two additional restrictions. One is
that following any offer of a non-equilibrium side-contract, the subsequent
continuation game must be played with initial beliefs that are the prior be-
liefs, owing to the “no-signaling-what-you-don’t know” principle. Second, if
the side-contract is rejected by some types of A in an equilibrium of this
continuation game, S’s belief about θ must be updated according to Bayes
rule. PBE(wc) is defined in exactly the same way as WPBE(wc) in Defini-
tion 5 except that WPBE is replaced by PBE. With this stronger equilibrium
concept, the proof of Proposition 3 in the paper is modified as follows.

While extending the necessity part is straightforward, the sufficiency part
is more involved owing to the need to impose Bayes rule on beliefs following
rejection of offered side contracts. In the proof provided in the text, a WPBE
was constructed to achieve a WCP allocation in which rejection of any de-
viating side contract resulted in noncooperative play of the grand contract
with prior beliefs. Such beliefs are not consistent with the requirement of
a PBE. Hence a more elaborate argument is needed to establish the same
result for PBE.

Proof of Proposition 3 using PBE

Proof of Necessity

Proposition 3 in our paper establishes that any allocation achieved as an
outcome of WPBE(wc) must be a WCP allocation satisfying participation
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constraints. Therefore it suffices to show that any PBE(wc) of WC3 is a
WPBE(wc).

By definition, every PBE is a WPBE. If the claim is false, there is a
PBE(wc) which is not a WPBE(wc). Then it must be the case that there
exists some distinct WPBE which results in an interim Pareto superior al-
location for the coalition. Using arguments in the paper, this alternative
allocation can equivalently be attained as the outcome of a WPBE in which
a null side contract is offered, and S and A play the GC noncooperatively
with prior beliefs. The latter WPBE is also a PBE since there is no scope for
updating of beliefs. Hence the Pareto dominating allocation can be attained
as the outcome of a PBE, contradicting the hypothesis that we started with
a PBE(wc) allocation.

Proof of Sufficiency

Step 1: Construction of grand contract

Suppose that (uA, uS, q) is a WCP allocation satisfying interim participa-
tion constraints. We show that there exists a grand contract which achieves
(uA, uS, q) as a PBE(wc) outcome.

The grand contract is constructed as follows:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where
MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(eA,mS) = XS(eA,mS) = q(eA,mS) = XS(mA, eS) = 0

for any (mA,mS).

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA, with T sufficiently large

• (XA((θA, ηA), eS), q((θA, ηA), eS)) = (X̂(m̃∗(θA)), q̂(m̃∗(θA))) where m̃∗(θ)
maximizes X̂(m̃)−θq̂(m̃) subject to m̃ ∈ ∆(K∪{e}) and the definition
of (X̂(m̃), q̂(m̃)) is provided in Section 3.5 of the paper.
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Step 2: Non-cooperative equilibrium

First we argue (mA(θ, η),mS(η)) = ((θ, η), η) is a non-cooperative equilib-
rium of the grand contract based on prior beliefs pφ(η) for η. WCP and A’s
participation constraint imply that A always has an incentive to participate
and report truthfully: mA(θ, η) = (θ, η). Since S’s interim participation con-
straint (E[uS(θ, η) | η] ≥ 0) holds, taking A’s strategy mA(θ, η) = (θ, η) as
given, S also has an incentive to participate and report truthfully.

This equilibrium results in allocation (uA(θ, η), uS(θ, η), q(θ, η)). By offer-
ing a null side-contract, S can always realize the allocation (uA(θ, η), uS(θ, η), q(θ, η))
and achieve interim payoff E[uS(θ, η) | η]. Therefore S would have an incen-
tive to offer a non-null side-contract only if the deviation results in a higher
payoff. We show that there exists a PBE of WC3 following the GC con-
structed above, in which S’s interim payoff from any deviating side contract
offer cannot exceed E[uS(θ, η) | η].

Consider any deviating side contract offer in state η, and let p(η) denote
beliefs of S regarding θ which result following rejection of this side contract
by A. S and A then play GC noncooperatively with beliefs p(η). By con-
struction, A has an incentive to report truthfully and participate in GC
irrespective of what S does, i.e., irrespective of the beliefs p(η) held by S (as
well as irrespective of the particular deviating side contract offered). If T is
sufficiently large, it is then a best response for S to report truthfully, con-
ditional on participating. We focus on PBEs satisfying these two properties
following rejection by A of any deviating side contract.

In what follows, there are two cases to consider. (a) Ep(η)[uS(θ, η)] ≥ 0,
in which case it is a best response for S to participate (and report truthfully)
in GC when it is played noncooperatively with beliefs p(η). We refer to this
as the T case. (b) Ep(η)[uS(θ, η)] < 0, whereby S exits from GC following
rejection of the side contract and attains zero payoff. We refer to this as the
E case.

Step 3: Side-contract choice.

Now we argue that without loss of generality, the choice of deviating side
contract can be limited to those where in every state θ, η: either A and
S both participate and submit consistent reports ηA = ηS, or where they
both exit. That they should submit consistent reports conditional on joint
participation, follows if T is sufficiently large. Suppose there is some state in
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which the side contract prescribes an exit for S alone. Given the construction
of the grand contract, for any (mA,mS) = ((θ, η), eS), there exists m̃

′ ∈
∆(MA ×MS\{(θ, η), eS}) such that

(XA(mA,mS) +XS(mA,mS), q(mA,mS)) = (XA(m̃
′
) +XS(m̃

′
), q(m̃

′
)),

given

(XA((θ, η), eS) +XS((θ, η), eS), q((θ, η), eS)) = (X̂(m̃∗(θA)), q̂(m̃∗(θA)))

and the definition of (X̂, q̂). Therefore m̃
′

and (mA,mS) = ((θ, η), eS) gen-
erate the same total payment and output target for the coalition. A similar
argument ensures that outcomes involving exit for A alone can be elimi-
nated without loss of generality, since (mA,mS) = (eA, η) generates the same
outcome XA = XS = q = 0 in the GC as (mA,mS) = (eA, eS).

Step 4: Continuation payoffs following non-null side-contract

Suppose that S offers some non-null side-contract SC for η, which is de-
scribed as (m̃(θ, η), ũA(θ, η)) which satisfies

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and m̃(θ, η) ∈ ∆(M̂). Let κ∗(θ) ∈ [0, 1] denote the

probability that θ ∈ Θ(η) accepts SC. We focus on PBE’s with the property
that A reports truthfully to S conditional on accepting the SC. The inequality
above ensures that this is optimal for A. In any such PBE, the payoff resulting
for S when A accepts the SC equals (in state θ, η):

XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η).

If A rejects SC, A and S play the grand contract non-cooperatively with
belief p∗(η), which is consistent with Bayes rule as required in a PBE. Se-
quential rationality of A’s participation decision κ∗(θ), given beliefs p∗(η) and
the non-cooperative equilibrium associated with p∗(η), implies the following.
In the T-case, κ∗(θ) = 0 (or 1 or ∈ [0, 1]) if and only if uA(θ, η) > (or < or
=) ũA(θ, η). A ends up with payoff

max{uA(θ, η), ũA(θ, η)},
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and S’s interim payoff is

E[κ∗(θ){XA(m̃(θ, η))+XS(m̃(θ, η))−θq(m̃(θ, η))−ũA(θ, η)}+(1−κ∗(θ))uS(θ, η) | η].

Conversely, in the E-case, κ∗(θ) = 0 (or 1 or ∈ [0, 1]) if and only if

X̂(m̃∗(θA))− θq̂(m̃∗(θA)) > (or < or =)ũA(θ, η).

A’s payoff is
max{X̂(m̃∗(θA))− θq̂(m̃∗(θA)), ũA(θ, η)}.

while S’s interim payoff is

E[κ∗(θ){XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η)} | η].

Step 5: Upper bound on S’s interim payoff in continuation play following
non-null side-contract

Here we establish an upper bound of S’s interim payoff in PBE of the
continuation game for non-null side-contract.

(i) T-Case

Consider the following problem: select m̂(θ, η), ûA(θ, η) to

maxE[XA(m̂(θ, η)) +XS(m̂(θ, η)− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and

ûA(θ, η) ≥ uA(θ, η).

for any θ ∈ Θ(η).
This is equivalent to problem P (η) (in our paper) used to character-

ize WCP allocations. The WCP property implies that (m̂(θ, η), ûA(θ, η)) =
((θ, η), uA(θ, η)) solves this problem and the maximum value is E[uS(θ, η) | η].

We now show that this is an upper bound on S’s interim payoff from the
deviating side contract in the T-case. Suppose that non-null side-contract
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(m̃(θ, η), t(θ, η)) is associated with acceptance probability κ∗(·) and the T-
case applies. Select (m̂(θ, η), ûA(θ, η)) as follows:

m̂(θ, η) = κ∗(θ)m̃(θ, η) + (1− κ∗(θ))I(θ, η)

and
ûA(θ, η) = max{ũA(θ, η), uA(θ, η)}

where I(θ, η) is the probability measure concentrated on (θ, η). In this al-
location, A earns exactly the same payoffs as in the continuation following
offer of side-contract (m̃(θ, η), t(θ, η)). Hence the agent’s incentive constraint
is satisfied, and so is the participation constraint by construction. Hence the
continuation play following offer of side-contract (m̃(θ, η), t(θ, η)) results in
an interim payoff for S which cannot exceed E[uS(θ, η) | η].

(ii) E-Case

Now consider the following problem: select m̂(θ, η), ûA(θ, η) to

maxE[XA(m̂(θ, η)) +XS(m̂(θ, η))− θq(m̂(θ, η))− ûA(θ, η) | η]

subject to m̂(θ, η) ∈ ∆(M̂),

ûA(θ, η) ≥ ûA(θ
′
, η) + (θ

′ − θ)q(m̂(θ
′
, η))

and
ûA(θ, η) ≥ X̂(m̃∗(θ))− θq̂(m̃∗(θ)).

In order to derive the solution of this problem, consider the problem of
maximizing

XA(m̂) +XS(m̂)− θq(m̂)

subject to m̂ ∈ ∆(M̂). Denoting its solution by m̂∗(θ), we have

XA(m̂∗(θ)) +XS(m̂∗(θ))− θq(m̂∗(θ)) = X̂(m̃∗(θ))− θq̂(m̃∗(θ)),

because of the definition of (X̂, q̂) and m̃∗(θ). Therefore in the above problem,
an upper bound of objective function is given by

E[XA(m̂∗(θ)) +XS(m̂∗(θ))− θq(m̂∗(θ))− {X̂(m̃∗(θ))− θq̂(m̃∗(θ))}|η] = 0

This upper bound can be achieved by selecting

(m̂(θ, η), ũA(θ, η)) = (m̂∗(θ), X̂(m̃∗(θ))− θq̂(m̃∗(θ))).
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Since this also satisfies all the constraints of the problem, this is a solution
of the problem. It follows that the maximum value is equal to zero.

