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Abstract. We study a model of long run growth and distribution with two key features.
First, there is an asymmetry between physical and human capital. Individual claims on
the former can be reproduced linearly and indefinitely. Because no similar claim on
humans is possible, human capital accumulation instead takes the form of acquiring oc-
cupational skills, the returns to which are determined by an endogenous collection of
wages. Second, physical capital can take the form of machines that are complementary
to human labor, or robots, a substitute for it. Under a self-replication condition on the
production of robot services, our theory delivers progressive automation, with the share
of labor in national income converging to zero. The displacement of human labor is
gradual, and real wages could rise indefinitely. The results extend to endogenous tech-
nical change, as well as relaxations of the sharply posited human-physical asymmetry.

1. Introduction

We study a dynamic general equilibrium model of growth and distribution with two
distinctive features. First, there is an asymmetry between human and physical capital
accumulation. Individual claims to physical capital can be scaled indefinitely through
the accumulation of financial wealth. But no similar claim on humans is possible. In-
stead, human capital accumulation takes the form of acquiring skills, within or across
occupations, but always contained in one physical self. These two forms of human
capital accumulation are typically conflated in an aggregative model by the use of effi-
ciency units. We separate them, and emphasize a disaggregated view of human capital
accumulation in which individuals climb the occupational ladder, earning different, en-
dogenously determined wages in the process.1 To allow for unbounded growth in human
capital, we work with a model with infinitely many occupations.

†Mookherjee: Boston University; Ray: NYU and University of Warwick. Mookherjee thanks the
Department of Economics at NYU for hosting his visit in Fall 2017 when this project was started. Ray
acknowledges funding from the National Science Foundation under grant SES-1851758. We are grateful
to Pascual Restrepo and Erik Madsen for useful conversations. Author names are in random order.

1This is in line with empirical evidence on skill premia in wages (Katz and Murphy 1994): such
premia clearly respond to skill- or occupation-specific labor supplies.
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The second feature is that physical capital has a dual role. It can take the form of ma-
chines, which are complementary to human labor, or robots, a substitute for it. In every
sector, there is potential scope for replacing humans by robots, if the price is right.
There may be sectors where humans are relatively protected, and sectors where they are
vulnerable, but the threat exists everywhere, and could be activated if the ratio of sector-
specific wages to robot prices is large enough.2 This is distinct from the argument that
technical change will render humans obsolete, an issue we address separately.

Specifically, we develop a model with an infinity of final goods, and separate sectors for
intermediates: machine capital, robots and education. Within any firm, production takes
place with machine capital and one or more “labor aggregates," each generated by either
human labor or robot services, or both. Apart from constant returns to scale in produc-
tion and the potential for automation everywhere, no substantive restrictions are placed,
not even on the convexity of technology. Production functions can vary arbitrarily across
sectors. The relative efficiency of humans to robots can become unboundedly large over
sequences of sectors. Human labor could be sector-specific, and migration from one
sector to another could require education or training — in fact, this is the main source
of human capital accumulation. Households are infinitely lived (or are connected via in-
tergenerational altruism), and maximize infinite-horizon utility over the consumption of
different final goods. They can accumulate financial wealth, which are claims on phys-
ical capital, and they can purchase education to move from occupation to occupation.
Households can be heterogenous in their tastes, discount factors or initial endowments.
The model is fully in the spirit of classical dynamic general equilibrium theory.

A key concept in the theory is self-replication, which is connected to the possibility of
automation in the sector that produces robot services; that is, the potential for using
machines and robots to produce robots.3 The self-replication condition is entirely on
the primitives of the model, and it is placed on the robot sector alone.4 Our central

2As Scott Santens writes in the Boston Globe, 2016: “nothing humans do as a job is uniquely safe
anymore. From hamburgers to healthcare, machines can be created to successfully perform such tasks
with no need or less need for humans, and at lower costs than humans. . . "

3Self-replication is like a singularity, though conceptually quite different from the notion that emerges
from the work of von Neumann and others, which refers to some runaway threshold being crossed, thus
generating infinite per-capita output at a finite date; see, for instance, Aghion, Jones and Jones (2019).

4The condition, to be developed in detail, compares the elasticity of substitution between capital and
(human or robot) labor with the efficiency of robots in generating the intermediate labor aggregate. It
is automatically met if the former elasticity equals or exceeds 1, but is also consistent with sub-unitary
elasticities of substitution. The condition has economy-wide ramifications, but it is a condition on the
robot sector alone — we place no restriction on substitution elasticities in any other sector.
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result states that under self-replication and sufficiently high patience among a subset of
households, per capita income in the economy grows without bound, and the share of
labor in national income must converge to zero in the long run. At the same time, the
displacement of human labor must be gradual, and real wages could rise indefinitely.5

The underlying logic is the following. The self-replication condition ensures the eco-
nomic viability of producing robot services from machines and robot services alone (not
that that will necessarily occur in equilibrium). This option implies an upper bound to
robot prices relative to those of physical capital, which provides firms in all other sec-
tors with the option to automate at finite cost. Any sector yet to be automated generates
a growing demand for humans with the relevant skills, driving up the wage for such
workers. At some date, therefore — and depending on relative human-robot efficiency
in that sector — it will be cost-effective for firm owners to rely almost entirely on robot
services, and the share of human wages in value added in that sector will tend to vanish.

Faced with “robot creep" within any sector, workers in those sectors can react by acquir-
ing education and moving to other less-threatened sectors. Indeed, households could
pursue farsighted human capital investment driven by these and other concerns. There-
fore automation is consistent with unbounded growth in the wages of some or all work-
ers, who manage to stay ahead of the threat by entering high-skill occupations in high-
demand sectors. Nevertheless, our distributional result holds if preferences are asymp-
totically homothetic — the aggregate share of such sectors must eventually shrink, and
the growth in human wages will fail to match the growth of capital incomes.

This asymmetry in the growth of human and capital incomes, and the resulting decline
in the functional share of labor, is a core aspect of modern economic growth that Piketty
(2014) sought to explain in his book, Capital in the 21st Century. But his explana-
tion based on r > g, and touted as “the central contradiction of capitalism" has been
criticized: it is a familiar transversality condition in many growth models exhibiting
no decline in labor share (Acemoglu and Robinson 2015, Mankiw 2015, Ray 2015).
More generally, the growing evidence worldwide for a declining labor income share
(Karabarbounis and Neiman (2014)) — thereby dismantling a leading “Kaldor fact" —
has generated active debate and research. Explanations based on capital substituting for

5In a sense, then, the “aggregate production function" — to the extent that anything of the sort exists
— exhibits a capital-labor elasticity that exceeds one, even though firms in most sectors in the economy
could be characterized by inelastic substitution. This property is part of our key theoretical result; it is not
imposed as an assumption in an ad hoc specification of an aggregate production function.
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labor along some aggregate CES function are problematic: substitution elasticities need
to exceed one, which is rejected by panel studies of industry level production functions
(Chirinko and Mallick 2014). Other arguments include globalization, whereby labor in
developed countries are devastated by cheap imports (Autor, Dorn and Hansen 2016),
selection into more profitable, higher-markup firms (Autor et al 2017), factors such as
the rise of the gig economy or greater product differentiation, leading to a decline in
firm competition and the bargaining power of labor (Neary 2003, Gutiérrez and Philip-
pon 2017, Azar and Vives 2018, Eggertsson, Robbins, and Wold 2018, Kaplan and Zoch
(2020)), and of course the possibility of technical progress that favors automation (San-
tens 2016, Acemoglu and Restrepo 2019, Aghion, Jones and Jones 2019).

These are all useful explanations, but possibly do not tell the full story. For instance,
globalization cannot explain why we see a similar decline in labor share or awareness
of “jobless growth" in China or India. Rising industrial concentration or a decline in
bargaining power could equally be the outcomes of automation and technical progress.
Even technical progress seems an insufficient explanation — Karabarbounis and Neiman
(2014) show that a substantial fraction of the decline in labor share worldwide is ex-
plained by declining capital goods prices, even after controlling for capital-augmenting
technical progress, markup rates and the skill composition of the labor force.

More to our point, all the above arguments are layered on to the balanced growth model,
whereas we argue for a change in that baseline model. We provide an explanation for
the secular decline in labor share that is driven by capital accumulation alone, one that
operates even in the absence of technical progress, changing concentration or skewed
bargaining power. (Certainly, the main predictions are robust when such phenomena
are incorporated.) We do not make any empirical claim that our features are dominantly
responsible for the observed decline. Instead, we view our theory as a reasonable starting
point for a growth model that delivers these distinctive implications at baseline.

The endogeneity of the terms of trade across sectors, both in wages and prices, plays
a key role in our theory, as it affects the pace of human capital accumulation and so
defines the way that human workers react to automation. In a setting that pre-aggregates
labor into efficiency units, this role is suppressed. For instance, Uzawa (1961), Becker
and Tomes (1979, Lucas (1988), or Mankiw, Romer and Weil (1992) study models with
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a single aggregate labor input that can be accumulated in efficiency units.6 Both this ap-
proach and ours are equally compatible with persistent returns in human capital accumu-
lation at the macroeconomic level. But the two approaches differ at the microeconomic
level, generating different implications for the functional distribution of income.7

Because we emphasize the endogeneity of relative prices and wages, a model with many
sectors has to be our starting point. But then the composition of demand, both direct
and derived, plays an important role in determining the returns to skill investments. We
presume that this composition has no built-in bias in favor of — or against — sectors in
which human labor is more or less protected against automation. Specifically, our main
result assumes that preferences are asymptotically homothetic (for large incomes). We
also discuss what happens when such neutrality fails.

Our theory helps identify four possible escape routes from the prediction of an asymp-
totically declining labor share. The first is a failure of the self-replication condition, in
which case sustained automation is not guaranteed. The second is the sheer impossibility
of full automation in some sectors. The third has to do with a particular structure of pref-
erences. If preferences are non-homothetic, but not just that, they are non-homothetic in
a direction that aligns with ever greater “human-friendliness" in production, then human
labor might perpetually retain a positive share of income. With growth, humans would
progressively move to these friendly sectors, and by the assumed non-homotheticity of
preferences, there would be adequate demand for such products, shoring up wages there.

The fourth escape hatch is based on asymmetries in the opportunities for technical
progress; specifically, biases in favor of human labor. Certainly, we would need to
assume those asymmetries, and their impact would be an empirical question. Acemoglu
and Restrepo (2018) is a leading example of this approach. Section 5 extends our model
to permit directed technical progress in machine, human and robot productivities, in
response to profit opportunities created by changing prices. In our setting, technical
progress operates on the intensive margin in each sector, raising the productivity of dif-
ferent inputs and possibly generating spillovers for the productivity of that input in other

6These equations from Mankiw, Romer and Weil (1992, p. 416) illustrate this point: k̇(t) = sky(t)+

(n+ g + δ)k(t) and ḣ(t) = shy(t) + (n+ g + δ)h(t), where the variables are self-explanatory.
7In our work on occupational choice without growth, we argue that the use of homogeneous efficiency

units misses relative price movements that lie at the heart of persistent inequality across workers with
varying skills. See Mookherjee and Ray (2002, 2003, 2010), and earlier, Banerjee and Newman (1993),
Galor and Zeira (1993) and Ljungqvist (1993). In the current setting, we further argue that it could also
miss something about economic growth and its implications for the functional distribution of income.
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sectors. It may well be that technical progress inherently favors some inputs or sectors
over others, but we maintain the neutrality of technological opportunities as an appro-
priate benchmark. We then show that our long run distributional implications continue
to be robust in such a setting even with endogenous technical progress.

