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Abstract

A hallmark of hierarchies is that superiors exercise greater authority over appoint-

ment of subordinates than the other way around. We provide a rationale for this in a

model with strong collusion between a (less well-informed) supervisor and (informed)

agent, which allows each to commit to threats to punish the other for refusing to col-

lude. Providing greater ex ante authority to the supervisor is necessary for the Principal

to exploit bargaining frictions within the coalition. By contrast, in contexts of weak

collusion where such commitments are not possible, or where there is no collusion, the

allocation of ex ante authority is irrelevant.
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1 Introduction

A hallmark of a hierarchical organization is asymmetry of control rights between superiors

and subordinates. For instance, managers exercise considerable control over worker hiring

decisions; workers typically have little or no say in appointment of their managers. Auditors

exercise authority over who to audit; regulators decide which private utility will be awarded

a franchise and the contract they are offered. While governance institutions or legal rules

may constrain some aspects of the control that superiors exercise over subordinates, by and

large the design of a hierarchy seems intended to tilt control rights in favor of the former.

Indeed, the very notion of a hierarchy connotes an organization of agents with layers of

vertical authority. Most models of hierarchies takes such a vertical organization as given,

wherein managers at any layer appoint and design contracts for their direct subordinates

at the next layer. There are relatively few theoretical explanations of the rationale for such

vertical top-down assignment of authority, by comparing their consequences with alternative

assignments — either ‘bottom up’ organizations where supervisees have the authority to

appoint and offer contracts to their supervisors, or teams with egalitarian sharing of power

among members. Understanding the trade-offs involved could also shed some light on

normative policy questions such as the implications of raising bargaining power of agents,

e.g., via greater regulatory competition (where regulated firms can choose between different

regulators or regulatory jurisdictions), auditing practices where firms can appoint their own

auditors, or allowing CEOs to appoint Directors to company boards.

In this paper we offer a rationale for granting hierarchical authority: to control con-

sequences of collusion between supervisors and supervisees. Evidence for such collusion

has recently been forthcoming in many contexts, e.g., between outside Directors and CEOs

(Hallock (1997), Hwang and Kim (2009), Fracassi and Tate (2012), Kramarz and Thesmar

(2013), Schmidt (2015)), between management and workers (Bertrand and Mullainathan

(1999, 2003), Atanassov and Kim (2009), Cronqvist et al. (2009)), ‘revolving doors’ be-

tween credit-rating agencies and firms (de Haan et al. (2015), Cornaggia et al. (2016)) and

between auditors and their clients (Lennox (2005), Lennox and Park (2007), Firth et al.

(2012)).

We pursue an approach initiated by Tirole (1986), Kofman and Lawarree (1993) and

Laffont and Tirole (1993) which models collusion as hidden side-contracts that are exoge-

nously enforceable, subject to asymmetric information within the coalition. We focus on
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strong collusion, where colluding parties can commit to (off-equilibrium-path) threats they

will carry out if the other party refuses to participate in the collusion. This is in contrast to

the more standard assumption of weak collusion, where such commitments are not possible.

Strong collusion enlarges the scope of coalitional deviations, by limiting the control that

the Principal can effectively exercise on outcomes of coalitional bargaining. We also assume

that the structure of asymmetric information within the organization is hierarchical: the

Supervisor is better informed than the Principal, while the supervisee (hereafter referred to

as the Agent) is better informed than the Supervisor. Our main result is that organizational

design to limit consequences of strong collusion in the presence of one-sided asymmetric

information requires countervailing allocation of formal authority. Under weak collusion

(or absence of collusion) the allocation of control rights between the Supervisor and Agent

turns out to be irrelevant.