Next check that this maximum value provides an upper bound on S’s
payoff in the continuation play following the offer of the deviating side con-
tract m̃(θ, η), t(θ, η) in which the E-case arises. Select (m̂(θ, η), ûA(θ, η)) as
follows:

m̂(θ, η) = κ∗(θ)m̃(θ, η) + (1− κ∗(θ))m̃∗(θ)
and

ûA(θ, η) = max{ũA(θ, η), X̂(m̃∗(θ))− θq̂(m̃∗(θ))}.
This generates the same payoffs for A as in the continuation play following
the offer of the deviating side contract m̃(θ, η), t(θ, η), and is therefore feasible
in the maximization problem above. Hence zero is an upper bound to S’s
interim expected payoff when the E-case applies.

Step 6: PBE in weak collusion game

We can construct a PBE in the overall weak collusion game as follows. If S
offers null side-contract, he receives E[uS(θ, η) | η]. If S offers any non-null
side-contract, it follows from Step 5 that his subsequent continuation payoff
is not larger than E[uS(θ, η) | η]. Since E[uS(θ, η) | η] ≥ 0, there exists a
PBE in which S offers a null side-contract on the equilibrium path, resulting
in allocation (uA(θ, η), uS(θ, η), q(θ, η)).

Step 7: Check PBE(wc) property

Finally check that PBE constructed in the above argument is also a
PBE(wc). Otherwise there would exist a PBE resulting in a Pareto superior
allocation for the coalition. This would violate the WCP property of the
allocation we started with.

3 Justification for WCP Allocations When

Contracts are Offered by Third Party

To address the problem highlighted by Celik and Peters (2011), the side-
contract is modelled as a two stage game played by S and A. The first stage
is a ‘participation’ stage where they communicate their participation deci-
sions in the side contract, in addition to some auxiliary messages in the event
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of agreeing to participate. The role of these messages is to allow A to sig-
nal information about his type while agreeing to participate, which can help
replicate whatever information is communicated by side-contract rejection in
a setting where communication concerning participation decisions is dichoto-
mous. A and S observe the messages sent by each other at the end of the
first stage. At the second stage, A and S submit type reports, conditional on
having agreed to participate at the first stage.

Let (Dp
A, D

p
S) denote the message sets of A and S at the participation

stage (or p-stage). eA ∈ Dp
A and eS ∈ Dp

S are the exit options of A and
S respectively. The message sets at this stage may include other auxiliary
messages as well.

What occurs at the second stage (‘execution’ or e-stage) depends on dp =
(dpA, d

p
S) chosen at the first stage.

• If dpA 6= eA and dpS 6= eS, A and S select (deA, d
e
S) ∈ De

A(dp) × De
S(dp)

respectively, where the conditional message sets De
A(dp), De

S(dp) are
specified by the side contract. The report to P is selected according
to m̃(dp, de) ∈ ∆(MA ×MS), associated with the transfers to A and S,
tA(dp, de) and tS(dp, de) respectively. Owing to wealth constraint of the
third party, these are constrained to satisfy tA(dp, de) + tS(dp, de) ≤ 0.

• If either dpA = eA or dpS = eS, A and S play GC non-cooperatively.

Given GC and η, the third party decides whether to offer a side-contract
SC(η) or not (i.e., offer a null side-contract NSC). If a non-null side-contract
is offered, A and S play a game denoted by GC ◦ SC(η) with two stages as
described above. On the other hand, if the third party offers a null side-
contract NSC at the first stage, A and S play GC non-cooperatively based on
prior beliefs pφ(η). The third-party’s objective is to maximize E[αuA(θ, η) +
(1− α)uS(θ, η) | η] in state η.

The refinement WPBE(wc) introduced in the paper for the case where
the side contract is offered by S, can now be extended as follows.

Definition 1 Following the selection of a grand contract by P, a WPBE(wc)
is a Weak Perfect Bayesian Equilibrium (WPBE) of the subsequent game in
which side-contracts are designed by a third party, which has the following
property. There does not exist some η for which there is a Weak Perfect
Bayesian Equilibrium (WPBE) of subgame WC3 in which (conditional on η)
the third-party’s payoff is strictly higher, without lowering the payoff of S and
any type of A.
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Definition 2 An allocation (uA, uS, q) is achievable in the weak collusion
game with side contracts designed by a third party assigning welfare weight
α to A, if there exists a grand contract and a WPBE(wc) of the subsequent
side contract subgame which results in this allocation.

Proposition 1 An allocation (uA, uS, q) is achievable in the weak collusion
game with side contracts designed by a third party assigning welfare weight
α to A, if and only if it is a WCP(α) allocation satisfying the interim par-
ticipation constraints uA(θ, η) ≥ 0 and E[uS(θ, η) | η] ≥ 0.

Proof of Proposition 1

Proof of Necessity

For some GC, suppose that allocation (uA, uS, q) is achieved in the game
with weak collusion. Suppose the allocation is achieved as the outcome of
a WPBE(wc) of subgame WC3 in which a non-null side contract SC∗(η) is
offered on the equilibrium path in some state η, which is rejected either by
some types of A, or by S. We show it can also be achieved as the outcome of a
WPBE(wc) in which a non-null side contract is offered in state η and always
accepted by A and S. Let dpA(θ, η) and dpS(η) denote A and S’s participation
decisions respectively (whether or not they chose the exit option at the first
stage). Following rejection by either A or S, they play the grand contract
GC based on updated beliefs p(· | dpA(θ, η), dpS(η), η). Let dp∗A (θ, η) denote A’s
decision, and dp∗S (η) S’s participation decisions on the equilibrium path.

Now construct a new side-contract S̃C(η) which differs from SC∗(η) by
replacing the message space Dp

A for A at the first stage by Dp
A×D

p
A. Similarly

S’s message space is now Dp
S × Dp

S. The interpretation is that the first
component of this message dpA is a participation decision, while the second
component d̃pA is a ‘signal’. This allows a decoupling of the participation
decision from sending a signal to the other player which changes beliefs with
which they play the grand contract noncooperatively in the event that the
side contract is rejected by someone. For example, if A selected dpA = eA in
the previous side-contract in order to send a signal about his type θ to S, the
same signal can be sent now through the second component of the message,
while opting to participate in the choice of the first component (by selecting
dpA 6= eA, d̃

p
A = eA). The first component of the message dpA now matters only

insofar as it is an exit decision or not; conditional on it not being an exit
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decision the precise message does not matter. If both decide to participate
(i.e., not exit), they move on to the second stage of the game, where the
mechanism replicates the allocation resulting on the equilibrium path of the
original WPBE associated with SC∗(η) (i.e., agrees with the second stage
mechanism in SC∗(η) whenever both agreed to participate in SC∗(η), and
otherwise assigns the allocation resulting from noncooperative play of GC
in the original WPBE). If one or both decides not to participate in S̃C(η),
they play GC noncooperatively with beliefs based on first stage messages
according to p(· | d̃pA(θ, η), d̃pS(η), η). Note that these beliefs do not depend
on dpA or dpS.

It is easily verified that there exists a WPBE where the third party offers
S̃C(η) in state η, in which A and S always accept the side-contract (i.e., in
state θ, η they respectively select dpA(θ, η) 6= eA, d

p
S(η) 6= eS while choosing

d̃pA(θ, η) equal to dpA(θ, η) in the original WPBE, and d̃pS(η) equal to dpS(η) in
the original WPBE). The underlying idea is that since A’s first stage report
d̃pA now affects beliefs at the second stage in exactly the same way that dpA did
in the original WPBE, it is optimal for A to choose d̃pA(θ, η) equal to dpA(θ, η)
in the original WPBE. Moreover, the first stage dpA report now affects only
A’s participation decision at the second stage, and by construction has no
effect on second stage allocations (conditional on participation). So it is
optimal for A to decide to participate. The same logic applies to S. Hence
the newly constructed strategies and beliefs constitute a WPBE. It can also
be verified that since the original equilibrium was a WPBE(wc), so is the
newly constructed equilibrium.

Next we show that if allocation (uA, uS, q) is realized in a WPBE (wc) in
which the offered side contract is not rejected on the equilibrium path, it must
be a WCP(α) allocation. Suppose not: the allocation resulting from some
non-null side contract (ũ∗A(θ, η), m̃∗(θ, η)) 6= (uA(θ, η), (θ, η)) solves problem
TP (η;α) for some η. Define ũ∗S(θ, η) ≡ X̂(m̃∗(θ | η)) − θq̂(m̃∗(θ | η)) −
ũ∗A(θ, η). It is evident that

E[αũ∗A(θ, η) + (1− α)ũ∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η],

ũ∗A(θ, η) ≥ uA(θ, η)

and
E[ũ∗S(θ, η) | η] ≥ E[uS(θ, η) | η].

There exists mc(θ, η) ∈ ∆(MA ×MS) in GC such that

(XA(mc(θ, η)) +XS(mc(θ, η)), q(mc(θ, η))) = (X̂(m̃∗(θ | η)), q̂(m̃∗(θ | η))).
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Now construct a new side-contract SC(η) which realizes

(ũ∗A(θ, η), ũ∗S(θ, η), q̂(m̃∗(θ | η)))

as a WPBE outcome, contradicting the hypothesis that (uA, uS, q) is realized
in a WPBE (wc). SC(η) is specified as follows:

• Dp ≡ Dp∗ where Dp∗ = (Dp∗
A , D

p∗
S ) are A and S’s message sets at the

participation stage of the original side-contract SC∗(η).

• De
A = Θ(η) and De

S = φ

• A’s choice of deA = θ ∈ Θ(η) generates the report mc(θ, η) to P, and
side transfers to A and S respectively as follows:

tA(θ, η) = ũ∗A(θ, η)− [XA(mc(θ, η))− θq(mc(θ, η))]

and
tS(θ, η) = ũ∗S(θ, η)−XS(mc(θ, η)).

Given any (dpA, d
p
S) with dpA 6= eA and dpS 6= eS at the participation stage, it

is optimal for A to always select deA = θ, since θ
′
= θ maximizes

XA(mc(θ
′
, η))− θq(mc(θ

′
, η)) + tA(θ

′
, η) = ũ∗A(θ

′
, η) + (θ

′ − θ)q̂(m̃∗(θ′ | η)).