In summary, we argue that a falling labor share is a basic implication of a growth model
that incorporates the fundamental asymmetry between the accumulation of physical and
human capital. That implication is consistent with declining, constant or increasing
absolute wages. The underlying logic applies in a fully competitive setting without
technical progress, and survives in the presence of technical progress.

Section 2 discusses relation to the literature in more detail. Section 3 presents the bench-
mark model without technical progress. The main results are provided in Section 4, with
related lines of discussion. Section 5 provides the extension to endogenous technical
progress, while Section 6 concludes. Proofs are collected in an Appendix.

2. Related Literature

Existing approaches provide different explanations for a falling labor share, largely in
models with a single good and a representative consumer. We classify them as follows:

(i) Theories of automation under technical progress. In a task-based setting, this is akin
to an increasing capital share in an aggregate production function (Zeira 1998). Ace-
moglu and Restrepo (2018) and Aghion, Jones and Jones (2019) extend this model to
study the distributional implications of automation under technical progress (endoge-
nous in the former case, exogenous in the latter). Both emphasize the possibility of
balanced growth, in which labor retains a long-run positive share despite automation.

(ii) Theories based on sustained capital accumulation in an aggregative model with
capital-labor substitution elasticities exceeding one (e.g., Piketty 2014). But evidence
from industry panel studies suggests inelastic substitution (Chirinko and Mallick 2014).

(iii) In contrast to (ii), theories based on sustained human capital investments, which
cause effective labor to grow relative to effective capital (Grossman et al 2020). Human
capital investments rise owing to a fall in the interest rate, driven in turn by an exoge-
nous decline in rates of technical progress. Ancillary assumptions include capital-skill
complementarity, a low intertemporal substitution elasticity in consumption, a closed
economy. and an aggregate capital-labor elasticity of substitution below 1.
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(iv) Theories based on rising markups, market concentration, fall in labor bargaining
power; see references in the Introduction.

Our theory shares elements with (i)–(iii), but is distinct from each. The underlying driv-
ing force for the falling labor share is automation, as in (i), but also without technical
progress, unlike (i). Automation is driven by the accumulation of physical capital, as
in (ii), and yet the theory is consistent with inelastic substitution, as in (iii).8 How-
ever, unlike (iii), our theory exhibits progressive physical, not human capital deepening.
Quite apart from these features, our model is elementary, in the sense that it can serve
as an alternative benchmark for a theory of economic change without balanced growth.
This elementary nature is reflected in the substantial generality of our specification, de-
void of functional form specifications on technology or utility or even restrictions on the
curvature of the production functions. Finally, at an empirical level, our theory makes
distinct predictions. The relative growth of human capital and physical capital in effi-
ciency units is inverted, relative to Grossman et al (2020). Even if such evidence is not
available, our theory becomes relevant if labor shares decline despite a violation of the
Grossman et al assumptions, e.g., if technical progress does not decline, intertemporal
consumption elasticities are high, or the economy is small in the sense that the interest
rate is determined by the world capital market.

Our theory is clearly separate from the literature in (iv). The results would continue
to apply in the absence of changes in monopoly power of firms or a decline in worker
bargaining power. Indeed, the Karabarbounis and Neiman (2014) evidence suggests that
half the decline in labor share worldwide associated with falling capital prices cannot be
explained by rising monopoly power or changes in skill composition of the labor force.
So while these explanations are possibly relevant, they are complementary to ours.

3. Baseline Model with No Technical Progress

3.1. Production. There is a countable collection I of consumption goods, indexed by i.
The set I is infinite and so allows for unbounded occupational ladders. In addition, there
are three intermediate good sectors producing education, robot services, and machine
capital. The index j serves as generic notation for any of these sectors. Everything

8In fact, our multisectoral model cannot even be reduced to a CES specification through aggregation.
In each sector, the elasticity of substitution across machines and labor could be inelastic. But human labor
can be slowly replaced by robot services, sector by sector.
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is produced, with the exception of raw human labor. That endowment is fixed (or is
normalized as in the standard theory), but human capital evolves as individuals make
educational investment decisions, thereby moving across the universe of occupations.
The stock of physical capital changes over time as a result of production or depreciation.

Physical capital has two incarnations. It is, first, a complementary input to labor; call
this “machine capital" kj . It combines with a finite vector of labor services `j = {`oj},
where o ∈ Oj (an index set for tasks or occupations in sector j), to produce:

(1) yj = fj(kj, `j)

where fj is increasing, smooth, and linearly homogeneous, with unbounded steepness
in capital input near zero, and in at least one of the effective labor inputs when all are
near 0. Moreover, fj(k, 0) = fj(0, `) = 0.9 No curvature restrictions on fj are imposed.

A second form of capital has the potential to displace human labor, and is represented
by “robot services." We view each component `oj of the labor variable as an aggregator,
combining human input and robots services. Specifically, for each occupation o ∈ Oj ,

(2) `oj = `oj(h
o
j , r

o
j ),

where hoj is human input, roj is robot services, and `oj is increasing, smooth and linearly
homogeneous with `j(0, 0) = 0 (again, no assumption on curvature). In the baseline
model we assume that no sector can fully protect humans; that is, `oj(0, r) > 0 for some
r > 0, so that it is technologically feasible to produce tasks with robot services alone.
Observe that this assumed feasibility of full automation does not imply its economic
viability. In particular, the marginal effectiveness of human labor could be unboundedly
large relative to that of robots. For instance, suppose that `oj(h, r) = νr+µh+rαh1−α for
α ∈ (0, 1), which satisfies all our conditions. Then in any equilibrium humans would be
perennially employed in every occupation, no matter what factor prices are. In Section
4.7, we take an additional step back and discuss how our results are modified if full
automation is not even technically feasible in all occupations.

While human labor is generally occupation-specific and additional education could be
required to move across occupations, we assume for expositional ease that physical cap-
ital and robot services are perfectly homogeneous and can move freely across sectors.

9The end-point restrictions are not needed, but we keep these to cut down on the number of cases.
The assumed necessity of both inputs bounds substitution elasticities near the “axes," but not elsewhere.
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3.2. Prices. Within any date, machine capital services serve as numeraire: the rental
price of k is set to 1. The collection w = {woj} for j and o ∈ Oj is the wage system.
Output prices are (p, pr, pe, pk) for final goods, robot services, education, and capital.
By constant returns to scale and the assumption of a competitive economy, all prices will
equal unit costs of production for any sector with strictly positive output:

(3) pj ≤ cj(1,ωj), with equality if yj > 0,

where 1 is the return to machine capital, ωj is the price vector of “labor" in sector j, and
cj is the unit cost function, dual to the function fj .10 The price of labor, in turn, comes
from a second collection of unit cost functions {coj} for each occupation in that sector:

(4) ωoj = coj(w
o
j , pr).

3.3. Factor Demands and Automation. In each sector, machine capital and labor are
chosen to maximize profits, satisfying familiar first-order necessary conditions when
an input is positive. The mapping from prices to human and robot demand then flows
through the aggregators `j . Define an automation index aoj ≡ roj/h

o
j for any “active"

sector (with yj > 0) and occupation, where aoj is to be interpreted as∞ when hoj = 0.
By the linear homogeneity of `j , the set of optimal choices of aoj is represented by a cor-
respondence Aoj(ζj) defined only on the ratio ζoj ≡ woj/pr. By a standard monotonicity
argument, this correspondence is nondecreasing (in the sense that whenever ζoj ≤ ζoj

′,
aoj ∈ Aoj(ζoj ), and aoj

′ ∈ Aoj(ζoj ), we have aoj ≤ aoj
′). Moreover, aoj → ∞ as ζoj → ∞.11

The levels of the factors hoj and roj are then obtained by scaling quantities up or down,
consistent with the selected automation ratio, so that the desired value of `oj is produced.

3.4. Accumulation. The aggregate stock of capital K(t) evolves according to

(5) K(t+ 1) = (1− δ)K(t) + yk(t),

where δ ∈ [0, 1] is a constant, sector-independent depreciation rate for physical capital.12

Our formalization puts all durability within the physical capital sector. Durable robots
are included in this formulation, embedded in physical capital in the robot sector, where

10Our results easily extend to monopolistic competition with CES preferences, which generates a
constant profit markup in all sectors. Profits would appear in that setting, so national income would be the
sum of returns to capital, to workers and profits. Our distributional results would continue to apply.

11See Lemma 3(i)–(iii) in the Appendix for details.
12The model can be extended to incorporate sector specificity of capital services and depreciation rates.
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they produce services under the auspices of the robot production function fr (with labor
needed, perhaps, for maintenance).

The stock of raw human labor is given (or is normalized if it grows exogenously). But
human capital, captured by movement across occupations, can change endogenously
with individual education decisions. We take as given some initial allocation across
occupations. There could be a “null occupation" where individuals without initial skill
can be placed, or can “drop out" to at zero cost. An individual can move from one
occupation o to another o′; at an educational cost of e(o, o′) units times the price pe, the
latter endogenously determined. Human capital might depreciate; that is, it could be
that eoo > 0 for some or all o. We place no restriction on the education needed to switch
occupations, so the model captures both inflexible occupation-specificity (no individuals
can move at all) at one extreme, or complete flexibility (where no education is needed to
switch occupations) at the other extreme, and everything in between. Observe also that
our formulation allows humans to move both within and across sectors. Occupational
returns will be determined by market-clearing conditions. The supply of services by
different occupations may and in general will not be perfect substitutes, in which case
skill premia will be endogenously determined rather than pinned down by technology.

3.5. Preferences. There is a continuum of infinitely lived individuals divided into a fi-
nite set of types, indexed by m. Each type m has a one-period increasing, continuous,13

strictly concave utility indicator um, defined on vectors of final goods, and a discount
factor βm ∈ (0, 1). For any pre-determined current expenditure z on final goods and
price vector p, her demand vector for goods maximizes um(x), subject to px ≤ z. That
generates a demand function xm(p, z). Denote by vm(z,p) the corresponding indirect
utility function. We assume um is such that for every p, the indirect function vm is
increasing, concave and differentiable, with unbounded steepness at zero.

At the start of any date, an individual has some financial wealth (representing her ex-
isting claims on capital or debt), and one unit of human labor along with a starting
occupation. At date 0, her financial assets are nonnegative, and she can also work in a
subsistence activity at any date to earn some small, exogenous, strictly positive income.
We ignore the subsistence activity as it will get swamped in a growing economy: it is an
expedient device to ensure a positive lower bound to human wages in all occupations.