The details of our model and results are as follows. Agent A produces a divisible good

q for the Principal P, at a unit cost of θ that is privately observed by A. P’s objective is

a mixture of personal profit and the agent’s payoff, with the latter occupying lower weight

than the former.3 Hence the model applies both to the organization of private firms as well

as of regulatory institutions. S observes a signal η which is partially informative regarding

θ. The realization of this signal is also observed by A so that asymmetric information within

the (S,A) coalition is one-sided. P observes neither θ nor η, while their joint distribution

is common knowledge. All parties are risk-neutral, and have zero outside options. In

the absence of collusion, P designs a mechanism which stipulates production decisions

and payments to S and A based on reports they send to P concerning realizations of

their respective information as well as their willingness to participate in the mechanism.

Collusion takes the form of a hidden side contract between S and A, which supplements any

formal contracts. The side contract coordinates reports they respectively send to P, besides

stipulating side payments exchanged between them. This side contract is negotiated at an

ex ante stage, before S and A have received their respective signals. Liquidity constraints

prevent lumpsum side payments at the ex ante stage; all side payments will be made ex

post after S and A have received their respective payments from P. As is standard in the

literature we assume these side contracts are costlessly enforceable, cannot be renegotiated

and must respect interim participation constraints (i.e., allow S or A to exit from the

3If they are equally valued, the first-best can be achieved as in Baron and Myerson (1982).
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collusive arrangement at the interim stage). Hence collusion is subject to frictions resulting

from (one-sided) asymmetric information within the coalition. Owing to this, the Coase

Theorem need not apply; collusive outcomes typically depend on the allocation of control

rights and outside options available to the colluding parties.

Manipulating these provides P with an opportunity to control the outcomes of collusion.

Consider an environment with a large number of ex ante identical applicants for the S

position, as well as for the A position. If P appoints some S at the ex ante stage, and

provides this S with the authority to appoint an A from the pool, it skews ex ante welfare

weights in favor of S vis-a-vis A. While P cannot observe the precise contract offered by S

to the appointed A, P thereby ensures that S can make a take-it-or-leave-it contract to the

appointed A. Conversely, if P were to appoint an A and endow this agent with the authority

to appoint an S from the pool, the allocation of bargaining power would be reversed to favor

A. A more egalitarian arrangement would emerge if P were to appoint a specific S-A pair,

and leaving them to negotiate a contract with one another under conditions of a bilateral

monopoly.

When collusion is weak, a decision by either S or A to withdraw from colluding at

the interim stage results in a noncooperative equilibrium play of P’s mechanism: they

exchange no side payments and submit reports that are a best response to the reports

of the other. A previous paper of ours (Mookherjee et al. (2016)) provides a detailed

analysis of optimal mechanism design by P under weak collusion, using the notion of a

Perfect Bayesian Equilibrium that is Pareto-undominated for the coalition. It turns out

that while weak collusion outcomes depend sensitively on interim outside options of S and

A which can be manipulated by P (since the outside options are noncooperative equilibria

of the underlying mechanism), they do not depend on the allocation of welfare weights

between S and A at the ex ante stage. The intuitive reason is that once a given allocation

is invulnerable to weak collusion, they do not allow any Pareto-improving deviations for

the coalition. So if they are collusion proof for any set of welfare weights, they are also

collusion proof for any other set of welfare weights. Hence it does not matter whether S

appoints A or the other way around, or if they share power within a team.

This turns out to no longer be the case when collusion is strong. The consequences of

strong collusion for auction design has been considered by some authors (Dequiedt (2007),

Che and Kim (2009)), but we are not aware of any papers studying their consequences for
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design of supervisory mechanisms. Now the side contract allows each colluding party to

stipulate a threat regarding how they would react to a unilateral exit by the other party at

the interim stage, with respect to the report they will subsequently submit to P. Outside

options will correspond to maximal punishments that can be inflicted by each party to exit

by the other, rather than noncooperative equilibria of the non-collusive game. By lowering

outside options, this enlarges the scope for collusion.