At the participation stage, A is indifferent among any dpA ∈ Dp
A\{eA} as

the optimal response to dpS 6= eS, since the outcome in the continuation
game does not depend on this choice. Select beliefs consequent on non-
participation by either A or S in the same way as in the original equilibrium;
then participation continues to be optimal for both. In state η, responses
to all other side contract offers are unchanged. In all other states η′ 6= η,
strategies and beliefs are unchanged. Hence this is a WPBE resulting in
(ũ∗A(θ, η), ũ∗S(θ, η)), contradicting the WPBE (wc) property of the equilibrium
resulting in (uA, uS, q). This completes the proof of necessity.

Proof of Sufficiency

Take an allocation which is WCP(α) and satisfies interim participation con-
straints. We show it is achievable as a WPBE(wc) outcome following choice
of the following grand contract GC:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)
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where
MA = K ∪ {eA}

MS = Π ∪ {eS}

XA(mA,mS) = XS(mA,mS) = q(mA,mS) = 0

for (mA,mS) such that either mA = eA or mS = eS.

• (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (uA(θA, ηS)+θAq(θA, ηS), q(θA, ηS))
for ηA = ηS and (XA((θA, ηA), ηS), q((θA, ηA), ηS)) = (−T, 0) for ηA 6=
ηS

• XS((θA, ηA), ηS) = uS(θA, ηA) for ηS = ηA and XS((θA, ηA), ηS) = −T
for ηS 6= ηA

where T > 0 is sufficiently large. The WCP(α) property implies that uA(θ, η) ≥
uA(θ

′
, η)+(θ

′−θ)q(θ′ , η) for any θ, θ
′ ∈ Θ(η). The interim participation con-

straints imply that this grand contract has a non-cooperative pure strategy
equilibrium

(m∗A(θ, η),m∗S(η)) = ((θ, η), η)

based on prior beliefs.
For this grand contract, we claim there exists a WPBE(wc) resulting in

(m∗A(θ, η),m∗S(η)) = ((θ, η), η). Let the third party offer a null side contract,
following which A and S play truthfully in the GC noncooperatively with
prior beliefs. If the third party offers any non-null side contract, all types
of A and S reject it and subsequently play truthfully in the noncooperative
game with prior beliefs as long as either A or S rejects it. This is clearly a
WPBE. That it is a WPBE(wc) follows from the property that the allocation
is WCP(α).

This result also holds with PBE(wc) instead of WPBE(wc). The suffi-
ciency argument extends straightforwardly: the constructed WPBE of WC3
following the same GC is also a PBE as it satisfies the belief restrictions im-
posed by this notion. The WCP(α) property then implies it is a PBE(wc).
The first part of the necessity argument which augments first stage message
spaces and constructs an equivalent equilibrium is unaffected when WPBE
is replaced by PBE. The second part of the necessity argument also extends
given that any PBE(wc) is also WPBE(wc).
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4 Possibility of Second Best without Collu-

sion

Here we show that the second best allocation is uniquely achievable in the
absence of collusion between A and S. Any feasible allocation (uA, uS, q)
has to satisfy the incentive constraint of A and the interim participation
constraints of A and S:

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η) (1)

for any θ, θ
′ ∈ Θ(η) and any η ∈ Π

uA(θ, η) ≥ 0 (2)

for any (θ, η) ∈ K
E[uS(θ, η) | η] ≥ 0 (3)

for any η ∈ Π. We obtain the following result by using the grand contract
similar to one constructed in Faure-Grimaud, Laffont and Martimort (2003).

Proposition 2 Given any allocation (uA, uS, q) satisfying (1), (2) and (3),
there exists a grand contract such that (uA, uS, q) is realized in a unique non-
cooperative equilibrium.

Proof of Proposition 2:

Step 1: Construction of function D

From our assumption about informativeness of η, there exists a subset of Θ
with positive measure such that a(η | θ) 6= a(η

′ | θ) for any η, η
′ ∈ Π (η 6= η

′
).

Then we can select two intervals of θ with the positive probability measure,
Θ1 and Θ2, so that f(θ | η) > f(θ | η′) for θ ∈ Θ1 and f(θ | η) < f(θ | η′) for
θ ∈ Θ2. Then for any ((θ, η

′
), η) (η 6= η

′
), there exists a function D((θ, η

′
), η)

such that
E[D((θ, η

′
), η) | η] > 0 > E[D((θ, η

′
), η) | η′ ].

For instance let us select a function d((θ, η
′
), η) such that it is positive on Θ1,

negative on Θ2 and zero elsewhere. D((θ, η
′
), η) ≡ d((θ, η

′
), η) − a satisfies

the above inequality with the appropriate choice of a ∈ <.
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Step 2: Extension of allocation

For allocation (uA(θ, η), uS(θ, η), q(θ, η)) defined onK ≡ {(θ, η) | θ ∈ Θ(η), η ∈
Π} satisfying (1), (2) and (3), we construct (ũA(θ, η), ũS(θ, η), q̃(θ, η)) on
Θ×Π, which is an extension of (uA(θ, η), uS(θ, η), q(θ, η)) over the augmented
domain, such that

(a) (ũA(θ, η), ũS(θ, η), q̃(θ, η)) = (uA(θ, η), uS(θ, η), q(θ, η)) for (θ, η) ∈ K

(b) (ũA(θ, η), ũS(θ, η), q̃(θ, η)) = (uA(θ(η), η)+(θ(η)−θ)q(θ(η), η), uS(θ(η), η), q(θ(η), η))
for any (θ, η) ∈ K such that θ ∈ [θ, θ(η))

(c) (ũA(θ, η), ũS(θ, η), q̃(θ, η)) = (uA(θ̄(η), η)+(θ̄(η)−θ)q(θ̄(η), η), uS(θ̄(η), η), q(θ̄(η), η))
for any (θ, η) ∈ K such that θ ∈ (θ̄(η), θ̄] and uA(θ̄(η), η) + (θ̄(η) −
θ)q(θ̄(η), η) ≥ 0

(d) (ũA(θ, η), ũS(θ, η), q̃(θ, η)) = (0, 0, 0) for any (θ, η) ∈ K such that θ ∈
(θ̄(η), θ̄] and uA(θ̄(η), η) + (θ̄(η)− θ)q(θ̄(η), η) < 0.

(ũA(θ, η), q̃(θ, η)) satisfies (1) and (2) on Θ× Π, since

ũA(θ, η) ≥ 0

for any (θ, η) ∈ Θ× Π and

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̃(θ′ , η)

for any θ, θ
′ ∈ Θ and any η ∈ Π.

Step 3: Construction of grand contract

Now construct a grand contract

(XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA = Θ× Π ∪ {eA} and MS = Π ∪ {eS} as follows:

(i) For (mA,mS) = ((θ, η
′
), η), XA((θ, η

′
), η) = ũA(θ, η) + θq̃(θ, η)− T (η, η

′
)

with T (η, η
′
) = 0 for η = η

′
and T (η, η

′
) = T > 0 for η 6= η

′
where T is

sufficiently large.

(ii) For mA = eA, (XA(eA,mS), XS(eA,mS), q(eA,mS)) = (0, 0, 0) for any
mS ∈MS.
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(iii) For (mA,mS) = ((θ, η), η), XS((θ, η), η) = ũS(θ, η). For mS = eS,
XS(mA, eS) = 0 for any mA ∈MA.

(iv) For (mA,mS) = ((θ, η
′
), η) (η 6= η

′
),

XS((θ, η
′
), η) = D((θ, η

′
), η)

if (η, η
′
) satisfies E[ũS(θ, η

′
) | η] = E[XS((θ, η

′
), η

′
) | η] ≤ 0, and

XS((θ, η
′
), η) = ũS(θ, η

′
) +D((θ, η

′
), η).

if (η, η
′
) satisfies E[ũS(θ, η

′
) | η] = E[XS((θ, η

′
), η

′
) | η] > 0.

(v) For (mA,mS) = ((θ, η), eS),

(XA((θ, η), eS), q((θ, η), eS)) = (XA(m∗(θ)) +XS(m∗(θ)), q(m∗(θ)))

for any (θ, η) ∈ Θ× Π where

m∗(θ) ∈ max
m∈{(eA,eS)}∪MA×MS\eS

XA(m) +XS(m)− θq(m).

Step 4: Some properties of the grand contract

First we argue some implications from (iv) and our construction ofD((θ, η
′
), η).

From (iv), for η 6= η
′
, if E[ũS(θ, η

′
) | η] ≤ 0,

E[XS((θ, η
′
), η) | η] = E[D((θ, η

′
), η) | η] > 0 ≥ E[ũS(θ, η

′
) | η] = E[XS((θ, η

′
), η

′
) | η]

and if E[ũS(θ, η
′
) | η] > 0,

E[XS((θ, η
′
), η) | η] = E[XS((θ, η

′
), η

′
) | η] + E[D((θ, η

′
), η) | η]

> E[XS((θ, η
′
), η

′
) | η] = E[ũS(θ, η

′
) | η] > 0.

These are summarized into

E[XS((θ, η
′
), η) | η] > max{0, E[XS((θ, η

′
), η

′
) | η]}.

On the other hand, (3) implies

E[XS((θ, η
′
), η

′
) | η′ ] = E[uS(θ, η

′
) | η′ ] ≥ 0.
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Similarly from (iv), if E[ũS(θ, η
′
) | η] ≤ 0,

E[XS((θ, η
′
), η) | η′ ] = E[D((θ, η

′
), η) | η′ ] < 0 ≤ E[XS((θ, η

′
), η

′
) | η′ ]

and if E[ũS(θ, η
′
) | η] > 0,

E[XS((θ, η
′
), η) | η′ ] = E[XS((θ, η

′
), η

′
) | η′ ]+E[D((θ, η

′
), η) | η′ ] < E[XS((θ, η

′
), η

′
) | η′ ].

The above two inequalities are summarized into

E[XS((θ, η
′
), η

′
) | η′ ] > E[XS((θ, η

′
), η) | η′ ].

These arguments imply that if A reports truthfully, S has an incentive to
participate in the grand contract and report η truthfully, irrespective of A’s
report about η.2

Next we examine some implications of (v). By definition of m∗(θ) in (v),
(XA((θ, η), eS), q((θ, η), eS)) satisfies

XA((θ, η), eS)− θq((θ, η), eS)) ≥ XA((θ
′
, η), eS)− θq((θ′ , η), eS)

and
XA((θ, η), eS)− θq((θ, η), eS)) ≥ 0

for any (θ, η) ∈ Θ × Π. Therefore even when S does not participate on
the grand contract, A always has an incentive to participate to the grand
contract and report θ truthfully.3

Step 5: Non-cooperative equilibrium

Now let us check that the following strategies constitute a non-cooperative
equilibrium of the grand contract. All types of A always have incentives to
participate to the grand contract and report θ truthfully (associated with
the same report of η as S has). On the other hand, if A reports θ truthfully,
S also has an incentive to participate in the grand contract and report η
truthfully, regardless of A’s report about η. With S reporting η truthfully,
A has an incentive to report η truthfully in order to avoid a large penalty
T . Therefore there exists an equilibrium mA(θ, η) = (θ, η) and mS(η) = η
such that all types of A and S participate to the grand contract and have the
truthful report. Moreover it is evident that this is the unique equilibrium.