13The continuity of preferences or demand, here and everywhere else, will be taken relative to the
pointwise or product topology on sequences of goods or price vectors.
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At each date, an individual chooses an occupation by acquiring the necessary educa-
tion. She supplies one unit of labor with no disutility, and is paid the occupational wage,
provided it is no less than subsistence income. Then she decides how much to spend
on different goods and how much to save financially (the rate of return on which is
endogenously determined). All these decisions are made within an infinite-horizon util-
ity maximization setting, so every individual makes farsighted investment decisions in
human capital and financial wealth with perfect foresight about future wages and prices.

More formally, given some dated price-wage system for all goods, capital, and occu-
pations, an individual of type m with initial (date-0) endowments of financial wealth
Fm(0) ≥ 0 and human capital (skill for occupation om(−1)) maximizes14

(6)
∞∑
t=0

βtmvm(z(t),p(t)),

by choosing a path of financial wealths Fm(t) and occupations om(t) at educational cost

(7) Em(t) ≡ e(om(t− 1), om(t)),

along with current expenditure zm(t), subject to the date t budget constraint:

(8) Fm(t) + wjm(t)(t) = zm(t) + pe(t)Em(t) +
Fm(t+ 1)

γ(t)
,

and the no-Ponzi condition lim inft Fm(t) ≥ 0. To accommodate imperfect capital mar-
kets, we impose Fm(t) ≥ Bm for all t, a borrowing limit that can be set arbitrarily high.
Note that γ(t) is the “return factor" on financial wealth at date t, and that:

(9) γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
.

To understand (9), note that one unit of wealth can purchase claims to 1
pk(t)

units of
physical capital at t. Each such unit generates a rental income of 1, then depreciates to
yield (1− δ) units of physical capital worth (1− δ)pk(t+ 1) at the next date.

A sufficient condition for the above maximization problem to be well-defined is that all
utility functions are bounded. But well-known weaker conditions can be imposed, for
instance, when utility functions have a well-defined tail elasticity. For our main results,
we also presume that um is asymptotically homothetic:

(10) lim
z→∞

xm(p, z)

z
= dm(p) for some function dm.

14We avoid the additional notation, but allow for heterogenous behavior and endowments within m.
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for every p � 0. We assume (i) dm is continuous on any bounded sequence of price
vectors with strictly positive pointwise limit, and (ii) if there is a sequence {pn} with
some pni converging to zero, then lim infn dmi(p

n) > 0 for at least one such i.

3.6. Equilibrium. Given initialK(0), an allocation of financial claims to these {Fm(0)}
and initial human capital {om(−1)} (varying across or within types), an equilibrium is a
sequence of wages {w(t)}, prices {p(t), pr(t), pe(t), pk(t)} and quantities {Fm(t), zm(t),
Em(t), jm(t), kj(t), rj(t), hj(t), yj(t)} for every person, sector and occupation such that:15

A. All individuals maximize utility as described in (6)–(9), with Fm(0) = pk(0)km(0)

for all m, and firms maximize per-period profits at every date, with (3) holding.

B. The final goods markets clear: at every date, and for every final good i:

(11)
∑
m

∫
xi(zm(t),p(t)) = yi(t),

where the integral (here and in (15) and (16) below) stands for aggregation within m.

C. The robot market clears; for each t:

(12) yr(t) =
∑
i

ri(t) + rr(t) + re(t) + rk(t).

D. The human labor market clears; for each t and each occupation o in sector j:

(13) hoj(t) = Measure of all individuals of each type m: om(t) = o.

E. The capital market clears; for each t, K(t) evolves as in (5), with:

(14) K(t) =
∑
i

ki(t) + kr(t) + ke(t) + kk(t),

and the undepreciated capital stock plus rental income on it is willingly absorbed:

(15) [1 + (1− δ)pk(t)]K(t) =
∑
m

∫
Fm(t),

F. Finally, the education market clears; that is, for every t:

(16) ye(t) =
∑
m

∫
Em(t), where {Em(t)} satisfies (7).

15By our minimum wage assumption, all prices are bounded away from zero (see Lemma 2 in the
Appendix), so without loss we ignore equilibrium with excess supply and zero price in any sector.
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Per-capita national income (gross) is given by the expenditure on all final goods, plus
investment in new capital goods and education:

(17) Y (t) =
∑
i

pi(t)yi(t) + pe(t)ye(t) + pk(t)yk(t).

We could just as easily work with net national income, subtracting capital depreciation.

4. Long Run Growth, Automation and the Declining Labor Share

4.1. An Illustrative Example. There is a single occupation in each sector. There is a one

final good sector with production function y1 = k
1/2
1 `

1/2
1 , a capital goods sector with

yk = k
1/2
k `

1/2
k , and a robot sector that has a CES production function with elasticity 1/2:

yr =

[
1

2
k−1
r +

1

2
`−1
r

]−1

.

Humans and robots are substitutable at a constant rate ν everywhere: `j = hj+νrj for all
j. Humans move freely across sectors, so there is no education and just a single wage w.
Then the price of effective labor ω is w if there is no automation, and ν−1pr if there is is
(partial or full) automation. In the final good and machine sectors, the unit cost function
is c1(1, ω) = ck(1, ω) =

√
ω, while in the robot sector it is cr(1, ω) = 1

2
[1 +
√
ω]

2.
Everyone has the same one-period utility u(x) = ln(x), with discount factor β ∈ (0, 1).

To track equilibrium paths, notice that at any date, robot prices must be given by

(18) pr(t) ≤ cr(1, ωr(t)) =
1

2

[
1 +

√
ω(t)

]2

.

with equality if the robot sector is active.

Case 1: ν ≤ 1/2. Then automation cannot ever occur. For if it did at any date t, then
ω(t) = ν−1pr(t). Substituting this into (18) which now holds with equality, we see that

pr(t) =
1

2

[
1 +

√
ν−1pr(t)

]2

>
1

2
ν−1pr(t),

which contradicts ν ≤ 1/2. So at every date the robot sector shuts down. The econ-
omy effectively consists of a single consumption and capital good with aggregate Cobb-
Douglas production and a 50% share of labor in national income at every date.

Case 2: ν > 1/2. Then, if the economy exhibits sustained growth of per-capita income
— as it indeed will if some household types are patient enough16 — all sectors j that

16We provide precise conditions below in Theorem 1.
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grow must be “asymptotically fully automated": aj(t) = rj(τ)/hj(τ) → ∞ as t → ∞.
For suppose this assertion is false. Then aj(τ) must be bounded in at least one growing
sector j along a subsequence {τ} of dates. Since the total amount of human labor in the
economy is bounded, so must be the overall labor input in that sector. Then sustained
growth implies that machine capital used in j — and hence the capital-labor ratio —
grows without bound, implying w(τ) → ∞. In the absence of full automation, unit
labor cost ωj(τ) will equal the human wage w(τ), and also converge to∞. By (18),

pr(τ) ≤ 1

2

[
1 +

√
ω(τ)

]2

=
1

2

[
1 +

√
w(τ)

]2

,

so that along the same subsequence,

ν−1pr(τ)

w(τ)
≤ 1

2ν

[
1√
w(τ)

+ 1

]2

→ 1

2ν
< 1 as t→∞,

but that would imply ωj(τ) ≤ ν−1pr(τ) < w(τ) for large τ , a contradiction.

Intuitively, the absence of automation implies an ever-growing scarcity of labor which
causes the human wage to grow (without bound, this latter qualification implicitly pre-
sumed from now on). But that triggers automation when the human wage becomes large.
If ν > 1/2, it is possible to dispense with humans altogether, and still produce robots at
a finite unit cost (using machine capital and robots). Specifically, there exists p∗r < ∞
satisfying p∗r = 1

2

[
1 +

√
ν−1p∗r

]2

, if and only if ν > 1/2. Then p∗r is an upper bound
to the price of robots, making automation inevitable in all growing sectors. That bounds
the human wage above, and hence the aggregate income earned by human workers. It
follows that the share of labor in national income must converge to 0 in the long run.

We now provide a condition which explains the key distinction between the two cases
above, and drives automation and income distribution in the general model.

4.2. Self-Replication. Recall the “no-protection" assumption `oj(0, r) > 0 for some r >
0, for every j and o. By linear homogeneity, `oj(0, r)/r is independent of r for r > 0; call
this ratio νoj . In what follows, we ask you to temporarily forget that the capital rental rate
is the numeraire. Consider the unit cost minimization problem in the robot sector, when
each type o of effective labor in that sector is priced at νoj

−1 per unit, and the capital
rental rate is equal to η. Look at the limit of this unit cost as η → 0:

lim
η→0

cr
(
η, {νor

−1}
)
.
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It turns out that this limit bears on the possible automation of the robot sector itself.

PROPOSITION 1. Suppose the robot sector satisfies the following “self-replication" con-
dition:

(19) lim
η→0

cr
(
η, {νoj

−1}
)
< 1.

Then there is a nonempty compact set P ∗ of strictly positive solutions to the equation

(20) pr = cr
(
1, {νor

−1pr}
)
,

and in equilibrium, pr(t) ≤ supP ∗ <∞ for all t: the robot price is bounded relative to
the rental on capital. If at any t, the robot sector is automated, then pr(t) ∈ P ∗.

We prove Proposition 1 in the main text as it is simple and intuitive. Because νoj units
of effective labor in occupation o can be produced by a single robot unit, it must be that
ωoj ≤ νor

−1pr. This option imposes an upper bound to the price of robot services:

(21) pr = cr (1, {ωor}) ≤ cr
(
1, {νor

−1pr}
)
.

Figure 1 depicts cr(1, {νor−1pr}) as a function of pr. Because machines are indispens-
able for producing robot services, this function initially lies above the 450 line. Self-
replication coupled with linear homogeneity guarantees that it ultimately dips below —
and stays below — the 450 line; see Panel A of Figure 1. Then P ∗ is the set of intersec-
tions with the 450 line, as described by (20). It is nonempty and compact,17 and (21) is
equivalent to the assertion of the Proposition that pr(t) ≤ supP ∗ for all t in any equi-
librium. So the price of robot services (relative to machine capital) is bounded above
if self-replication holds. Indeed, if the robot sector is automated, then that price must
be one of the solutions in P ∗. This pin on the robot price (relative to capital rental),
pr ∈ P ∗, can be viewed as a variant of the Nonsubstitution Theorem (Arrow 1951,
Samuelson 1951). Of course, automation may never be full but only asymptotic. In that
case — though not stated formally in the Proposition — the robot price will lie very
close to some element of P ∗; see, for instance, the proof of Proposition 2.

Conversely if self-replication fails, a finite positive solution to (20) could fail to exist,
as shown in Panel B, and it will necessarily fail to exist if fr is quasi-concave. In this
case, the robot producing sector can never be automated, and the price of robot prices is
unbounded. The resulting implications are spelt out in Proposition 3.

17If fr is quasi-concave, then P ∗ is a singleton — there is a unique positive solution to (20).
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pr

cr (1, {!r   pr})

Self-replication guarantees this final cut

450

P*o-1

(a) Self-Replication Holds

pr
450

cr (1, {!r   pr})o-1

(b) Self-Replication Fails

Figure 1. Self-Replication and the Bound on Robot Price

Let’s examine the self-replication condition (19) in the special CES class, again with
just one occupation in the robot sector. We have:

fr(k, `) =
[
αk

σ−1
σ + (1− α)`

σ−1
σ

] σ
σ−1

,

with α ∈ (0, 1) and the elasticity of substitution σ ≥ 0. The unit cost function is

cr(η, ν
−1
r ) =

[
αση1−σ + (1− α)σνσ−1

r

]1/(1−σ)
.