We provide two results for the strong collusion context. (1) If A has at least as much

welfare weight as S, appointing a supervisor is worthless for P. In other words, P will attain

the same payoff by contracting directly with A, without trying to elicit any information

from any supervisor. (2) If S is assigned a higher welfare weight, and S’s signal η is coarse

(in the sense of having only two possible realizations while θ is continuously distributed),

appointing a supervisor is valuable, i.e., P attains a strictly higher payoff compared to (1).

These results imply that in order to take advantage of the presence of a supervisor, it

is necessary to bias ex ante control rights in favor of S. A ‘bottom-up’ organization where

A appoints an S, or an egalitarian one in which S and A are appointed directly by P and

share the same welfare weight, will not just perform worse than one where S is given the

authority to appoint A — it will do no better than an organization which dispenses entirely

with a supervisor. The intuitive reason is that when bargaining ‘power’ is not biased in

favor of S, the coalition ends up maximizing rents of A while pushing S down to her minmax

payoff (conditional on any signal realization). The former effectively becomes a residual

claimant on aggregate coalitional rent, resulting in ex post efficient collusion. In other

words, collusive outcomes are not subject to any frictions, and the coalition acts as a single

agent (where S’s signal is chosen to maximize A’s rent). With S and A’s interests perfectly

aligned, appointing S is worthless.

Biasing the welfare weight in favor of S, on the other hand, preserves frictions in col-

lusion. The coalition would ideally like to maximize S’s payoff subject to A’s willingness

to participate, but is constrained by asymmetric information (owing to the coarseness of

S’s signal regarding A’s cost). Not knowing A’s cost realization, S is unable to punish A

‘too severely’. The resulting conflict of interest can be utilized effectively by P, and thereby

take advantage of S’s presence. Hence it is advantageous to bias ex ante authority in favor

of the relatively uninformed party.4

4This also helps explain the necessity of a ‘coarse’ information assumption in Result 2. If S were perfectly
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This still leaves open the question whether it is optimal to skew welfare weights as

much as possible in favor of S: i.e., is it optimal for P to give S the power to make a take-

it-or-leave-it contract to A? Does such an organization dominate one where both parties

have a positive welfare weight, thereby implying that delegating appointment rights to S

dominates centralized appointment by P? We have not yet managed to answer this question

in the context of a continuously distributed cost shock. But we have been able to show this

in the context of the model of Celik (2009) where θ takes three possible values, η takes two

possible values, and S’s information has a partition structure. (To keep the paper short,

the detailed analysis of this case is provided in the online Appendix.) In this setting, thus,

our approach provides a novel argument for why delegation can outperform centralization.5

The preceding discussion pertains to allocation of ex ante control rights. With regard

to the allocation of interim control rights, limits need to be imposed on the power that S

exercises over A’s appointment. So S is delegated the authority to hire, but not to fire A.

The argument for not delegating the authority to fire is similar to a weak collusion context:

the option exercised by A in deciding whether or not to accept the side contract offered by S

is essential, otherwise ‘double marginalization of rents’ (DMR) sets in and agency costs get

magnified by appointing a supervisor. The same continues to be true with strong collusion.

The asymmetry between hiring and firing authority of managers is consistent with the design

of many organizations, in which hierarchical authority of managers coexists with dispute

settlement mechanisms that constrain their ex post authority to fire subordinates. The

importance of internal dispute settlement mechanisms has been emphasized by Williamson

(1975); e.g., as one of three positive attributes of hierarchies:

First,...the incentives to behave opportunistically are accordingly attenuated.

Second, and related, internal organization can be more effectively audited. Fi-

nally, when differences do arise, internal organization realizes an advantage over

market mediated exchange in dispute setting respects. (Williamson (1975, pp

29-30))

The paper is organized as follows. Section 2 lays out the model and provides a charac-

informed regarding the realization of θ, there would again be no frictions within the coalition and P would

not be able to take advantage of S’s presence. However, this leaves open the question whether Result 2

extends to more than two (but a finite number) of possible realizations of S’s signal.
5See Mookherjee (2006, 2013) for overviews of the theoretical literature comparing centralized and de-

centralized decision-making.
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terization of allocations that can be supported with weak and strong collusion respectively.