2Note that S’s indifference between the participation and the non-participation can be
broken with small adjustment of uS(θ, η).

3Note that the A’s indifference between the participation and the non-participation can
be broken with small adjustment of XA((θ, η), eS).
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5 Possibility of Second Best without Refine-

ment Restriction

Here we provide a proof regarding the possibility of second best allocation
in the case that we do not impose any refinement criterion on equilibrium
concept, besides WPBE. If the mechanism design problem is stated as selec-
tion of an allocation by the principal subject to the constraint that it can
be achieved as the outcome of some WPBE following a choice of a grand
contract, it is presumed that the principal is free to select continuation be-
liefs and strategies for noncooperative play of the grand contract following
off-equilibrium path rejections of offered side contracts by S to A.

Proposition 3 The second-best allocation is achievable in a WPBE of the
weak collusion game.

Proof of Proposition 3: For second best allocation (uSBA , uSBS , qSB), let
us construct the following grand contract which is a revelation mechanism
satisfying

(XA(mA,mS), XS(mA,mS), q(mS,mA);MS,MA)

where MS = Π ∪ {eS} and MA = Θ ∪ {eA}.

(i) XS(mA,mS) = 0 for any (mA,mS).

(ii) q(θ, η) = qSB(θ, η) and XA(θ, η) = θqSB(θ, η) +uSBA (θ, η), if (mA,mS) =
(θ, η) ∈ K, otherwise both are set equal to zero.

(iii) XA(eA,mS) = q(eA,mS) = 0 for any mS.

(iv) (XA(θ, eS), q(θ, eS)) = (X̂A(θ), q̂(θ)), which satisfies the following prop-
erties: (a) X̂A(θ) − θq̂(θ) ≥ X̂A(θ

′
) − θq̂(θ

′
) for any θ, θ

′ ∈ Θ, (b)
X̂A(θ)− θq̂(θ) ≥ 0 for any θ ∈ Θ and (c) there exists θ

′ ∈ Θ such that
q̂(θ

′
) = q(θ, η) and X̂A(θ

′
) > XA(θ, η) for any (θ, η) ∈ Θ× Π.4

4For instance, we can choose (X̂A(θ), q̂(θ)) such that (i) q̂(θ) is continuous and strictly
decreasing in θ with q̂(θ) = max(θ,η)∈Θ×Π q(θ, η) and q̂(θ̄) = min(θ,η)∈Θ×Π q(θ, η), and (ii)

X̂A(θ) = θq̂(θ) +
∫ θ̄
θ
q̂(y)dy +R for sufficiently large R > 0
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For this grand contract, we will check that the second best allocation is
achieved in WPBE of collusion game. In Bayesian game induced by this
grand contract, both (mA(θ, η),mS(η)) = (θ, η) and (mA(θ, η),mS(η)) =
(θ, eS) are non-cooperative equilibria, regardless of S’s belief about θ. Let
our focus be provided to WPBE such that (mA(θ, η),mS(η)) = (θ, η) is
realized in the event that a side-contract (SC) is not offered by S, while
that (mA(θ, η),mS(η)) = (θ, eS) is realized in the event that SC is offered by
S and is rejected by A. In the latter case, A earns X̂A(θ) − θq̂(θ). In order
to check that S does not benefit from offering a non-null side-contract, let us
consider the following problem:

maxE[XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η) | η]

subject to m̃(θ, η) ∈ ∆(MA ×MS),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and

ũA(θ, η) ≥ X̂A(θ)− θq̂(θ)

for any (θ, η). By the construction of (X̂A(θ), q̂(θ)) in (iv), m̃(θ, η) = (θ, eS)
(meaning probability measure with concentration on (θ, eS)) and ũA(θ, η) =
X̂A(θ)− θq̂(θ) solve this problem. Then the maximum value is equal to zero.
Since A at least receives X̂A(θ)− θq̂(θ) in the continuation game for non-null
side-contract, this maximum value provides an upper bound of S’s payoff in
WPBE from offering non-null side-contract. It means that S never benefits
from offering non-null side-contract. Consequently, there is a WPBE of this
game in which S never offers any side contract. This implies that S and A
play (mA(θ, η),mS(η)) = (θ, η) and the second-best allocation is achieved,
concluding the statement of the proposition.

6 Suboptimality of Pure Delegation: Proof

for More General Model

In the Appendix to the paper, we provided a proof of the suboptimality of
the pure delegation (in Proposition 1) which is specific to the case of strictly
concave V satisfying Inada conditions. With small modification of the proof,
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we can show that this result holds in more general environments that include
the case of linear V or an indivisible good. Here we impose only the following
weak assumption. Suppose that V (q) is differentiable, increasing and concave
with V (0) = 0, and the domain of q is Q where Q is a closed set with 0 ∈ Q
and q ≥ 0 for any q ∈ Q. q∗(h) is defined as

q∗(h) ∈ arg max
q∈Q

V (q)− hq.

Assumption 1 q∗(h) exists for any h ≥ θ and there exists h > θ such that
q∗(h) > 0.

This is a reasonable assumption, since if q∗(h) = 0 for any h > θ, P never
benefit from hiring A, even when θ is observed by P. This assumption also
implies ΠNS = E[V (qNS(θ)) − H(θ)qNS(θ)] > 0 where qNS(θ) maximizes
V (q)−H(θ)q, since qNS(θ) > 0 for θ sufficiently close to θ.

This assumption is satisfied when V (q) is strictly concave, satisfying Inada
conditions and Q = R+, or V (q) = V q with Q = [0, 1]. Then we obtain the
following statement.

Proposition 4 ΠDS < ΠNS: delegated supervision is worse for the Principal
compared to hiring no supervisor.

Proof of Proposition 4:
At the first step, note that the optimal side contract problem for S in DS

involves an outside option for A which is identically zero. This reduces to a
standard problem of contracting with a single agent with cost ĥ(θ|η), which
is obtained by applying the ironing rule to h(θ|η) and distribution F (θ|η).
P’s prior over this supplier’s cost is given by distribution function

G(h) ≡ Pr((θ, η) | ĥ(θ | η) ≤ h)

for h ≥ θ and G(h) = 0 for h < θ. Let G(h | η) denote the cumulative
distribution function of h = ĥ(θ | η) conditional on η:

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η)

for h ≥ ĥ(θ(η) | η)(= θ(η)) and G(h | η) = 0 for h < θ(η). Then G(h) =
Ση∈Πp(η)G(h | η). Since ĥ(θ | η) is continuous on Θ(η), G(h | η) is strictly
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increasing in h on [θ(η), ĥ(θ̄(η) | η)]. However, G(h | η) may fail to be
left-continuous.

Hence P’s problem in DS reduces to

maxEh[V (q(h))−X(h)]

subject to
X(h)− hq(h) ≥ X(h

′
)− hq(h′)

for any h, h
′ ∈ [θ, h̄] and

X(h)− hq(h) ≥ 0

for any h ∈ [θ, h̄] where the distribution function of h is G(h) and h̄ ≡
maxη∈Π ĥ(θ̄(η) | η). The corresponding problem in NS is

maxEθ[V (q(θ))−X(θ)]

subject to
X(θ)− θq(θ) ≥ X(θ

′
)− θq(θ′)

for any θ, θ
′ ∈ Θ and

X(θ)− θq(θ) ≥ 0

for any θ ∈ Θ. The two problems differ only in the underlying cost dis-
tributions of P: G(h) in the case of DS and F (θ) in the case of NS. Since
θ < ĥ(θ | η) for θ > θ(η),

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) < Pr(θ | θ ≤ h, η) = F (h | η)

for h ∈ (θ(η), ĥ(θ̄(η) | η)), implying

G(h) = Ση∈Πp(η)G(h | η) < Ση∈Πp(η)F (h | η) = F (h)

for any h ∈ (θ, h̄). Therefore the distribution of h in DS (strictly) dominates
that of θ in NS in the first order stochastic sense. Since ĥ(θ̄(η) | η) > θ̄ for
η such that θ̄(η) = θ̄, h̄ > θ̄.

The optimal payoffs in DS and NS are given respectively by

ΠDS = max
q(h)∈Q

∫ h̄

h

[V (q(h))− hq(h)−
∫ h̄

h

q(y)dy]dG(h)
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subject to q(h) is non-increasing in h, and

ΠNS = max
q(h)∈Q

∫ θ̄

θ

[V (q(h))− θq(h)−
∫ θ̄

h

q(h)dy]dF (h)

subject to q(h) is non-increasing in h. Let qDS(h) and qNS(h) be optimal
output schedule in DS and NS respectively.

First suppose that qDS(h) is constant on (h, h̄), which may occur depend-
ing on V (q) and Q. With qDS(h) = q,∫ h̄

h

[V (q(h))− hq(h)−
∫ h̄

h

q(y)dy]dG(h) = V (q)− h̄q.

Therefore ΠDS = V (q∗(h̄))− h̄q∗(h̄). If q∗(h̄) = 0, ΠDS = 0 < ΠNS. Suppose
that q∗(h̄) > 0. Then q(h) = q∗(h̄) for h ∈ [θ, θ̄] is implementable in NS,
bringing the P’s payoff V (q∗(h̄))− θ̄q∗(h̄). With h̄ > θ̄, it is large than ΠDS.

Next suppose that qDS(h) is not constant on (h, h̄), implying ΠDS >
V (q∗(h̄)) − h̄q∗(h̄). First we show that qDS(h) ≤ q∗(h) for any h ∈ [h, h̄].
Suppose that there exists some interval over which qDS(h) > q∗(h). Then
we can replace the portion of qDS(h) with qDS(h) > q∗(h) by q∗(h), without
violating the constraint that q(h) is non-increasing. It raises the value of
the objective function, since V (qDS(h)) − hqDS(h) ≤ V (q∗(h)) − hq∗(h) for

h where qDS(h) is replaced by q∗(h), and
∫ h̄
h
q(y)dy decreases with this re-

placement. We obtain a contradiction, implying that qDS(h) ≤ q∗(h) almost
everywhere on [h, h̄]. We can select q∗(h) which is left-continuous without
loss of generality. Then since both q∗(h) and qDS(h) are non-increasing,
qDS(h) ≤ q∗(h) must hold for any h ∈ [h, h̄].

Define

Φ(h) ≡ V (qDS(h))− hqDS(h)−
∫ h̄

h

qDS(y)dy.