So our limit equals zero when σ ≥ 1, which includes the Cobb-Douglas case (“enough"
substitution is available). But it is positive when σ < 1. For instance, if the production
function is “almost" Leontief, labor costs will matter for unit cost no matter how cheap
machines are. In this latter case, (19) does restrict the value of νr. Specifically,

(22) Either σ ≥ 1, or σ ∈ (0, 1) and νr > (1− α)σ/1−σ.

4.3. Automation and the Declining Labor Share Under Long Run Growth. In conjunc-
tion with sufficient consumer patience, the self-replication condition in the robot sector
has strong implications for long run growth, automation and income distribution.

THEOREM 1. Assume the self-replication condition (19) holds, and that for some m,

(23) βm

[
(1− δ) +

1

ck (1, {νok−1 supP ∗})

]
> 1.

where P ∗ is defined as in Proposition 1. Then:
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(i) Per-capita national income grows: Y (t)→∞.

(ii) Each sector j that grows exhibits asymptotic full automation:

(24)

∑
o∈Oj r

o
j (t)∑

o∈Oj h
o
j(t)
→∞ as t→∞.

(iii) If preferences are asymptotically homothetic, the national income share of human
labor converges to zero as t→∞, and that of physical capital converges to 1.

We describe the underlying argument; a formal proof is in the Appendix. Part (i) states
that per capita income grows (without bound) if (23) holds. This is a condition placed on
the primitives of the model. When the robot production function is quasiconcave, P ∗ is
an easy-to-compute singleton. Otherwise P ∗ is multivalued but still based on primitives.
We show that (23) is sufficient for an m-type to accumulate unbounded wealth.

The first difficulty is to account for moving capital prices. While bounds can be placed
on these prices, there will in general be capital gains (or losses). To sidestep the spikes
of accumulation and decumulation that could might arise from these anticipated gains
and losses, we cumulate the relevant Euler equations for financial wealth. Recalling the
indirect utilities vm and γ(t), the equilibrium rate of return on financial assets, we have:

(25) v′m(zm(t),p(t)) ≥ βmγ(t)v′m(zm(t+ 1),p(t+ 1)),

with equality holding if financial wealth is actively accumulated. From (9),

γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
=

[
pk(t+ 1)

pk(t)

] [
(1− δ) +

1

pk(t+ 1)

]
,

where the second equality decomposes the return into the product of capital gains and
the rental income (augmented by any undepreciated capital) on a unit of wealth. If we
compound the Euler inequality in (25) over dates 0, . . . , t, where t ≥ 2, then we have

v′m(zm(0),p(0)) ≥ βt−1
m

(1− δ)pk(t) + 1

pk(0)

{
t−1∏
τ=1

[
(1− δ) +

1

pk(τ)

]}
v′m(zm(t),p(t)),

which eliminates temporary spikes and dips in capital gains. Because pk(τ) is bounded
by the option to automate: pk(τ) ≤ ck(1, ν

−1
k pr(τ)) ≤ ck(1, ν

−1
k supP ∗), we have:

(26) v′m(zm(0),p(0)) ≥
βt−1
m

[
(1− δ) + 1

ck(1,{νok
−1 supP ∗})

]t−2

ck (1, {νok−1 supP ∗})
v′m(zm(t),p(t)).
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Applying (23), (26) implies that v′m(zm(t),p(t)) → 0 as t → ∞. Further bounds on
equilibrium prices {p(t)} (see Appendix) then allow us to conclude that the consump-
tion expenditure of typem households must grow. With bounded debt, the same is true a
fortiori for per capita consumption and income in the economy. Because returns to cap-
ital are bounded away from zero under self-replication, the option to automate liberates
owners of capital from labor scarcity as the economy grows.

Part (ii) asserts that any such sector that grows exhibits asymptotic full automation in
the sense of (24). The proof is easily obtained by contradiction: if a sector grows, at
least one of its effective labor inputs must grow with it — this is a consequence of
unbounded steepness with respect to at least one effective labor input, and the fact that
self-replication holds (so the price of effective labor is bounded relative to capital). But
the total available supply of (raw) human labor is bounded. Therefore each such growing
occupation within the sector must have aoj(t) → ∞. Because all bounded occupations
become insignificant relative to the growing ones, the result follows.

Part (iii) is the heart of our thesis, and needs a more subtle argument. We want to allow
for the case in which there is no uniform threshold for automation — the idea being
that at any human wage, there are always productive sectors where humans continue
to be a desirable presence. In fact, humans may well be persistently present in every
occupation, asymptotically automated or not,18 but with asymptotic automation their
income share cannot be preserved. However, the presence of an unbounded number
of occupations opens the possibility of “human shelters" that provide opportunities for
humans to stay ahead of automation waves. To do so, they must perennially accumulate
human capital, moving across occupations. Indeed, in these relatively protected sectors,
the human wage could be very high. In Proposition 2 below, we provide conditions under
which in any equilibrium with growth, the highest human wage across all sectors grows
unboundedly over time. If humans acquire the skills to enter these yet-to-be-automated
sectors, their wages might conceivably grow in step with per capita income.

At this point, the endogeneity of prices and wages that we’ve emphasized throughout
takes center stage. The willing absorption of humans into sectors requires that there be
adequate demand for those outputs. When all labor is clumped into an efficiency-unit ag-
gregate, this demand question is eliminated by definition, because relative wages cannot
change over the sectors that are thus aggregated with brute force. With an endogenous

18To see why, consider the example of an `j function provided just after equation (2).



19

wage structure, this is no longer the case. Part (iii) shows that if demand is asymptoti-
cally homothetic, then the economy runs out of steam in its ability to shelter labor. For
the human wage share to stay positive in the long run, household expenditures shares on
yet-to-be automated sectors must remain sizable. Under asymptotic homotheticity, this
cannot happen, so wage incentives do not climb at the required pace.

Hometheticity is sufficient for Theorem 1, but not necessary. Without formalizing what
follows, consider a version of our model in which there is no homotheticity, so that
demand can keep shifting persistently with rising income. Then Theorem 1 would still
remain true as long as those shifting preferences favor subsets of goods in a way that is
neutral, on average, to their susceptibility to automation. Under self-replication, there
appears to be only one way to break the stranglehold imposed by the theorem, and that
is if preferences are both non-homothetic and move progressively in favor of goods that
aford human protection; it is easy to construct examples of this.19

4.4. Persistent Growth in Human Wages. The discussion in Section 4.3 suggests that a
vanishing share of labor income could co-exist with unbounded growth in human wages.
Several combinations of sufficient conditions can deliver such a result; we provide one.
Suppose that there is just one occupation per sector (nothing hinges on this). Consider
the marginal rate of substitution between humans and robots in producing effective labor
in sector j, that is, the marginal human input that needs to be added to keep effective
labor constant as robot services are decreased by a constant infinitesimal amount. Let θj
denote the limiting marginal rate of substitution as the ratio of human to robot labor in
sector j converges to zero. This serves as a measure of the “local relative efficiency" of
robots relative to humans in sector j in a neighborhood of the automation corner.

Given asymptotically homothetic preferences, we make the following “full-support" as-
sumption on limit demand: for each m and each price p� 0, dmi(p) > 0 for i ∈ I .

PROPOSITION 2. Suppose that the conditions of Theorem 1 hold, including asymptotic
homotheticity of preferences, and suppose that the full-support condition holds. Then:

(a) The highest wage earned by humans across sectors grows without bound as t→∞,
if there is a sequence of goods i = 1, 2, . . . with θi → 0.

19Comin, Danieli and Mestieri (2019) describe non-homotheticities in demand which raise the share of
services and lower that of agriculture, and are associated with rising wage polarization. They do not inves-
tigate the implications for the decline in overall labor income share. Karabarbounis and Neiman (2014)
argue that this decline is mainly intrasectoral, and not driven by changing intersectoral composition.
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(b) The wage earned by every human grows without bound if education costs incurred
in order to move across any pair of occupations is bounded.

As a special case, all the conditions of the proposition hold when human labor is freely
mobile, when preferences are CES and Dixit-Stiglitz, and if the aggregator for effective
labor in each sector is as described in the example after equation (2). Theorem 1 tells
us that any growing sector must eventually be automated, so robot output must grow
to meet that rising demand. Given the limited endowment of human labor, this is only
possible if the robot sector itself is asymptotically automated. Hence the tail sequence of
robot prices has limit points contained in the set P ∗. (It will additionally converge if the
robot technology is quasiconcave.) Because any sector i can be contested by humans,
the corresponding tail sequence of human wages is asymptotically bounded below by
pr(t)/θi. Given that pr(t) enters into a strictly positive compact set, the highest human
wages diverge to infinity along the double sequence t→∞ and {i} such that θi → 0.

When education costs are bounded, (b) states that the wage earned by every human must
grow. This is because wage differences across sectors are bounded. Hence if wages in
any sector grow, so must they also grow in every sector in which some humans choose
to work. However, if education costs are unbounded, some humans may remain trapped
in certain occupations with a finite limiting wage.

4.5. The Failure of Self-Replication. A failure of self-replication means that the price of
robots cannot be severed from human wages. Human workers are indispensable in the
production of robot services, causing robot prices to climb with wages as labor scarcity
grows. The scope for automation in all sectors is therefore restricted, so inducing wages
to grow faster. The example in Section 4.1 already makes this clear, but more can be
said. Under broad conditions, self-replication is formally necessary for Theorem 1.

To develop this argument, we place some restrictions on our general environment. Once
again, without any real loss of generality, we assume just one occupation per sector.
The first restriction is a general version of the condition that the production function fj
defined on capital and effective labor has an elasticity of substitution smaller than 1 in
every sector j. For any sector j, and any effective price of labor ω, consider the set
Ξj(ω) of labor-capital ratios ξ = `/k that minimize unit cost of production, and let

Λj(ω) ≡ min
ξ∈Ξj(ω)

ωξ(ω)

1 + ωξ(ω)
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be the lowest ratio of labor income to total income in that sector thus generated. Just
for a moment, think of the production function fj in this sector as CES with elasticity of
substitution lower than 1. Then we know that Λj(ω) is increasing in ω, with Λj(0) = 0

and Λj(∞) = 1. In particular, given any lower bound ω > 0, we have

inf
ω≥ω

Λj(ω) > 0.

In our more general setting without constant elasticity (or indeed concavity), we impose
the above condition, and uniformly so across sectors:

(27) inf
j

inf
ω≥ω

Λj(ω) > 0.

Next, we make additional assumptions on the production function for robots. We assume
that it is strictly quasiconcave, in addition to being linearly homogeneous. We assume
further that `r(h, 0) > 0 for some h > 0, so that the labor aggregate in the robot sector
can be produced by humans alone. This restriction is analogous to the feasibility of
automation, as already assumed. Call such a technology regular.

PROPOSITION 3. Suppose that (27) holds and the robot production function is regular.
Then, if the self-replication condition fails, in any equilibrium the share of human labor
in national income is bounded away from zero.