Section 3 then provides the two main results (1) and (2) and the detailed arguments un-

derlying them. Section 4 concludes, while technical details of proofs are provided in the

Appendix.

2 Model

2.1 Technology, Preferences and Information

We consider an organization composed of a principal (P), an agent (A), and a supervisor

(S). P hires A who delivers an output q. P’s return from q is V (q), a twice continu-

ously differentiable, increasing and strictly concave function satisfying the Inada condition

(limq→0 V
′
(q) = +∞ and limq→+∞ V

′
(q) = 0) and V (0) = 0. A’s cost of supplying q is θq.

The realization of θ is privately observed by A. Θ denotes the support of θ. We assume

that Θ is compact; apart from that we do not impose any structure on the support at this

stage, as all but the last result do not depend on any specific features of Θ. It is common

knowledge that everybody shares a common prior cdf F (θ) over Θ. S (as well as A) costlessly

acquires an informative signal η ∈ Π ≡ {η1, η2, ..., ηm} about A’s cost θ with m ≥ 2.6 The

cdf over θ conditional on η is denoted F (θ|η); since η is informative, there exists η ∈ Π such

that F (.|η) differs from F (.) over a set of positive (prior) measure. a(η | θ) ∈ [0, 1] denotes

the likelihood function of η conditional on θ. Θ(η) denotes the support of θ conditional on

η, which we assume is compact for every η. Let K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π} denote

the set of possible states. We assume there exists η such that Θ(η) includes at least two

elements; hence η does not provide complete information about θ.

All players are risk neutral. S’s payoff is uS = XS + tS where tS is a transfer received by

S within the coalition. A’s payoff is uA = XA+ tA− θq where tA is a transfer received by A

within the coalition. A and S have outside options equal to 0. P’s objective is a weighted

average of profit (Π ≡ V (q) −XA −XS) and welfare of A and S (uA + uS), with a lower

relative weight on the latter. With k ∈ (1
2 , 1] denotes the weight on profit, and 1 − k on

welfare of A and S, P’s payoff reduces to k[V (q)− (XS + XA)] + (1 − k)[XS + XA − θq].7

6If S incurs a fixed cost c to acquire the signal, transfers received by S must be replaced by transfers net

of this fixed cost while measuring S’s payoff. Increases in c will of course lower the value of appointing the

supervisor, but it is easy to see how the results will be modified.
7We exclude k = 1

2
because in that case the first-best can be achieved (as in Baron and Myerson (1982)).
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Hence the model applies both to the organization of private firms whose owners seek to

maximize profit (k = 1), as well as regulation or taxation contexts where P is a social

planner pursuing a welfare objective that includes payoffs of A and S as well as profit, but

assigns a higher weight to the latter.8

In this economic environment, a (deterministic) allocation is denoted by

{(uA(θ, η), uS(θ, η), q(θ, η)) | (θ, η) ∈ K}.

2.2 Mechanism, Collusion Game and Equilibrium Concept

We focus attention on deterministic mechanisms or grand contract (GC) designed by P:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA (or MS) denotes a message set for A (or S) which are compact subsets of

finite dimensional Euclidean spaces.9 Message spaces include exit options for A and S

respectively (eA ∈ MA, eS ∈ MS), where XA = q = 0 whenever mA = eA, and XS = 0

whenever mS = eS). The set of grand contracts satisfying these restrictions is denoted by

GC.