We claim that Φ(h) is left-continuous and bounded. First we show that with-
out loss of generality our attention can be restricted to the case that qDS(h)
is left-continuous. Otherwise, there exists h

′ ∈ (h, h̄) such that qDS(h
′−) >

qDS(h
′
). Now consider q̃DS(h) (which is left-continuous at h

′
) such that

q̃DS(h
′
) = qDS(h

′−) and q̃DS(h) = qDS(h) for any h 6= h
′
. This is possible

because Q is closed set. Defining Φ̃(h) ≡ V (q̃DS(h))−hq̃DS(h)−
∫ h̄
h
q̃DS(y)dy,
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observe that Φ̃(h) = Φ(h) for h 6= h
′

and Φ̃(h) ≥ Φ(h) when h = h
′
. Then∫

[h,h̄]

Φ̃(h)dG(h) =

∫
[h,h̄]\h′

Φ̃(h)dG(h) + Φ̃(h
′
)[G(h

′
+)−G(h

′−)]

≥
∫

[h,h̄]\h′
Φ̃(h)dG(h) + Φ(h

′
)[G(h

′
+)−G(h

′−)] =

∫
[h,h̄]

Φ(h)dG(h).

This implies in turn that our attention is restricted to left-continuous Φ(h)
without loss of generality. Φ(h) is also bounded, since 0 ≤ qDS(h) ≤ q∗(h)
for any h and q∗(h) is bounded from Assumption 1.

Next we claim that Φ(h) is non-increasing in h and is not constant on
(h, h̄). To show the former, note that for any h, we have

lim
ε→0+

Φ(h+ ε)− Φ(h)

ε

= lim
ε→0+

(1/ε)[V (qDS(h+ ε))− (h+ ε)qDS(h+ ε)−
∫ h̄

h+ε

qDS(y)dy

− [V (qDS(h))− hqDS(h)−
∫ h̄

h

qDS(y)dy]]

= [V
′
(q̂(h))− h] lim

ε→0+

qDS(h+ ε)− qDS(h)

ε

− qDS(h+) + lim
ε→0+

(1/ε)

∫ h+ε

h

qDS(y)dy

= [V
′
(q̂(h))− h] lim

ε→0+

qDS(h+ ε)− qDS(h)

ε

for some q̂(h) ∈ [qDS(h+), qDS(h)]. If V
′
(q∗(h)) ≥ h, this is non-positive

since V
′
(q̂(h)) ≥ V

′
(qDS(h)) ≥ V

′
(q∗(h)) ≥ h (from qDS(h) ≤ q∗(h) and

the concavity of V (q)) and limε→0+
qDS(h+ε)−qDS(h)

ε
≤ 0. This is zero, if

V
′
(q∗(h)) < h, since it implies q∗(h) = 0 and qDS(h

′
) = 0 for any h

′ ≥ h,

resulting in limε→0+
qDS(h+ε)−qDS(h)

ε
= 0. Because of left-continuity of Φ(h),

it implies that Φ(h) is non-increasing in h.
In order to show that Φ(h) is not constant on (h, h̄), suppose otherwise

that Φ(h) is constant. Then

Φ(h) = Φ(h̄−) = V (qDS(h̄−))− h̄qDS(h̄−),
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which is equal to ΠDS. This contradicts that

ΠDS > V (q∗(h̄))− h̄q∗(h̄) ≥ V (q∗(h̄−))− h̄q∗(h̄−).

Now consider the contracting problem in NS with cost distribution F (h).
Since qDS(h) is non-increasing in h, it is feasible for P to select this output

schedule in NS. Hence ΠNS ≥
∫ h̄
h

Φ(h)dF (h). Therefore if
∫ h̄
h

Φ(h)dF (h) >∫ h̄
h

Φ(h)dG(h) = ΠDS, it follows that ΠNS > ΠDS. Since G(h) is right-

continuous and Φ(h) is left-continuous and bounded, we can integrate by
parts:∫ h̄

h

Φ(h)dG(h) +

∫ h̄

h

G(h)dΦ(h) = Φ(h̄)G(h̄)− Φ(h)G(h) = Φ(h̄).

Similarly for F (h) which is continuous,∫ h̄

h

Φ(h)dF (h) +

∫ h̄

h

F (h)dΦ(h) = Φ(h̄)F (h̄)− Φ(h)F (h) = Φ(h̄).

Hence ∫ h̄

h

Φ(h)dF (h)−
∫ h̄

h

Φ(h)dG(h) =

∫ h̄

h

[G(h)− F (h)]dΦ(h).

By the property of Φ(h) and F (h) > G(h) for h ∈ (h, h̄), this is positive.

7 Optimality of Conditional Delegation

Here we provide the formal proof of Proposition 6 in the paper, and also
some arguments about the reverse pattern of modified delegation where P
communicates only with A on the equilibrium path.

Proof of Proposition 6

Step 1: Construction of grand contract

For WCP allocation (uA, uS, q) which satisfies interim participation con-
straints of A and S, define X(θ, η) ≡ uA(θ, η) +uS(θ, η) + θq(θ, η) for (θ, η) ∈
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K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π}. Let us construct the following grand contract
GC with sufficiently large T > 0:

(XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA = {φ} ∪ M̃A and MS = K ∪ {e} ∪ M̃S, associated with M̃A ≡
K ∪ {eA} and M̃S ≡ Π ∪ {eS}, as follows:

• For (mA,mS) = ((θ, η), η) ∈ M̃A × M̃S,

(XA((θ, η), η), XS((θ, η), η), q((θ, η), η))

= (uA(θ, η) + θq(θ, η), uS(θ, η), q(θ, η))

• For (mA,mS) = ((θ, η), η
′
) ∈ M̃A × M̃S with η 6= η

′
,

(XA, XS, q) = (−T,−T, 0)

• For (mA,mS) ∈ M̃A × M̃S with at least one of either mA = eA or
mS = eS,

(XA, XS, q) = (0, 0, 0)

• For (mA,mS) = (φ, (θ, η)),

(XA(φ, (θ, η)), XS(φ, (θ, η)), q(φ, (θ, η))) = (0, X(θ, η), q(θ, η)).

• For (mA,mS) = (φ, e),

(XA(φ, e), XS(φ, e), q(φ, e) = (0, 0, 0).

• For any other (mA,mS) ∈MA ×MS,

(XA, XS, q) = (−T,−T, 0)

Let us check that this mechanism achieves (uA, uS, q) in WPBE(wc) where
P receives the message only from S on the equilibrium path.

Step 2: Non-cooperative equilibrium based on prior beliefs
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Give η and S’s prior belief about θ, when A takes mA(θ, η) = (θ, η), if S takes
mS(η) = eS, his payoff is equal to zero, and if S takes either either mS(η) = η

′

with η
′ 6= η or mS(η) ∈ K ∪ {e}, his payoff is −T . S’s payoff E[uS(θ, η) |

η] ≥ 0 is maximized at mS(η) = η. For mS(η) = η, if A who observes
(θ, η) takes mA(θ, η) = (θ

′
, η), the A’s payoff is uA(θ

′
, η) + (θ

′ − θ)q(θ
′
, η),

which is maximized at θ
′

= θ, bringing uA(θ, η) to A. On the other hand,
the A’s payoff is −T for mA = φ or (θ

′
, η
′
) with η

′ 6= η, and 0 for eA. Since
uA(θ, η) ≥ 0, the A’s payoff is maximized at mA(θ, η) = (θ, η). Therefore
(mA(θ, η),mS(η)) = ((θ, η), η) is a non-cooperative equilibrium of the grand
contract based on prior beliefs.

Step 3: Optimal side-contract

Let us focus on WPBE where the non-cooperative equilibrium based on prior
beliefs (described above) is always realized in the event that any non-null side-
contract is rejected by A. The problem to solve the optimal side-contract is
set up as follows:

maxE[XA(m̃(θ, η)) +XS(m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η) | η]

subject to m̃(θ, η) ∈ ∆(MA ×MS),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ, η))

ũA(θ, η) ≥ uA(θ, η).

Without loss of generality, our attention is restricted to m̃(θ, η) which places
positive probability only on mS ∈ K ∪ {e} and mA = φ, since for any
(mA,mS) ∈ M̃A × M̃S, there exists m

′
S ∈ K ∪ {e} such that

(XA(mA,mS)+XS(mA,mS), q(mA,mS)) = (XA(φ,m
′

S)+XS(φ,m
′

S), q(φ,m
′

S))

and for any other (mA,mS), the total payment is a large negative number. By
the definition of allocation (uA(θ, η), uS(θ, η), q(θ, η)) which satisfies WCP,

(m̃(θ, η), ũA(θ, η)) = ((φ, (θ, η)), uA(θ, η))

solves this problem. It implies that there exists a WPBE such that (i) S offers
non-null side-contract on the equilibrium path, (ii) all types of A accept it
and reports θ truthfully, (iii) (θ, η) is reported by S to P and S receives X(θ, η)
from P, and (iv) t(θ, η) = uA(θ, η)− [XA(θ, η)− θq(θ, η)] is transferred from
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S to A. In this WPBE, only S sends the report to P on the equilibrium path,
resulting in allocation (uA(θ, η), uS(θ, η), q(θ, η)). It is also a WPBE(wc),
since by the property of WCP, there is no room to makes S better off while
keeping A’s payoff at least uA(θ, η).

The following is the statement about the reverse pattern of modified del-
egation where P communicates only with A on the equilibrium path.

Proposition 5 Any allocation which is achievable in weak collusion game is
achieved as a WPBE(wc) outcome of the mechanism where P communicates
and transacts with A alone on the equilibrium path.

Proof of Proposition 5: The proof is the same as that of Proposition 6.
It differs only in the construction of a grand contract. The message sets are
modified to MA = K ∪ {e} ∪ M̃A and MS = {φ} ∪ M̃S such that A instead
of S takes the report of (θ, η) or e. A scheme of payments and output is also
replaced by

(XA((θ, η), φ), XS((θ, η), φ), q((θ, η), φ)) = (X(θ, η), 0, q(θ, η))

where A receives the payment from P conditional on the report of (mA,mS) =
((θ, η), φ). It is evident from the proof of Proposition 6 that (mA(θ, η),mS(η)) =
((θ, η), η) is still a non-cooperative equilibrium of the grand contract based
on the prior belief. With the presumption of S’s perfect bargaining power,
the problem to solve the optimal side-contract reduces to the same one as in
Step 3 of the proof of Proposition 6. It induces the same WPBE except that
P communicates and transacts only with A on the equilibrium path.