Proposition 3 makes it clear that both the asymmetry of human and physical capital
accumulation and the self-replication condition on the robot sector are needed for our
results. Indeed, the self-replication condition is logically necessary in a broad class of
environments. Without it, robot prices cannot be divorced from the wages of human
labor. As labor becomes more expensive, so do robots, and the forces of automation are
attenuated — sufficiently attenuated, as it turns out, under the conditions of Proposition
3 so that the share of human labor does not decline in a sustained way over time.

4.6. Within-Occupation Human Capital. We now extend the theory to incorporate the
acquisition of intra-occupational skill. First note that the device of several occupations
within a sector can be interpreted to mean that these are different skill levels within the
same job. As long as there is a finite (or even compact) set of such skill levels, the the-
ory already accommodates such cases, by redefining different levels of skill as different
occupations. However, that is still in contrast to the unbounded scope for accumula-
tion of physical capital within any sector. Could our model be extended to similarly
accommodate the unbounded accumulation of skill within a sector?
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We already know that the answer cannot be an unqualified yes: there are macroeconomic
models which generate balanced labor income shares once human capital can be accu-
mulated to an unbounded degree in efficiency units, with no changes in relative prices.
So studying this extension will help identify the precise nature of the asymmetry needed
between physical and human capital accumulation in our model.

For expositional clarity, we revert to the common-sense notion of an occupation, and do
not interpret varying levels of skill as constituting distinct occupations. We extend our
model to allow workers to acquire varying levels of skill within any given occupation,
and place no upper bound on the amount of such skill that can be accumulated. We
model skill in the conventional manner, as a certain number of efficiency units. Let
the production function for effective labor services in occupation o in some sector be
`oj(µ

o
jh

o, ro), where µo is the productivity of a human in that occupation. (We’ve dropped
sector subscripts for ease in writing.) Wages are paid per unit of productivity, just as in
the standard model based on efficiency units, so the income of a person with productivity
µo is woµo, where wo is the occupation-specific “efficiency unit human wage."

Everything else in the model is kept unchanged, but we must specify the technology of
productivity acquisition. To this end, we extend the education function as follows: let
e(µ, µ′, o, o′) denote the units of education needed to move from “starting productivity"
µ in occupation o to “destination productivity" µ′ in sector o′, where o could be equal to
o′. In particular, one can both invest within an occupation and across occupations, gen-
erally with heterogeneous cost implications. Moreover, continued on-the-job education
can depend on baseline levels of productivity already acquired in that sector.

We take e to be smooth in its first two arguments with partial derivatives denoted by e1

(with respect to starting productivity) and e2 (with respect to destination productivity),
typically negative in the first case and positive in the second. We place the following
restrictions on the education function:

(H.1) For any o and S > 0, there is M <∞ such that e2(µ, µ, o, o) ≥ S for all µ ≥M .

(H.2) For any o, there is Lo ≥ 0 with e1(µ, µ′, o, o′) ∈ [−Lo, 0] for all (µ, µ′) and o′.

(H.3) For each occupation o′, there is a bound µ̂o′ such that for every starting o 6= o′ and
productivity µ, e(µ, µ′, o, o′) =∞ for µ′ ≥ µ̂o

′ .

(H.1) states that within any occupation, the marginal cost of skill acquisition ultimately
becomes very high, as baseline productivity increases. (H.2) states that while a higher
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starting productivity may bring down the cost of achieving any destination productivity
in the same or different occupation, the marginal savings are bounded. (H.3) states if
an individual is switching occupations, there is some upper bound to the productivity
with which she can immediately start in the new occupation. Of these three, the one
that matters the most is (H.1). This condition does not automatically seal off unbounded
skill accumulation, because the equilibrium price and wage structure matters as well:
the returns to skill may grow fast enough to outpace the rising marginal cost. But as
shall now see, the self-replication condition suffices to prevent such an outcome.

PROPOSITION 4. Suppose that within- and cross-sector human capital are accumu-
lated via an education function satisfying H.1–H.3. Suppose, moreover, that the self-
replication condition (19) is satisfied, and preferences are asymptotically homothetic.
Then, if (23) holds, there is sustained per-capita income growth, and the income share
of labor goes to zero.

The Appendix contains a detailed proof; we describe the main step here. Under self-
replication, each sectoral price is bounded below and above over time by strictly positive,
finite numbers, just as before; see Lemma 2. In general, wages will not be bounded, but
the argument that follows separates two cases.

In the first, some occupational wage grows; see formal proof for precision regarding sub-
sequences, etc. But then, the feasibility of automation allows us to prove that the share
of human labor income in total effective-labor revenue in that occupation must converge
to zero; see part (ii) of Lemma 3. The second possibility is that some occupational wage
is bounded. Then (H.1) chokes off the incentive to acquire within-occupation productiv-
ity, given that the price of education is bounded below. The gains from such acquisition
include direct wage benefits from the occupation, as well as cost savings on future in-
vestments, but these are all bounded, by our conditions on the education function. At the
same time, the cost of incremental productivity climbs without bound. These observa-
tions ensure that when the occupational wage is bounded, so is productivity per person.
With this boundedness result in hand, we can essentially follow the existing line of proof
in Theorem 1. The two possibilities taken together replicate our previous result.

4.7. Sectors With Full Human Protection. We’ve assumed that full automation is tech-
nically feasible, but what of “protected" occupations in which production is impossible
without humans: `(0, r) = 0? Examples might include “live music" or “hand-made
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pottery," with a human element in production by the very nature of the good. Of course,
it is still possible that the ratio of human to robot could become vanishingly small over
time. In the live-music example, it might be possible to increase the size of the audience
without bound for any live concert, and “hand-made pottery" could be judiciously rede-
fined to include minimal human intervention. The debate is philosophical and possibly
endless, as anyone who’s seen Blade Runner or heard of the Turing test will know.

For expositional simplicity, assume one occupation per sector. Say that sector (or occu-
pation) j is unprotected if `j(0, r) > 0 for r > 0, as assumed so far, and protected if
`j(0, r) = 0 for all r ≥ 0. When preferences are asymptotically homothetic, say that the
asymptotic demand system dm(p) is elastic if

∑
i∈Q p

n
i di(p

n)→ 0 along any sequence
prices {pn} in which pnQ →∞ while all other prices are bounded above.

PROPOSITION 5. Suppose that all intermediate goods sectors and some final goods
sectors are unprotected, and that the self-replication condition (19) holds. Then:

(i) Under (23), there is sustained per-capita income growth.

(ii) For every unprotected sector on which expenditure grows, there is asymptotic au-
tomation and the output price is bounded.

(iii) For every protected sector on which expenditure grows, there is asymptotic automa-
tion and the output price is unbounded.

(iv) Suppose that preferences are asymptotically homothetic, and that the expenditure
shares of all sectors converge to a limit expenditure share vector. Then the limit share of
human labor in national income is bounded above by the asymptotic share of expenditure
on protected sectors. Moreover, if the demand system for every type is elastic, then once
again the share of human labor in national income converges to zero.

We omit a formal proof; much of it follows already covered ground. Part (i) is proved
by exactly the same argument as in part (i) of Theorem 1. The proof of part (ii) is a
special case of (ii) of Theorem 1, noting that the growth of output value is the same
as the growth of physical output — prices must be bounded. Part (iii) is new. There
are two cases: either the price of the protected good grows, or its physical output does.
Under the former, the price of the labor aggregate must grow in that sector — and so too
must human wages, given that robot prices are bounded, by self-replication. Asymptotic
automation then follows from Lemma 3(iii) in the Appendix.
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In the latter case, with output growing, there are two possibilities: (a) The labor aggre-
gate also grows in that sector, but then we have asymptotic automation, given that the
stock of raw labor is bounded. Moreover, since the sector is protected, the price of the
labor aggregate must grow, and so must the price of final output. (b) The labor aggregate
is bounded, but then capital must grow, implying an ever-increasing price for the labor
aggregate. That in turn can only happen if the human wage grows, and once again we
obtain asymptotic automation. Moreover, the price of the final output must grow.

Exactly the same argument as in Theorem 1(iii) shows that the labor share as a ratio
of expenditure on all unprotected sectors converges to zero. Therefore the overall la-
bor share in national income must be asymptotically bounded above by the asymptotic
share of expenditure on protected sectors. Finally, observe that all unprotected prices
are bounded (Lemma 2(ii)) and all protected prices in growing sectors are unbounded.
Moreover, by assumption, all protected goods are final goods. Then, with an elastic de-
mand system, the expenditure share on all protected goods must fall to zero, and by the
upper bound just established, so must the share of human labor in national income.

5. Technical Progress

We extend the theory to incorporate directed technical progress. “Directedness" means
that technical progress is geared to input scarcity. The key assumption we make is
that the opportunities for such progress are symmetric over all inputs, and across all
sectors. This is not to deny the possibility that the nature of science and technology
might generate biases in certain directions. But studying the effect of such exogenous
biases would not need a theory. If they were to favor unbridled automation, our earlier
results would be a foregone conclusion. If they favored the augmentation of human
quality over robots, that would raise the share of humans in national income instead.

The two possibilities combined point to a long run “balanced-growth" view of technical
progress; see Acemoglu and Restrepo (2018, 2019), with antecedents that include Hicks
(1932), Salter (1966), Galor and Maov (2000), and Acemoglu (1998, 2002), among
many others. Acemoglu and Restrepo (2018) generate balanced growth by assuming
that newly developed tasks lie in the human domain, enjoying temporary protection
from the robot invasion. But the robots are also hard at work, automating existing tasks
and perennially chasing the moving human frontier. Balance is achieved by equilibrium
across these two forces. This is a potentially fruitful approach, but one that is — perhaps
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unavoidably — laden with questions. Why can’t new tasks that favor robots also appear
on the frontier? Or (the flip side): why cannot technical progress allow humans to
recover their edge in old tasks? What if there is technical progress in machines?

In this section, we adopt a more neutral view. There is a fixed number of sectors and
tasks, with technical progress taking place on the intensive rather than extensive margin.
There is no a priori restriction on sectors in which humans and robots can be active. In
contrast, Acemoglu and Restrepo study the extensive margin, where the task space is
extended in the asymmetric way already described. Within each sector/occupation, we
allow for technical progress in machine capital, in human labor, and in robot services.
Technical progress in each of these sectors plays an important role in our analysis.20

The sole asymmetry we retain — one already developed — is the difference between
the scaling-up of physical and human capital. It will turn out that this asymmetry is
augmented in the presence of symmetric (though directed) technical progress. Moving
away from this symmetric benchmark, if there are stronger opportunities for technical
progress that heighten the productivity of machine capital or robots relative to humans,
our results will a fortiori be reinforced. And in the opposite case they will be moderated.