It will frequently be necessary to allow for randomized message choices. Let ∆(MA),

∆(MS) and ∆(M) denote the set of probability measures on MA, MS and M ≡MA ×MS

respectively. For (µA, µS) ∈ ∆(MA)×∆(MS) and µ ∈ ∆(M), we define the mixed strategy

extensions of the grand contract, which are respectively described in the expected value of

corresponding allocations, as follows:

ḠC ≡ (X̄A(µA, µS), X̄S(µA, µS), q̄(µA, µS))

=

∫
MA

∫
MS

(XA(mA,mS), XS(mA,mS), q(mA,mS))dµA(mA)dµS(mS)

and

G̃C ≡ (X̃A(µ), X̃S(µ), q̃(µ)) =

∫
M

(XA(m), XS(m), q(m))dµ(m).

Let NC denote the organization without any collusion. The timing of events in NC is

as follows.
8The latter would be the case e.g., if P represents the interests of consumers, who need to be taxed to

finance transfers to A and S, and these taxes involve deadweight losses.
9These assumptions on message spaces are imposed in order to apply the minimax theorem (Nikaido

(1954)). We ignore stochastic mechanisms which randomize the allocation conditional on messages, since

they lower P’s welfare (owing to strict concavity of V ) without affecting S or A’s payoffs.
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(NC1) P offers the grand contract GC ∈ GC.

(NC2) A observes θ and η. S observes η.

(NC3) A and S play GC non-cooperatively.

If P offers a null contract to S (where MS is the empty set and XS = 0), this is an

organization without S, which is referred to as NS (no supervision).

We now introduce collusion between S and A, which takes the form of a side contract

SC between S and A that is unobserved by P. The side contract is designed at the ex ante

stage. We do not formally model the ‘appointment’ game at the ex ante stage, where either

one of the colluding parties may have the authority to make a take-it-or-leave-it offer to

the other, or may have to share bargaining power more equally. We adopt a reduced form

approach, summarizing the allocation of ex ante bargaining power by a parameter α ∈ [0, 1]

that represents A’s relative welfare weight. We treat α as a parameter than can be chosen

by P: this is the key design question addressed in this paper.

The reduced form approach is represented by a fictional (uninformed) third party that

acts as a mediator to design the side contract at the ex ante stage. The third party

maximizes αuA + (1 − α)uS (α ∈ [0, 1]), where uA and uS respectively denote ex ante

payoffs of A and S. The third party does not play any budget breaking role, hence transfers

within the coalition must balance: tA + tS ≤ 0. Owing to liquidity constraints, no side

payments can be exchanged at the ex ante stage; they can only be exchanged at the ex post

stage after they have received payments from P. The side contract cannot be renegotiated

at the interim or ex post stage. It allows exchange of private messages between A and S,

which determine a side payment and joint set of messages they respectively send to P. Since

message spaces include exit as well as type reports, collusion takes the ex ante form studied

in Mookherjee et al. (2016), rather than the interim form studied by Faure-Grimaud et al.

(2003) or Celik (2009).

At the interim stage (where S observes η and A observes (θ, η)), S and A decide whether

or not to accept the side contract. If both reject it (or if the third party offered a null side

contract), S and A play GC noncooperatively. If both accept it, the SC is implemented.

What happens when one of them accepts and the other rejects, depends on whether collusion

is weak or strong. When collusion is weak, they play GC noncooperatively. When it

is strong, SC specifies a reporting strategy of the party that accepted it, which can be
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interpreted as a threat that party commits to. The party that rejected it then plays a best

response to this threat.

More formally, in strong collusion (referred to hereafter as S-Collusion), after stage NC1

where P offers GC, the third party offers a side-contract SC (or a null side-contract NSC)

to A and S. If NSC is offered, A and S play GC non-cooperatively based on the prior

belief. Otherwise, the game proceeds as follows. After A and S observing (θ, η) and η

respectively, player i = A,S selects a message di ∈ Di (i = A,S) where Di is i’s message

set specified in the side-contract. Di includes i’s exit option êi from the side-contract. Then

if dA 6= êA and dS 6= êS , their reports to P are selected according to µ(dA, dS) ∈ ∆(M), and

side payments to A and S are determined according to functions tA(dA, dS) and tS(dA, dS)

respectively. If dA = êA and dS = êS , A and S play GC non-cooperatively. If di 6= êi and

dj = êj (i, j = A,S), i’s message to P is selected according to µi(di) ∈ ∆(Mi), and the side

payment to i is ti(di).
10 On the other hand, j plays GC without any constraint and any

side transfer.