8 Effect of Re-Allocation of Bargaining Power

Proposition 7 in the paper states the independence of the set of WCP (α)
allocation of α. Here we provide its formal proof:

Proof of Proposition 7

We show that the set of implementable allocation is independent of α. Sup-
pose otherwise that (uA(θ, η), uS(θ, η), q(θ, η)) is WCP allocation in α, but
not in α

′
(α 6= α

′
). It implies that for some η, (m̃(θ | η), ũA(θ, η)) =
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((θ, η), uA(θ, η)) is not the solution of TP (η;α
′
) defined for (uA(θ, η), uS(θ, η), q(θ, η)).

If (m̃∗(θ | η), u∗A(θ, η))(6= ((θ, η), uA(θ, η))) is a solution of TP (η;α
′
), it satis-

fies all constraints of TP (η;α
′
) and realizes a higher payoff to the third party

than in the choice of (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)):

E[(1− α′)[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η)] + α
′
u∗A(θ, η) | η]

> E[(1− α′)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + α
′
uA(θ, η) | η].

It also satisfies A and S’s participation constraints:

u∗A(θ, η) ≥ uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] ≥ E[uS(θ, η) | η].

On the other hand, since (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves
TP (η;α),

E[(1− α)[X̂(θ, η)− θq̂(θ, η)− uA(θ, η)] + αuA(θ, η) | η]

≥ E[(1− α)[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η)] + αu∗A(θ, η) | η]

Let us consider three cases: (i) α ∈ (0, 1), (ii) α = 1 and (iii) α = 0.

(i) α ∈ (0, 1)

The last three inequalities imply

u∗A(θ, η) = uA(θ, η)

and

E[X̂(m̃∗(θ | η))− θq̂(m∗(θ | η))− u∗A(θ, η) | η] = E[uS(θ, η) | η].

But this is not compatible with the first inequality. We obtain a contradic-
tion.

(ii) α = 1
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With α = 1, the above four inequalities imply

E[uA(θ, η) | η] = E[u∗A(θ, η) | η]

and

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η] > E[uS(θ, η) | η].

But for sufficiently small ε > 0, the choice of

(m̃(θ | η), ũA(θ, η)) = (m̃∗(θ, η), u∗A(θ, η) + ε)

(instead of ((θ, η), uA(θ, η))) in TP (η;α = 1) generates a higher value of the
objection function without violating any constraint. We obtain a contradic-
tion.

(iii) α = 0

With α = 0, the four inequalities imply

E[uS(θ, η) | η] = E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η]

and
E[u∗A(θ, η) | η] > E[uA(θ, η) | η].

Since u∗A(θ, η) ≥ uA(θ, η) for any θ, there is a subset of θ with the pos-
itive measure such that u∗A(θ, η) > uA(θ, η). Consider a modified prob-
lem of TP (η;α = 0) such that the constraint ũA(θ, η) ≥ uA(θ, η) is re-
placed by ũA(θ, η) ≥ u∗A(θ, η) in TP (η;α = 0). Since the optimal solution
(m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) in TP (η;α = 0) violates the con-
straint, the maximum value of the objective function in the modified problem
would become lower. On the other hand, (m̃∗(θ | η), u∗A(θ, η)) satisfies all the
constraints of the modified problem, and brings

E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

The argument implies

E[uS(θ, η) | η] > E[X̂(m̃∗(θ | η))− θq̂(m̃∗(θ | η))− u∗A(θ, η) | η].

We obtain a contradiction.
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9 Coalitional Incentive and Participation Con-

straint in Indivisible Good Case

Here we provide the characterization of the payment schedules which satisfy
the coalitional incentive and participation constraints in the model of Section
6 with an indivisible good. For a given pair of thresholds (θ1, θ2), let K0 and
K1 be the set of (θ, η) such that q(θ, η) = 0 and q(θ, η) = 1 respectively, i.e.

K0 ≡ {(θ, ηi) | θ > θi}.

and
K1 ≡ {(θ, ηi) | θ ≤ θi}.

For the moment we suppose that both K0 and K1 are not empty. The coali-
tional incentive constraint implies that the total payment X to the coalition
depends only on the output level. Therefore there exist X0 and X1 such that
X(θ, η) = X0 for any (θ, η) ∈ K0 and X(θ, η) = X1 for any (θ, η) ∈ K1. The
coalitional incentive constraint reduces to the existence of z(· | η) ∈ Z(η) for
η ∈ {η1, η2} such that

X1 − z(θ | η) ≥ X0

for any (θ, η) ∈ K1 and
X0 ≥ X1 − z(θ | η)

for any (θ, η) ∈ K0. With b ≡ X1 −X0, the payment schedule is interpreted
as a pair of b (as a bonus for high output) and X0 (as a basic salary). Since
z(θ | η) is continuous for θ, taking thresholds (θ1, θ2) (with nonempty K0

and K1) as given, the coalitional incentive constraint implies that b satisfy
the following conditions:

• If θi ∈ (θi, θ̄i), b = z(θi | ηi) for some z(· | ηi) ∈ Z(ηi).

• If θi = θi, b ≤ z(θi | ηi) for some z(· | ηi) ∈ Z(ηi).

• If θi = θ̄i, b ≥ z(θ̄i | ηi) for some z(· | ηi) ∈ Z(ηi).

The following lemma is useful for simplifying the characterization of the
coalitional incentive constraint.

Lemma 1 Under the assumption that li(θ) and hi(θ) are increasing in θ, for
any (b, θ̃) such that b ∈ [li(θ̃), hi(θ̃)], there exists z(· | η) ∈ Z(η) such that
z(θ̃ | η) = b and z(· | η) is not transformed by ironing procedure at θ̃.
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Proof of Lemma 1

For any (b, θ̃) such that b ∈ [li(θ̃), hi(θ̃)], we can select Λ(θ | ηi) = αF (θ | ηi)
for θ < θ̄i and Λ(θ̄i | η) = 1 with α such that b = θ̃ + (1− α)F (θ̃|ηi)

f(θ̃|ηi)
.

From this lemma, we can always construct z(· | ηi) ∈ Z(ηi) such that
b = z(θi | ηi) and z(· | ηi) is not ironed at θi if and only if b ∈ [li(θi), hi(θi)].
Then we can state that (θ1, θ2, z) satisfies the coalitional incentive constraint
if and only if for any i ∈ {1, 2},

(i) If θi ∈ (θi, θ̄i), li(θi) ≤ b ≤ hi(θi)

(ii) If θi = θi, b ≤ θi

(iii) If θi = θ̄i, b ≥ θ̄i

Next consider implications of the coalitional participation constraint, which
has to be satisfied in the ex-ante collusion case, but not in the interim
collusion case. It implies X1 − z(θ | η) ≥ 0 for any (θ, η) ∈ K1 and
X0 ≥ 0 for any (θ, η) ∈ K0. Since the coalitional incentive constraint implies
X1 − z(θ | η) ≥ X0 for any (θ, η) ∈ K1, the condition reduces to X0 ≥ 0.

Note that the above argument is based on non-empty K0 and K1. Here
consider the case that one of either K0 or K1 is empty. Then we do not
need to consider the coalitional incentive constraint, since the total payment
takes constant value for any state. If K0 is empty, the output is always equal
to 1. Then the total payment to the coalition would always take constant
value X1 and the coalitional participation constraint reduces to X1 ≥ 1, since
there exists z(· | η) ∈ Z(η) such that X1 − z(θ | η) ≥ 0 for any (θ, η) if and
only if X1 ≥ 1. If K1 is empty, the output is always equal to 0, making the
total payment equal to X0 in all states. Then the coalitional participation
constraint X0 ≥ 0 needs to be satisfied.

10 Ex-Post Participation Constraint of S

The paper argues the case that the participation constraint for S is required
to hold ex post rather than interim, in footnote 35. Here we provide some
results about S’s value for both cases of divisible good and indivisible good.
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10.1 Divisible Good Case

Suppose that S has the option to exit from both side-contract and grand-
contract at the ex-post stage. Then achievable allocation must satisfy ex-
post participation constraint: uS(θ, η) ≥ 0 for any (θ, η) ∈ K instead of
E[uS(θ, η) | η] ≥ 0, in addition to WCP and A’s participation constraint.
Here we examine whether or not S’s value is generated through small vari-
ation from optimal allocation in NS. Since uS(θ, η) = 0 in the optimal NS,
we need to generate a variation with a positive payoff uS(θ, η) > 0 for some
(θ, η).

Before the formal statement, let us begin with providing some intuitive
arguments. In order to find a variation which is profitable to P, let us consider
the following problem for a given η:

maxE[V (qNS(z(θ | η)))−XNS(z(θ | η)) | η]

subject to z(· | η) ∈ Z(η) and

uS(θ, η) = XNS(z(θ | η))− θqNS(z(θ | η))−
∫ θ̄

θ

qNS(z(y | η))dy ≥ 0

for any θ ∈ Θ(η).5 Since z(θ | η) = θ satisfies all constraints and brings
the optimal payoff in NS, our investigation is provided in whether or not
this problem has the solution z(· | η) which differs from z(θ | η) = θ. If
this is true, S is still valuable in an organization with stronger constraint
uS(θ, η) ≥ 0.

In order to investigate our question, it is useful to consider the following
revised maximization problem.

maxE[V (qNS(z(θ | η)))−XNS(z(θ | η)) | η]

subject to z(· | η) ∈ Z(η) and

uS(θ(η), η) = XNS(z(θ(η) | η))−θ(η)qNS(z(θ(η) | η))−
∫ θ̄

θ(η)

qNS(z(y | η))dy = 0.

5(XNS(z), qNS(z)) is defined as XNS(z) ≡ zqNS(z) +
∫ θ̄
z
qNS(y)dy and qNS(z) max-

imizes V (q) − H(z)q for z ∈ Θ, qNS(z) ≡ qNS(θ) for z < θ and qNS(z) ≡ qNS(θ̄) for
z > θ̄.
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The constraint is satisfied with z(· | η) with z(θ | η) = θ, bringing the
value equal to the optimal payoff in NS. For λ ≥ 0, define the following
Lagrangean for the revised problem:

L ≡ E[V (qNS(z(θ | η)))−XNS(z(θ | η)) | η] + λ[XNS(z(θ(η) | η))

− θ(η)qNS(z(θ(η) | η))−
∫ θ̄

θ(η)

qNS(z(y | η))dy]

L can be rewritten to

E[V (qNS(z(θ | η)))−XNS(z(θ | η))− λ

f(θ | η)
qNS(z(θ | η)) | η]

+ λ[(z(θ(η) | η)− θ(η))qNS(z(θ(η) | η)) +

∫ θ̄(η)

z(θ(η)|η)

qNS(z)dz]

Taking some θ as given, the marginal effect in the change of z(θ | η) evaluated
at θ is shown by

∂[V (qNS(z))−XNS(z)− λ
f(θ|η)

qNS(z)]

∂z
|z=θ

= [V
′
(qNS(θ))− θ − λ

f(θ | η)
]qNS

′
(θ)

= [
F (θ)

f(θ)
− λ

f(θ | η)
]qNS

′
(θ) =

1

a(η | θ)f(θ)
[F (θ)a(η | θ)− p(η)λ]qNS

′
(θ).