We presume that productivity growth in any factor in any given sector spills over to the
same factor in other sectors.21 There is empirical evidence of such spillovers (see, e.g.,
Bernstein and Nadiri 1988 and Johnson 2018). Such spillovers will ensure that the rate
of productivity growth of any factor cannot diverge across sectors in the long run.22

5.1. Framework. To simplify the exposition we narrow the baseline model. First, we
consider only finitely many sectors and one occupation per sector. Second, we assume
that the `-aggregator in each sector exhibits perfect, linear substitution between robots
and humans. To allow for changes in the productivity of every input, we attach coeffi-
cients to all three inputs as follows:

yj = fj(θjkj, µjhj + νjrj),

where the same assumptions are made on fj as before, and (θj, µj, νj) � 0 are intra-
sectoral factor productivities that can be changed by deliberate technical progress.

20Acemoglu and Restrepo abstract from non-robot machine capital in their model.
21Acemoglu and Restrepo (2019) assume a single sector, avoiding the complications from multiple

sectors and inter-sectoral spillovers. But this is not a fundamental source of difference in the results.
22In the complete absence of spillovers, Theorem 2 may not hold; details are available on request.
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We assume that self-replication holds throughout. Because productivities will change
over time, the condition is stated relative to starting robot productivity νr(0) at date 0:

(28) νr(0) > lim
η→0

cr(η, 1).

Robot productivity in subsequent periods will be endogenous but no lower. So we im-
pose no restrictions involving these, but it is easy to see that all our results hold for any
competitive equilibrium for which (28) holds at some date t along the equilibrium path,
and a fortiori at all dates thereafter.

5.2. Endogenous Technical Progress. Each factor-sector pair is serviced by a short-
lived inventor whose activities and returns are external to the economy in question.23

She can increase the sectoral productivity of that factor. Assume that generic produc-
tivity πj(t) of a factor in sector j at t can be increased at some rate ρj(t) through R&D
investment. A fixed proportion γ > 0 of this growth spills over to the same factor in
other sectors, subject to a maximum rate ρ̄ of productivity growth in any sector. So for
any sector j:

(29) πj(t+ 1)− πj(t) = max

{
ρj(t)πj(t) + γ

∑
j′ 6=j

ρj′(t)πj′(t), ρ̄πj(t)

}
.

The associated R&D cost of the inventor is κ(ρj(t)), where κ′(0) = 0, κ′(ρ) > 0

and κ′′(ρ) > 0 for all ρ. View R&D investment as a game played across sectors and
factors by inventors. Spillovers are in the public domain, utilized freely by all firms.
The spillover into sector j from other sectors depends on R&D investments by inventors
in those sectors. As these are correctly anticipated in a Nash equilibrium, the sector j
inventor will invest in R&D only if the spillovers into j from other sectors are smaller
than ρ̄πj(t). This provides scope for the inventor to license the proprietary advance
ρj(t)πj(t) to firms operating in sector j in period t + 1. The license fee is levied per
(natural) unit of the factor employed by the firm at t+ 1.

Each inventor takes prices as given, as in the competitive innovation models of Grossman
and Hart (1979) and Makowski (1980). The maximum unit license fee Lj(t + 1) that

23We can fully integrate the inventor into the economy by providing her with a technology that de-
pends on machine capital and human/robot labor. We avoid that recursive extension here. However, one
difference that will arise is that the R&D sector will not be perfectly competitive, and will earn profits that
typically constitute a positive fraction of national income. The extent to which humans can be replaced by
robots in the R&D sector is then an additional determinant of the labor income share. This will be driven
by the logic of cost minimization in the production of R&D, in a manner similar to that in other sectors.
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can be charged by a date-t inventor is

(30) Lj(t+ 1) = qj(t+ 1)ρj(t)

where qj(t) is the factor price at t.24 Intuitively, the “effective factor price" for licensees
must rise by exactly the same proportion as the proprietary productivity advance.

Therefore, if xj(t) is the use of that factor in sector j at date t, the total return earned by
the inventor equals Lj(t+1)xj(t+1) = ρj(t)Ej(t+1), whereEj(t+1) ≡ qj(t+1)xj(t+

1) is the total bill for that factor in sector j. Given the R&D choices {ρ′j(t)}j′ 6=j by inven-
tors in other sectors, and given that our inventor is specific to the sector at hand, she will
invest until κ′(ρj(t)) = Ej(t+1), provided κ′−1(Ej(t+1))πj(t)+γ

∑
j′ 6=j ρj′(t)πj′(t) <

ρ̄. Otherwise, she will invest max{0, ρ̄− γ 1
πj(t)

∑
j′ 6=i ρj′(t)πj′(t)}. So in Nash equilib-

rium, the rate of productivity increase must satisfy:

(31)
πj(t+ 1)− πj(t)

πj(t)
= max

{
κ′−1(Ej(t+ 1)) + γ

1

πj(t)

∑
j′ 6=j

ρj′(t)πj′(t), ρ̄

}

5.3. Equilibrium. An equilibrium looks in part like the competitive equilibrium in Sec-
tion 3.6. Because licensees transfer all their surplus to the inventor, their current produc-
tion decisions are the same as they would have been in the absence of license purchases.
With the rental rate on capital as numeraire, an equilibrium is a sequence of wages
{w(t), wr(t), we(t), wk(t)}, prices {p(t), pr(t), pe(t), pk(t)}, quantities {Fm(t), zm(t),
em(t), jm(t), kj(t), rj(t), hj(t), yj(t)} for every person and every sector, and productiv-
ity coefficients {θj(t), µj(t), νj(t)} for every input, sector, and date, such that:

(a) Given the sequence of productivities, the remaining sequence of outcomes constitutes
a competitive equilibrium; and

(b) At every date, given equilibrium prices, all productivity changes and fees are the
outcome of a Nash equilibrium as described earlier in this section.

5.4. Automation and the Vanishing Labor Share with Technical Progress. To state the
main result of this section, we place two additional restrictions. First, we assume that
household expenditure shares on each final good are bounded away from zero:

24One efficiency unit of the factor costs qj(t + 1)/πj(t) for someone without access to the technical
advance, and qj(t + 1)/(1 + ρj(t))πj(t) for someone with access. The difference in unit cost is qj(t +
1)ρj(t)/πj(t)(1+ρj(t)), so this can be sucked out as a license fee per efficiency unit. Multiplying by the
number of efficiency units πj(t)(1 + ρj(t)) made possible by the advance, we obtain expression (30).
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[E] For any individual type m and good i, inf(p,z)�0 pixmi(p, z)/z > 0.

As there are a finite number of goods, this is innocuous. Next, we make an additional
assumption on the production technology:

[F] There is some final good i for which limω→0 ci(1, ω) > 0.

It is easy to verify that Condition F holds as long as there is at least one final good sector
with constant capital-labor elasticity of substitution strictly smaller than 1.25

THEOREM 2. Assume the self-replication condition (28), and Conditions E and F. Then
in any equilibrium which exhibits unbounded accumulation of machine capital, the in-
come share of human labor in the economy as a whole must converge to zero as t→∞.

Theorem 2 resurrects our earlier prediction, and continues to highlight the effects of
asymmetry across human and physical capital accumulation. The theorem now makes
a stronger assumption on growth, asking that capital be accumulated in equilibrium.
It is possible to provide sufficient conditions for this, along the lines of Theorem 1.
Technical progress induces a downward drift on prices (relative to incomes), which is an
“automatic" — albeit endogenous — source of real income growth. For machine capital
to be willingly accumulated despite this drift, the degree of patience must clear a higher
threshold (which depends on the maximal rate ρ̄ of technical progress).

We outline the main steps to prove Theorem 2.

OBSERVATION 1. (a) For each factor and sector j, there is M < ∞ such that factor
productivity in j grows at rate ρ̄ if the factor bill qjxj for that factor exceeds M .

(b) If the spillover rate γ is positive, the relative productivity πj(t)/πj′(t) of any factor
between any pair of sectors j and j′ is bounded.

25We believe that both conditions E and F are technical. Condition E is possibly needed for the result,
but is mild. As for F, we do know that it can be replaced by other conditions. For instance, for any sector
j, define the intensive-form function gj(e) ≡ fj(e, 1). Then the following condition substitutes for F: [F′]
There is some sector j such that the infimum elasticity of the intensive form is positive:

inf
e>0

g′j(e)e

gj(e)
> 0.

Conditions F and F′ are not nested. A CES production function with elasticity of substitution smaller than
1 satisfies F but not F′. A Cobb-Douglas production function satisfies F′ but not F.
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Part (a) follows from (31). If the factor bill Ej(t + 1) is large enough, the right-hand-
side of (31) will equal the maximal rate ρ̄ of technical progress. This reflects the force
of the intensive margin in motivating technical progress in sector j. Part (b) ensures
that the benefits of technical progress in any sector spills over to other sectors, thereby
preventing the unbounded inter-sectoral divergence of factor productivity.

Next, the self-replication condition (28) places a bound on robot prices pr(t)/νr(t) in
efficiency units, relative to the capital rental rate 1/θr(t) (in effective units) in the robot
sector. Spillovers across sectors then imply that the same is true of every sector in
the long run, a consequence of Observation 1(b). This generates the following sector-
specific bound on efficiency-adjusted price of robot services relative to machine rentals:

LEMMA 1. Assume (28). For any j, there is Bj <∞ such that

(32) θj(t)
pr(t)

νr(t)
≤ Bj for all t

in any equilibrium.

OBSERVATION 2. If Conditions E and F hold, then in any equilibrium with K(t)→∞,
it must be the case that ki(t)→∞ for some sector i.

This observation rules out the arcane possibility that unbounded accumulation of ma-
chine capital will be accompanied by cross-sectoral cycles of ever-increasing amplitude,
so that capital in any given sector is bounded along some subsequence of dates. Condi-
tion E ensures that sectoral expenditure shares cannot fluctuate “too much" across dates,
so the output of each good must track overall growth. Condition F implies a bounded
ratio of output value to machine capital for at least some sectors. In these sectors, the
amount of machine capital allocated must therefore grow.

Observation 2 implies that the rate of technical progress in machines must eventually
occur at the maximal rate ρ̄ in some sector. These advances spill over to every other
sector. Hence, the rate of technical progress in machine capital in any sector cannot fall
behind the rate of technical progress in human labor in the long run.

Combined, these three observations have the following implication. The asymmetric
growth in endowments in natural units between machine capital and human labor gen-
erates a bias (at least weakly) in technical progress in favor of capital. That compounds
the distributional shift in favor of physical capital, so our preceding results concerning
the long run income share of human labor continue to hold in the presence of directed
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technical progress. Specifically, in any sector j that employs human labor at any date t,
humans must be cost-effective relative to robots, which is the first inequality below:

wj(t)

µj(t)
≤ pr(t)

νj(t)
≤ Bj

θj(t)νj(t)
,

but the second inequality also applies, by Observation 1. Combining the two,

wj(t) ≤
µj(t)

θj(t)

Bj

νj(t)
.

Now, µj(t)
θj(t)

is bounded: as already noted, machine capital productivity grows at least as
fast as human productivity in every sector in the long run, while νj(t) is non-decreasing
in t. So human wages are bounded, implying that the share of human labor income in
national income must converge to 0 in the long run, as Kt →∞.

We remark on the very last line in the previous paragraph. It is true that human wages are
bounded, but only relative to our chosen numeraire, which is the rental rate on machine
capital in natural units. Because technical progress occurs in all sectors, machine capital
becomes highly productive over time, which leads to a progressive decline in the prices
of final goods, relative to the same numeraire. Human wages are bounded below in that
numeraire, and so by any measure of the cost-of-living — that is, relative to any index
number defined on the basket of final goods — real incomes must diverge to infinity.
The fact that the share of human labor in national income nevertheless converges to zero
again reveals the contrast between absolute and relative behavior in human incomes,
already emphasized at different points above.

As before, the argument for Theorem 2 rests on the underlying asymmetry between the
growth of physical capital and human labor in natural units. Unbounded capital accu-
mulation relative to human labor implies a corresponding asymmetry in factor bills, and
thereby in technical progress on the intensive margin. That induces a parallel asymmetry
in rates of technical progress, precisely unveiled by our insistence on the level-ground
assumption that the opportunities for technical progress are symmetric.

6. Concluding Remarks

We study long-term automation and decline in the labor share, driven by capital accu-
mulation rather than biased technical progress or rising markups. Our argument relies
on a fundamental asymmetry across physical and human capital in modern economies.
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While physical capital can be scaled up for the same activity and accumulates in natu-
ral units, human capital accumulates via education and training that alters choice into
higher-skilled occupations, but — from the vantage point of a household or individual
— cannot scale up the quantity of labor for a given occupation to an unlimited degree.
Under a self-replication condition on the technology of the robot-producing sector, we
show that the share of capital in national income approaches 100%.

The self-replication condition is central to our findings. So the condition itself merits
greater scrutiny. There is greater recognition that the “production of robots by means of
robots" is not merely a hypothetical possibility:

“They are a dream of researchers but perhaps a nightmare for highly skilled computer pro-
grammers: artificially intelligent machines that can build other artificially intelligent ma-
chines . . . Jeff Dean, one of Google’s leading engineers, spotlighted a Google project called
AutoML . . . [which] is a machine-learning algorithm that learns to build other machine-
learning algorithms. With it, Google may soon find a way to create A.I. technology that
can partly take the humans out of building the A.I. systems that many believe are the future
of the technology industry." (The New York Times, November 5, 2017.)

The self-replication condition is placed on the robot sector alone, but it has economy-
wide ramifications. If this condition fails, humans are generally guaranteed a positive
share of national income. For either some sectors of the economy are automated, in
which case the robot sector becomes active, and humans must obtain a positive share
of value added in the robot sector. Or there is no automation anywhere, in which case
humans are not displaced in any sector, and the standard theory applies. Therefore, in
the absence of self-replication, there is a route by which the benefits of physical capital
accumulation could persistently flow to humans.

Our paper also takes note of other escape routes from the possibility of an ever-falling
labor share: non-homothetic demand that progressively favors sectors that protect hu-
mans, growing sectors where humans are protected from full automation by the nature
of technology, or technical progress biased in favor of humans. However, while any of
these scenarios is possible, we do not see any reason why they should be inevitable.

Our emphasis throughout has been on the functional distribution of income. Whether a
household’s income remains on par with the economy — the question of the personal
distribution of income — will depend on whether they invest in financial wealth or hu-
man capital (or neither, or both). This is a question we have not yet addressed, though
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our model provides the means to study it, and is something we plan to undertake. It
will become necessary to take closer account of both the heterogeneity of the popula-
tion in their preference parameters, as well as to incorporate a detailed description of
credit market constraints. Both these features are currently present in the model, but
play no more than a background role. Finally, we note that despite its generality, the
theory presented here is simple and tractable, which may also allow it to be useful in
analyzing effects of fiscal policies such as capital taxes, education subsidies, universal
basic income or other policy interventions to address the distributional consequences of
automation.
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Appendix: Proofs

Proof of Theorem 1. We begin with some preliminary observations.

LEMMA 2. For each j, there is pj > 0 such that in any equilibrium and at any date t,

(33) pj(t) ≥ pj > 0

whenever yj(t) > 0. If in addition, self-replication holds, then

(34) pj(t) ≤ cj
(
1, {νoj

−1 supP ∗}
)
<∞
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for all j and at every date t, where P ∗ is defined in Proposition 1.

Proof. See Supplementary Appendix.

Consider unit costs for the effective labor aggregator ` (in a generic occupation o, sub-
script removed), with human-robot price ratio ζ:

(35) co(ζ, 1) = min ζh+ r, subject to `(h, r) ≥ 1.

LEMMA 3. (i) Suppose that ζ > ζ ′. Then h ≤ h′ and r ≥ r′.

(ii) For any optimal selection h(ζ), ζh(ζ)→ 0 as ζ →∞.

(iii) For any optimal selection h(ζ) and r(ζ), a(ζ) = r(ζ)/h(ζ)→∞ as ζ →∞.

Proof. See Supplementary Appendix.

Now we prove part (i). We first show that in an equilibrium and for any group m that
satisfies (23), we have zm(t)→∞. Consider the indirect utility functions vm(z(t),p(t))

for individual expenditure z(t) at any date t. In any equilibrium, an individual in this
group has F0 > 0 units of a financial asset at date 0, and thereafter makes educational
and financial asset choices (and consumption choices), under fully anticipated prices,
which includes a sequence of return factors {γ(t)} on financial holdings. She has several
necessary conditions that describe her behavior, but one set of these has to do with her
choice of financial assets. Because her initial income can be strictly positive if she so
pleases (there is a positive subsistence wage), her current expenditure zm(T ) must be
strictly positive at some date T , but then zm(t) > 0 for all t ≥ T , by the unbounded
steepness of vm in z at 0. For ease in writing set T = 0. It follows that the Euler equation
on financial assets must hold with a particular inequality at every date t ≥ 0:

(36) v′m(z(t),p(t)) ≥ βmγ(t)v′m(z(t+ 1),p(t+ 1)).

If (36) fails, she could always transfer resources one period into the future and increase
lifetime utility. (Equality may not hold because human capital could have a higher rate
of return than financial assets, and the individual may not be able to marginally pull
back funds from future to present, because of credit constraints.) Now we compound
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this Euler inequality just as in the main text to arrive at (26), reproduced here as:

(37) v′m(zm(0),p(0)) ≥
βt−1
m

[
(1− δ) + 1

ck(1,{νok
−1 supP ∗})

]t−2

ck (1, {νok−1 supP ∗})
v′m(zm(t),p(t)).

It follows from condition (23) that v′m(zm(t),p(t)) → 0 as t → ∞. But vm is strictly
increasing and concave for every p. Moreover, every active final goods price is bounded
above and below by (34) of Lemma 2.26 Therefore (37) can only hold if zm(t)→∞ as
t → ∞. With a bounded credit limit on every other individual, we must conclude that
per-capita income Y (t) as defined in (17) must go to infinity.

For part (ii), we prove that any sector j must be asymptotically fully automated along
any subsequence in which its output grows. To show this, we argue first that effective
labor in some occupation o ∈ Oj in that sector must also grow. If this were false for
every occupation in Oj , then by the unbounded steepness condition,

(38) ωoj (τ) = pj(τ)
∂

∂`oj
fj(kj(τ), `j(τ))→∞ as τ →∞

for some occupation o ∈ Oj . But we know that

ωoj (τ) = coj(w
o
j (τ), pr(τ)) ≤ νoj

−1pr(τ) ≤ νoj
−1 supP ∗ <∞,

where the first inequality comes from the fact that automation is feasible and the second
from self-replication and Proposition 1. But this boundedness of ωoj (τ) contradicts (38).
So effective labor `oj(τ) in some occupation o ∈ Oj grows. But

`oj(τ) = `oj(h
o
j(τ), roj (τ)) = `oj(h

o
j(τ), aoj(τ)hoj(τ)) ≤ `oj(1, a

o
j(τ)),

where “1" is the total human labor endowment. It follows that aoj(τ)→∞ for each such
growing occupation.

Part (iii). For this part, we need the following

LEMMA 4. Let S be the set of all infinite-dimensional nonnegative vectors s ≡ (s1, s2, . . .),
with components in [0, 1] and

∑∞
j=1 sj = 1. Let s(t) be a sequence in S, and sup-

pose that there is ŝ ∈ S such that s(t) converges pointwise to ŝ = (ŝj). Let Ψ(t)

be a corresponding convergent sequence with components (Ψ1(t),Ψ2(t), . . .), where
Ψj(t) ∈ [0, 1] for every j and t, with Ψj(t)→ 0 as t→∞ for every j with ŝj > 0. Then
limt→∞

∑∞
j=1 Ψj(t)ŝj(t) = 0.

26If a final good is inactive it has no effect on vm anyway, as it is not consumed.
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Proof. See Supplementary Appendix.

For any active sector j and date t, define

Ψj(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

pj(t)yj(t)
∈ [0, 1],

and set Ψj(t) = 0 if yj(t) = 0. This is well-defined: pj(t) > 0 whenever yj(t) > 0

(Lemma 2). We claim that if yj(t) → ∞ along a subsequence of dates, Ψj(t) → 0. To
see this, pick any limit point of Ψj(t) along the subsequence in question. Choose further
subsequences such that for every occupation o ∈ Oj , woj (t) is either bounded or diverges
to infinity; retain the original index t. Now, if woj (t) is bounded for some o ∈ Oj , then
certainly

woj (t)h
o
j(t)

pj(t)yj(t)
→ 0

as t → ∞. (Because pj(t) is bounded below, pj(t)yj(t) → ∞.) Otherwise, if woj (t) →
∞ for some o ∈ Oj , ζoj (t) = woj (t)/pr(t) → ∞, given that pr(t) is bounded above
(Proposition 1). By linear homogeneity of `oj and Lemma 3(ii),

woj (t)h
o
j(t)

pj(t)yj(t)
≤

woj (t)h
o
j(t)

woj (t)h
o
j(t) + pr(t)roj (t)

=
ζoj (t)hoj(t)

ζoj (t)hoj(t) + roj (t)
→ 0.

Aggregating these observations over all the occupations proves the claim.

If σ(t) denotes the share of human labor in national income, it follows that

σ(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

Y (t)
=

∑
j Ψj(t)pj(t)yj(t)

Y (t)

=

[∑∞
i=1 Ψi(t)pi(t)yi(t)

Y (t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)
(39)

at every date t, where it is understood that any sector inactive at any date has an entry of
0 in the sum above. Write for every final good i active at date t:

(40)
pi(t)yi(t)

Y (t)
=
∑
m

φm(t)smi(t),

where φm(t) ≡ Zm(t)/Y (t) is the ratio of current aggregate expenditure of type m to
total income, and smi(t) is the corresponding expenditure share on good i by type m.
Combining (39) and (40),

(41) σ(t) =
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)
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for all t. We will show that the right hand side of (41) converges to 0 as t → ∞.
To this end, pick any subsequence of dates (but retain original notation) so that σ(t)

converges. Exploiting the fact that the number of sectors is countable, use a diagonal
argument to extract a further subsequence (again retain notation) so that each of the
bounded sequences Ψj(t), φm(t), smi(t), pj(t), and [pj(t)yj(t)]/Y (t) also converge.27

The last finite sum in (41) pertains only to three sectors: e, r and k. For any of these
sectors, call it j, Ψj(t)→ 0 along any subsequence for which j is consequential, and on
any other subsequence pj(t)yj(t) must be bounded, while Ψj(t) ∈ [0, 1]. Putting these
observations together with Y (t)→∞, we must conclude that this last finite term in (41)
converges to 0. The rest of the argument concerns the first set of terms in (41).