If there exists (θ
′
, θ
′′
) ⊂ Θ(η) so that F (θ)a(η | θ) is decreasing in θ on

(θ
′
, θ
′′
), there are λ > 0 and θ̂ so that F (θ)a(η | θ)− p(η)λ > 0 on (θ

′
, θ̂) and

F (θ)a(η | θ)−p(η)λ < 0 on (θ̂, θ
′′
). Then there must exist an output schedule

with qNS(z(θ | η)) > qNS(θ) on (θ
′
, θ̂) and qNS(z(θ | η)) < qNS(θ) on (θ̂, θ

′′
)

which improves L over the optimal payoff in NS. With uS(θ(η), η) = 0, this
selection of output schedule does not violate the constraint in the original
problem: uS(θ, η) ≥ 0, since uS(θ, η) is nondecreasing in (θ

′
, θ̂), nonincreasing

in (θ̂, θ
′′
) and uS(θ̄, η) = 0 with z(θ̄, η) = θ̄. This argument suggests that the

following formal statement holds.

Proposition 6 If there exists η and an interval of θ so that F (θ)a(η | θ)
is decreasing in θ, there exists a WCP allocation satisfying uS(θ, η) ≥ 0 and
uA(θ, η) ≥ 0 for any (θ, η) ∈ K so that the P’s payoff is higher than that in
the optimal allocation in NS.
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Proof of Proposition 6

From conditions of Proposition 6, there exists η∗ and λ > 0 so that for the
closed intervals ΘL and ΘH ,

λ < F (θ)a(η∗ | θ) for θ ∈ ΘL ≡ [θL, θ̄L] ⊂ (θ(η), θ̄(η))

λ > F (θ)a(η∗ | θ) for θ ∈ ΘH ≡ [θH , θ̄H ] ⊂ (θ(η), θ̄(η))

with θ̄L < θH . These conditions are equivalent to

H(θ)− θ − λ

a(η∗ | θ)f(θ)
> 0 for θ ∈ ΘL

and

H(θ)− θ − λ

a(η∗ | θ)f(θ)
< 0 for θ ∈ ΘH .

Define qNS(z) for z ∈ [θ, θ̄] so that V
′
(qNS(z)) = H(z). qNS(z) is strictly

decreasing in z from our assumption of V (q) and H(z).
With notations defined above, let us select z(θ | η) which satisfies the

following conditions.

(i) For η 6= η∗, z(θ | η) = θ.

(ii) For θ /∈ ΘH ∪ΘL, z(θ | η∗) = θ.

(iii) For θ ∈ ΘH , z(θ | η∗) ≥ θ with strict inequality for some portions with
positive measure, and

H(z)− z − λ

a(η∗ | θ)f(θ)
< 0 for any z ∈ [θ, z(θ | η∗)]

(iv) For θ ∈ ΘL, z(θ | η∗) ≤ θ with strict inequality for some portions with
positive measure, and

H(z)− z − λ

a(η∗ | θ)f(θ)
> 0 for any z ∈ [z(θ | η∗), θ]

(v) z(· | η) ∈ Z(η).
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(vi) θqNS(z(θ | η∗)) +
∫ θ̄
θ
qNS(z(y | η∗))dy ≤ z(θ | η∗)qNS(z(θ | η∗)) +∫ θ̄

z(θ|η∗) q
NS(z)dz for any θ ∈ [θ(η∗), θ̄(η∗)] and

∫ θ̄(η∗)

θ(η∗)

qNS(z(y | η∗))dy =

∫ θ̄(η∗)

θ(η∗)

qNS(z)dz (4)

Step 1

Suppose that there exists z(θ | η) which satisfies (i)-(vi). Let us specify the
allocation (uA(θ, η), XNS(z(θ | η)), qNS(z(θ | η))) with

uA(θ, η) =

∫ θ̄

θ

qNS(z(y | η))dy

XNS(z(θ | η)) = z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz

From (i) and (vi), for any η,

uS(θ, η) = z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz

− [θqNS(z(θ | η)) +

∫ θ̄

θ

qNS(z(y | η))dy] ≥ 0.

It means that this allocation is WCP allocation satisfying ex-post participa-
tion conditions of A and S. This allocation induces the P’s payoff

E[V (qNS(z(θ | η)))− z(θ | η)qNS(z(θ | η))−
∫ θ̄

z(θ|η)

qNS(z)dz].
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From (4), this is equal to

E[V (qNS(z(θ | η)))− z(θ | η)qNS(z(θ | η))−
∫ θ̄

z(θ|η)

qNS(z)dz]

+ λ[

∫ θ̄

θ(η∗)

qNS(z)dz −
∫ θ̄

θ(η∗)

qNS(z(y, η∗))dy]

= p(η∗)E[V (qNS(z(θ, η∗)))− {z(θ, η∗) +
λ

f(θ)a(η∗ | θ)
}qNS(z(θ, η∗))

−
∫ θ̄

z(θ,η∗)

qNS(z)dz | η∗]

+ (1− p(η∗))E[V (qNS(θ))− {θqNS(θ) +

∫ θ̄

θ

qNS(z)dz}]

+ λ

∫ θ̄

θ(η∗)

qNS(z)dz.

On the other hand, the P’s optimal payoff in NS is,

E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz]

= p(η∗)E[V (qNS(θ))− {θ +
λ

f(θ)a(η∗ | θ)
}qNS(θ)−

∫ θ̄

θ

qNS(z)dz | η∗]

+ (1− p(η∗))E[V (qNS(θ))− {θqNS(θ) +

∫ θ̄

θ

qNS(z)dz} | η 6= η∗]

+ λ

∫ θ̄(η∗)

θ(η∗)

qNS(z)dz

36



The difference between two payoffs is

p(η∗)E[V (qNS(z(θ | η∗)))− {z(θ | η∗) +
λ

f(θ)a(η∗ | θ)
}qNS(z(θ | η∗))

−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

− p(η∗)E[V (qNS(θ))− {θ +
λ

f(θ)a(η∗ | θ)
}qNS(θ)−

∫ θ̄

θ

qNS(z)dz | η∗]

= p(η∗)E[

∫ z(θ|η∗)

θ

{V ′(qNS(z))− z − λ

f(θ)a(η∗ | θ)
}qNS′(z)dz | η∗]

= p(η∗)E[

∫ z(θ|η∗)

θ

{H(z)− z − λ

f(θ)a(η∗ | θ)
}qNS′(z)dz | η∗]

From condition (iii) and (iv), qNS
′
(z) < 0 implies that this is positive, im-

plying that P benefits from this allocation.

Step 2

Finally we construct z(θ | η) which satisfies (i)-(vi). The argument in the
proof of Proposition 4 (in the paper) can be exactly applicable here with the
replacement of H(θ)− (1− λ)θ − λh(θ | η∗) with H(θ)− θ − λ

f(θ)a(η∗|θ) . For

z(θ | η∗) which satisfies (i)-(v) and any pair of parameters αH , αL lying in
[0, 1], define a function zαL,αH (θ|η∗) which equals (1 − αL)z(θ|η∗) + αLθ on
ΘL, equals (1− αH)z(θ|η∗) + αHθ on ΘH and equals θ elsewhere. Define

Q(θ, αL, αH) ≡ zαL,αH (θ | η∗)qNS(zαL,αH (θ | η∗)) +

∫ θ̄

zαL,αH (θ|η∗)
qNS(z)dz

− [θqNS(zαL,αH (θ | η∗)) +

∫ θ̄

θ

qNS(zαL,αH (y | η∗))dy]

Since

∂Q(θ, αL, αH)

∂θ
= (zαL,αH (θ | η∗)− θ)qNS′(zαL,αH (θ | η∗))∂zαL,αH (θ | η∗)

∂θ
,

∂Q(θ,αL,αH)
∂θ

≤ 0 on ΘH and ∂Q(θ,αL,αH)
∂θ

≥ 0 on ΘL and it is zero elsewhere.
zαL,αH (θ | η∗) = θ for θ > θ̄H implies that Q(θ, αL, αH) = 0 for this region
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of θ. Therefore if Q(θL, αL, αH) = 0 implies (vi). Q(θL, αL, αH) is continu-
ously differentiable, strictly increasing in αL and strictly decreasing in αH .
Q(1, 1) = 0. The Implicit Function Theorem ensures existence of α∗L, α

∗
H both

smaller than 1 such that Q(θL, α∗L, α
∗
H) = 0. Hence the function zα∗L,α∗H (θ|η∗)

satisfies (i)-(vi).

10.2 Indivisible Good Case

With the case of indivisible good, we examine the case that S’s ex-post
participation constraint must be satisfied, or uS(θ, η) ≥ 0 for any (θ, η).
Since uS(θ, ηi) = X0 + b − θi for θ ≤ θi and uS(θ, ηi) = X0 for θ ≥ θi, it
implies

X0 ≥ max{θ1 − b, θ2 − b, 0}.
Evidently this constraint becomes binding in the optimal allocation. Then
the principal’s problem is represented by

max[V − b][p1F (θ1 | η1) + p2F (θ2 | η2)]−max{θ1 − b, θ2 − b, 0}

subject to
b ∈ Z(θ1, θ2).

We obtain the following statement.

Proposition 7 P cannot benefit from S with an ex-post participation con-
straint.

Proof of Proposition 7

Suppose θ1 ≤ θ2. Then the objective function reduces to

[V − b][p1F (θ1 | η1) + p2F (θ2 | η2)]−max{θ2 − b, 0}.

This is non-decreasing in b for b < θ2 and decreasing in b for b > θ2, and
takes a maximum value at b = θ2. Therefore

[V − b][p1F (θ1 | η1) + p2F (θ2 | η2)]−max{θ2 − b, 0}
≤ [V − θ2][p1F (θ1 | η1) + p2F (θ2 | η2)]

If V > θ2, the right hand side is not larger than [V − θ2]F (θ2), which is not
larger than ΠNS. If V ≤ θ2, the right hand side is non-positive, which is not
larger than ΠNS. We have the same argument for θ1 > θ2. It concludes that
P does not benefit from hiring S.
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11 Ironing Rule and Related Results

Here we summarize the ironing procedure and its related properties which are
frequently used throughout the paper. We specify an ironing rule to construct
π̂(x) from two functions π(x) and G(x), and explain some properties about
π̂(x). According to Myerson (1981) and Baron and Myerson (1982), the
ironing rule is described as follows.