Let M be the set of all indices for which limt φm(t) > 0 for the subsequence under
consideration. If M is empty, we are done, so assume it is nonempty. Then, using the
fact that the interchange of a finite and infinite sum is always valid, we have
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
=
∑
m

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]

=
∑
m∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
+
∑
m 6∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
.(42)

Because φm(t) → 0 for all m /∈ M , the second term on the right hand side of this
equation converges to 0. It remains to show that same is true of the first term. It will
suffice to show that for each m ∈M ,

(43)
∞∑
i=1

Ψi(t)smi(t)→ 0

as t → ∞ along our chosen subsequence. Because limt φm(t) > 0 for m ∈ M and
Y (t) → ∞, it follows that expenditures diverge to infinity for a positive measure of
individuals of each type m. Let Zm(t) be the aggregate expenditure of type m and
xmi(t) the aggregate demand for good i by this type. By asymptotic homotheticity,

ŝmi ≡ lim
t
smi(t) = lim

t

pi(t)xmi(t)

Zm(t)
= lim

t
pi(t)d

m
i (p(t)),

We claim that each pi(t) is bounded above and below by strictly positive numbers. The
upper bound is given by Lemma 2. For the lower bound, suppose by contradiction that
I , the set of indices such that pj(t) → 0, is nonempty. Then, by assumption (ii) on
the function dm, we have lim inft dmi(p(t)) > 0 for some i ∈ I . But then that sector

27In particular, the ratio φm(t) = Zm(t)/Y (t) is also bounded because of finite credit limits.
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is active at all large dates, which means that its price is bounded below (see (33) of
Lemma 2), a contradiction. Therefore the claim is true, and given assumption (i) on dm,
it follows that ŝmi forms a “bonafide share vector" with

∑
i ŝmi = 1. So the conditions

in Lemma 4 are satisfied (ignore index m). Therefore this Lemma implies (43), and the
income share of human labor must converge to zero. Recall (17) to write out income:

Y =
∑
i

piyi + peye + pkyk,

and express it as the sum of (machine) capital and human income:

Y =
∑
i

piyi + peye + pkyk =
∑
j 6=r

[kj + prrj + wjhj]

=
∑
j 6=r

[kj + wjhj] + pr[yr − rr] =
∑
j 6=r

[kj + wjhj] + [kr + wrhr]

=
∑
j

[kj + wjhj] = K +
∑
j

wjhj.

That means that the income share of capital converges to 1.

Proof of Proposition 2. (a) Under the conditions of Theorem 1, including homotheticity,
there are sectors that grow to infinity, and are asymptotically automated. It follows that
the robot sector is active after some date T , so that for all t ≥ T ,

(44) pr(t) = cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t)),

and moreover, yr(t) → ∞ as t → ∞. We claim that every limit point of pr(t) must lie
in the set P ∗ defined by the self-replication condition, as in Proposition 1. If this is false,
then using (44), there is ε > 0 and some subsequence of dates (retain notation) such that

cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t))− ε,

which in turn implies the existence of ε′ > 0 such that

ωr(t) ≤ ν−1
r pr(t)− ε′

for all t large. It follows that ar(t) ≡ rr(t)/hr(t) must be bounded above. But then,
because yr(t) → ∞, we must have hr(t) → ∞, which contradicts the finite labor
endowment of the economy. So the claim is true.

By asymptotic homotheticity, the full support restriction on dm for every m, and the
positive, finite bounds on prices above and below, we see that every sector must grow.
So every sector i ∈ I is asymptotically automated. A necessary condition for this to
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happen is that

(45) lim inf
t
θiwi(t) ≥ inf P ∗.

To see why, note from the previous claim that lim inft pr(t) ≥ inf P ∗. If (45) is false,
then there is ε” > 0 such that θiwi(t) ≤ pr(t) − ε” along some subsequence of dates,
implying that lim inft hi(t)/ri(t) > 0 on that subsequence and contradicting asymptotic
full automation. Recalling the assumption that θi → 0 for some sequence of goods in I ,
it follows immediately from (45) that supiwi(t)→∞ as t→∞.

(b) We claim that for any number W , however large, there exists a time T such that for
all dates t ≥ T , wj(t) ≥ W for every sector j for which hj(t) > 0. If this claim is
false, there exists some sector q and a subsequence of dates (retain original notation t)
such that suptwq(t) ≡ Wq < ∞, but hq(t) > 0 for all t. Next, pick a sector i ∈ I that
nearly attains the supremum in (a). Because that supremum goes to infinity, and because
educational costs are bounded, we have for all large t,

(46) wi(t) > Wq + p̄e sup
j
|Eji − Ejq|,

where p̄e is some finite upper bound on education prices given by (34). It follows that
for all large t,

wi(t)− pe(t)Eji > wq(t)− pe(t)Ejq.

This shows that no individual can ever want to enter (or remain in) sector q from any
sector j (including j = q) for large enough t; i.e., hq(t) = 0 for all large enough t along
the subsequence, a contradiction.

Proof of Proposition 3. By the minimum subsistence bound on wages and (33) of
Lemma 2, there is ω > 0 such that in any equilibrium, ω(t) ≥ ω for all t. Recalling the
definition of Λj(ω), we can easily use the linear homogeneity of fj and invoke (27) to
see that there is ε > 0 such that the income share of effective labor in sector j satisfies:

ωj(t)`j(t)

pj(t)yj(t)
= Λj(ω(t)) ≥ ε > 0,

for every t and every active sector j. Therefore, if Λ(t) denotes the overall income share
of effective labor at date t, then, because it is simply a convex combination of all the
sector-specific shares,

(47) Λj(t) ≥ ε > 0

as well, for every date t.
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Now consider any sequence of dates (retain original index t) along which the overall
income share of human labor converges. Using a diagonal argument, extract a subse-
quence such that in every sector j, Λj(t) converges — to a strictly positive limit, by
(47), and the overall shares of human labor income and robot income in effective labor
income converges as well. If the share of robot income in effective labor income con-
verges to a number strictly smaller than one, then the proof is complete. Otherwise, the
share of robot income in effective labor income converges to 1, and given that the latter
has a positive limit share in national income, it follows that limj rj(t) > 0. In particular,
for large dates, the robot sector is active, so that:

(48) pr(t) = cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t)).

where the latter inequality comes from the feasibility of automation in the robot sector.

Now, self-replication fails by assumption, so limη→0 cr(η, 1) ≥ νr. Multiplying through
by prν−1

r , and using the concavity of the robot cost function (the first part of our regu-
larity condition on fr), pr ≤ c(1, ν−1

r pr) for every pr > 0. Indeed, using (33) of Lemma
2 and the unbounded steepness of c at pr = 0 (inherited in turn from the unbounded
steepness of fr), we make a stronger claim: there is ε > 0 such that

(49) pr(t) ≤ cr(1, ν
−1
r pr(t))− ε.

at every conceivable equilibrum price pr(t) at any date.28 Combining (48) and (49),

cr(1, ωr(t)) ≤ cr(1, ν
−1
r pr(t))− ε,

which in turn implies the existence of ε′ > 0 such that

ωr(t) ≤ ν−1
r pr(t)− ε′

for all t large. So, because the effective labor price is bounded away from what it would
have been with full automation, it follows that ar(t) = rr(t)/hr(t) must be bounded
above. But then, because effective labor in the robot sector can be produced by humans
alone (the second part of our regularity condition on fr), it must be that the share of
human labor income in the total value of robot production (equal to robot income) is
bounded away from 0. Therefore in this case, too, the share of human income in total
effective labor income is bounded away from zero, and the proof of the proposition is
complete.

28Note first that pr(t) is bounded below (Lemma 2. Now consult Panel B, Figure 1. Because cr(1, pr)
is concave and initially lies strictly above the diagonal, it cannot converge back to the diagonal without
actually crossing it. So it must remain separated from the diagonal by some strictly positive number.
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Proof of Proposition 4. In any equilibrium, all prices are bounded below (pointwise) by
strictly positive numbers, just as before; see (33) of Lemma 2. Under self-replication,
Proposition 1 additionally applies and robot prices are also bounded above exactly as
before, and independent of human productivity. In turn, this provides pointwise upper
bounds on prices in all sectors, see (34) of Lemma 2. That includes the same bound on
price of capital, so part (i) of Theorem 1 holds under the same conditions and following
exactly the same proof.

The remainder of the proof consists in applying the following argument at more than
one point:

Claim. Suppose that for some occupation o ∈ ∪jOj , the human wage per unit of pro-
ductivity, wo(t), is bounded on the equilibrium path by some w̄o < ∞. Then human
labor in efficiency units is also bounded along that same path.

To establish the Claim, pick some S > 0 such that

(50) peS >
w̄o

1− β
+ p̄eL

o

where β is the largest discount factor among all types. Next, using (H.1), pick M <∞,
larger than initial productivity endowment and the cross-occupation bound, such that
e(µ, µ + ∆, o, o) ≥ S∆ for all µ ≥ M . Suppose an individual contemplates a move
beyond a productivity of M without changing occupation; i.e., there exists t such that
she moves from µo(t− 1) ≥M to µo(t) > µo(t− 1). Let ∆ ≡ µo(t)− µo(t− 1). Then
the lifetime wage gain as a result of this move is bounded above by w̄o∆/(1− β). Also,
the higher productivity can lower the marginal cost of subsequent actions. By (H.2),
these gains are bounded above by p̄eLj∆, where p̄e is an upper bound on the price of
education. So total gains are bounded above by

(51)
w̄o∆

1− β
+ p̄eLj∆

On the other hand, the cost of this move is given by

pe(t)e(µ
o(t− 1), µo(t), o, o) = pe(t)e(µ

o(t− 1), µo(t− 1) + ∆, o, o) ≥ p
e
S∆.

Combining this expression with (50) and (51), we must conclude that the cost of the
proposed move exceeds its benefits, so it will never be made. That proves the Claim.

For parts (ii) and (iii), minor adjustments are needed. In (ii), we prove that any sector
j must be asymptotically fully automated along any subsequence in which its output
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grows. Just as in the proof of Theorem 1, we can first show that effective labor in some
occupation o ∈ Oj in that sector must also grow. Now we consider two possibilities.
If woj (t) grows along some further subsequence, then the share of human labor income
in total revenue accruing to effective labor in that occupation must converge to zero
along that subsequence; see part (ii) of Lemma 3. The second possibility is that woj (t) is
bounded. Then by the Claim, individual productivity is also bounded, and — given that
this occupation grows — it must become asymptotically automated.

For part (iii), we need to show again that

Ψj(t) =

∑
o∈Oj w

o
j (t)h

o
j(t)

pj(t)yj(t)
∈ [0, 1],

converges to zero, as in the proof of Theorem 1. Very similar (and minor) changes need
to be made as in the preceding paragraph, using the Claim. We omit the details. With
this established, there is no change in the rest of the argument to establish Theorem 1.

Proof of Theorem 2: See Supplementary Appendix.