Definition 1 Suppose that π(x) and G(x) defined on [x, x̄] have the following
properties:

(i) π(x−) ≥ π(x+) for any x ∈ [x, x̄].

(ii) G(x) is distribution function with G(x) = 0 and G(x̄) = 1. G(x) is
strictly increasing and continuously differentiable on [x, x̄].

Then π̂(x) ≡ π̂(x | π(·), G(·)) is constructed from π(x) and G(x) as follows.

(i) Π(φ) =
∫ φ

0
π(h(y))dy where h(φ) satisfies G(h(φ)) = φ for φ ∈ [0, 1].

(ii) Π(φ) is maximum convex function so that Π(φ) ≥ Π(φ).

(iii) π̂(x) satisfies (i) π̂(x) = Π
′
(G(x)) whenever the derivative Π

′
(G(x)) is

defined,6 and (ii) π̂(x) = Π
′
(G(x−)) for any x ∈ (x, x̄].

We provide two lemmata, which show some properties used in the paper.

Lemma 2 π̂(x) = π̂(x | π(·), G(·)) constructed from π(x) and G(x) satisfies:

(i) π̂(x) is continuous and non-decreasing in x. If π(x) is non-decreasing
in x, π̂(x) = π(x).

(ii)
∫ x̄
x
q(x)π̂(x)dG(x) =

∫ x̄
x
q(x)π(x)dG(x) if q(x) is constant for each inter-

val of x such that Π(G(x)) > Π(G(x)) (or π̂(x) takes constant value).

(iii) If π(x) > x on (x, x̄], π̂(x) > π̂α(x) on (x, x̄] for πα(x) ≡ (1−α)π(x)+
αx with α ∈ (0, 1].

(iv) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄). If there exists an increasing v(x) so
that v(x) < π(x) for any x > x, v(x) < π̂(x) for any x > x and if
there exists an increasing v(x) so that v(x) > π(x) for any x > x,
v(x) > π̂(x) for any x > x.

6Since Π(φ) is convex, it is almost everywhere differentiable.
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(v) Suppose that q∗(x) is the solution of the following problem:

max

∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x)

subject to q(x) is non-increasing. Then q∗(x) solves

max

∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

Then∫ x̄

x

[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x

[V (q∗(x))− π̂(x)q∗(x)]dG(x).

Proof of Lemma 2

The proof of (i)

Since Π(φ) is convex and G(x) is increasing, π̂(x) is non-decreasing. Suppose
that there exists x so that π̂(x) < π̂(x+). It means that Π

′
(G(x−)) <

Π
′
(G(x+)). Then Π(G(x)) = Π(G(x)), since otherwise you can find a higher

convex function than Π(φ). This implies that

π(x−) = Π
′
(G(x−)) ≤ Π

′
(G(x−)) < Π

′
(G(x+)) ≤ Π

′
(G(x+)) = π(x+)

This is contradiction since we assume that π(x−) ≥ π(x+). Therefore π̂(x)
is continuous.

Suppose that π(x) is non-decreasing in x. With Π(φ) =
∫ φ

0
π(h(y))dy,

Π
′
(φ) = π(h(φ)). Then Π(φ) is convex and Π(φ) = Π(φ), implying π(x) =

π̂(x).

The proof of (ii)

Define I by
I ≡ {x ∈ [x, x̄] | Π(G(x)) > Π(G(x))}.

For any x ∈ I, there exists d(x) and u(x) such as

Π(G(x
′
)) > Π(G(x

′
))
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on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))).

Then Π(φ
′
) is a linear function of φ

′
on [G(d(x)), G(u(x))] and π̂(x

′
) is con-

stant on x
′ ∈ [d(x), u(x)]. Then since q(x

′
) is constant on x

′ ∈ [d(x), u(x)],∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)) =

∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)).

Therefore it implies that∫ x̄

x

q(x)π(x)dG(x) =

∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

q(x)dΠ(G(x)).

Since Π(φ) is convex, it is almost everywhere differentiable with Π
′
(G(x)) =

π̂(x) almost everywhere. This means that∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

q(x)π̂(x)dG(x).

It is concluded that∫ x̄

x

q(x)π̂(x)dG(x) =

∫ x̄

x

q(x)π(x)dG(x).

The proof of (iii)

Since the linear combination of two convex functions is convex, (1−α)Π(φ)+

α
∫ φ

0
h(y)dy is convex function. Defining Πα(φ) by

Πα(φ) ≡
∫ φ

0

πα(h(y))dy = (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

Since

Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0

h(y)dy,

Πα(φ), which is the maximum convex function such that Πα(φ) ≥ Πα(φ),
satisfies

Πα(φ) ≥ Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

Here our proof is composed of the analysis of two cases: (a) the region of x
such that Π(G(x)) > Π(G(x)) and (b) the region of x such that Π(G(x)) =
Π(G(x)).
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(a) For arbitrary x such that Π(G(x)) > Π(G(x)), there exists d(x) and
u(x) such as

Π(G(x
′
)) > Π(G(x

′
))

on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))).

At φ = G(d(x)) and φ = G(u(x)),

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0

h(y)dy.

It implies that

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0

h(y)dy

at φ = G(d(x)) and φ = G(u(x)). Then since (i) of this lemma implies that
Π
′

α(φ) and Π(φ) are differentiable with respect to φ for any φ ∈ [0, 1], the
derivatives of both sides of the above equation with respect to φ, if evaluated
at G(u(x)), have the following relationship:

Π
′

α(G(u(x))) ≤ (1− α)Π
′
(G(u(x))) + αu(x) = (1− α)π̂(u(x)) + αu(x).

Since π̂(u(x)) = π(u(x)) > u(x) (by u(x) > x) and π̂α(u(x)) = Π
′

α(G(u(x))),

π̂α(u(x)) < π̂(u(x))

for any α ∈ (0, 1]. For any x
′ ∈ (d(x), u(x)), π̂(x

′
) = π̂(u(x)) and π̂α(x

′
) ≤

π̂α(u(x)) (since π̂α(x) is non-decreasing in x). Therefore

π̂α(x
′
) < π̂(x

′
)

for any x
′ ∈ (d(x), u(x)).

(b) For any x > x such that Π(G(x)) = Π(G(x)),

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0

h(y)dy.

It implies

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0

h(y)dy

and
π̂α(x) = Π

′

α(G(x)) = (1− α)π̂(x) + αx < π̂(x)

for any α ∈ (0, 1], since π̂(x) = π(x) > x for x > x such that Π(G(x)) =
Π(G(x)).

The argument in (a) and (b) implies the statement of (iii).
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The proof of (iv)

(a) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄) are obtained from Π
′
(φ = 0) ≥ Π

′
(φ = 0),

Π
′
(φ = 1) ≤ Π

′
(φ = 1) and Π

′
(G(x)) = π(x).

(b) The case of v(x) < π(x): For x > x such that Π(G(x)) = Π(G(x)),
π̂(x) = π(x) > v(x). For x > x such that Π(G(x)) > Π(G(x)), and for
u(x) that is defined in the proof of (iii), π̂(x) = Π

′
(G(u(x))) = π(u(x)) >

v(u(x)) ≥ v(x). It implies π̂(x) > v(x) for any x > x such that Π(G(x)) =
Π(G(x)). Therefore π̂(x) > v(x) for any x > x.
(c) The case of v(x) > π(x): For x > x such that Π(G(x)) = Π(G(x)),
π̂(x) = π(x) < v(x). For x > x such that Π(G(x)) > Π(G(x)), and for
d(x) that is defined in the proof of (iii), π̂(x) = Π

′
(G(d(x))) = π(d(x)) ≤

v(d(x)) < v(x). It implies π̂(x) < v(x) for any x > x such that Π(G(x)) >
Π(G(x)). Therefore π̂(x) < v(x) for any x > x.

The proof of (v)

Step 1:

For any non-increasing q(x),∫ x̄

x

π(x)q(x)dG(x) =

∫ x̄

x

q(x)dΠ(G(x)) ≥
∫ x̄

x

q(x)dΠ(G(x)) =

∫ x̄

x

π̂(x)q(x)dG(x)

Proof of Step 1

Since Π(G(x)) and Π(G(x)) are continuous, applying the integration by parts,∫ x̄

x

q(x)dΠ(G(x)) +

∫ x̄

x

Π(G(x))dq(x) = Π(1)q(x̄)− Π(0)q(x)

and ∫ x̄

x

q(x)dΠ(G(x)) +

∫ x̄

x

Π(G(x))dq(x) = Π(1)q(x̄)− Π(0)q(x).

With Π(1) = Π(1) and Π(0) = Π(0),∫ x̄

x

q(x)dΠ(G(x))−
∫ x̄

x

q(x)dΠ(G(x))

=

∫ x̄

x

(Π(G(x))− Π(G(x)))dq(x) ≥ 0
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Step 2:∫
[x,x̄]

[V (q∗∗(x))− π(x)q∗∗(x)]dG(x) =

∫
[x,x̄]

[V (q∗∗(x))− π̂(x)q∗∗(x)]dG(x)

for q∗∗(x) ∈ arg maxq V (q)− π̂(x)q.

Proof of Step 2:

By the definition, q∗∗(x) is constant for each interval of x where π̂(x) is
constant. Then by (ii) of the lemma,∫ x̄

x

π(x)q∗∗(x)dG(x) =

∫ x̄

x

π̂(x)q∗∗(x)dG(x).

This completes the proof of Step 2.

Step 3:

By Step 1, for any non-decreasing q(x),∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x) ≤
∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

By Step 2, if q∗(x) is the solution of

max

∫ x̄

x

[V (q(x))− π(x)q(x)]dG(x)

subject to q(x) is non-increasing, then q∗(x) solves

max

∫ x̄

x

[V (q(x))− π̂(x)q(x)]dG(x).

Then∫ x̄

x

[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x

[V (q∗(x))− π̂(x)q∗(x)]dG(x).

It completes the proof of (v).
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Lemma 3 ĥ(θ | η) is non-increasing and continuous in θ on Θ(η) with
ĥ(θ(η) | η) = θ(η) and ĥ(θ | η) > θ for θ > θ(η).

Proof of Lemma 3

Since h(θ | η) is continuous, Lemma 2(i) implies that ĥ(θ | η) is continuous
and non-decreasing in θ. Since θ < h(θ | η) for θ > θ(η), Lemma 2(iv)
implies that θ < ĥ(θ | η) for θ > θ(η). By the continuity of ĥ(θ | η),
θ(η) ≤ ĥ(θ(η) | η). Lemma 2(iv) also implies ĥ(θ(η) | η) ≤ h(θ(η) | η) = θ(η).
Therefore ĥ(θ(η) | η) = θ(η).
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