We focus on Weak Perfect Bayesian Equilibrium (WPBE) of this S-collusion game

induced by the grand contract GC.11 However, there may be multiple WPBE in a given

game. We assume collusion permits parties to coordinate the choice of a WPBE, hence the

third party can specify a selected WPBE to maximize the welfare-weighted sum of ex ante

payoffs of S and A in the event of multiple WPBE. The resulting equilibrium concept is

denoted by WPBE(sc). In case there are two WPBE(sc) where the third party receives the

same payoff, we assume that P can select the more desirable one. With this convention,

problems associated with multiple equilibria can be avoided.

Feasible allocations in S-collusion can now be defined:

Definition 1 An allocation (uA, uS , q) is achievable in S-Collusion with α if it is realized

in WPBE(sc) under α for some GC ∈ GC.

Let AS(α) denote the set of achievable allocation in S-Collusion with α.

2.3 Strong Collusion-Proof Allocations

We now define what it means for an allocation to be strong collusion proof, and show it is

a necessary and sufficient condition for achievability in S-Collusion with α. This enables us

10Owing to the budget balance condition, ti(di) ≤ 0.
11For definition of WPBE, see Mas-Colell, Whinston and Green (1995, p.285).
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to characterize achievable allocations by a set of incentive compatibility constraints.

First, it is evident that any achievable allocation must satisfy a set of individual incentive

constraints, pertaining to truthful reporting of θ by A (ICA), and participation constraints

for A (PCA) and S (PCS) respectively:

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

for any θ, θ
′ ∈ Θ(η) and any η ∈ Π,

uA(θ, η) ≥ 0

for any (θ, η) ∈ K and

E[uS(θ, η) | η] ≥ 0

for any η ∈ Π. These must be satisfied both when collusion does or does not take place.

We say that (uA, uS , q) satisfies individual incentive compatibility (IIC) if and only if it

satisfies ICA, PCA and PCS . Incentive compatibility with respect to η reports do not have

to be included since A and S observe the realization of η, so P can elicit this information

by cross-checking their respective reports if they do not collude.

Now we turn to coalitional incentive constraints. Collusion proofness requires absence of

any scope for the third party to offer a non-null side contract. In the context of S-collusion,

threats not actually used on the equilibrium path play a role. To capture their role, we

need to go beyond standard revelation mechanisms where each type report correspond to

messages used on the equilibrium path, and augment them with some auxiliary non-type

messages.

Formally, we augment the state space K = {(θ, η) | θ ∈ Θ(η), η ∈ Π} as follows. Define

K̄ ≡ Θ× Π̄

where Π̄ ≡ Π ∪ {η0}. This includes two types of augmentation. One is the augmentation

from Θ(η) to Θ, which allows inconsistent type reports to be submitted. Second is the

augmentation from Π to Π̄, which allows one auxiliary message η0 regarding the signal

realization to be submitted.

Recall that an allocation is defined over the type domain K. It can be extended to the

augmented domain as follows.
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Definition 2 Given any allocation (uA, uS , q) which satisfies ICA and PCA, (ueA, u
e
S , q

e)

is an incentive compatible augmentation of (uA, uS , q) on K̄, if

(ueA(θ, η), ueS(θ, η), qe(θ, η)) = (uA(θ, η), uS(θ, η), q(θ, η))

for (θ, η) ∈ K and (ueA(θ, η), qe(θ, η)) satisfies ICA and PCA on K̄.

Note that the coalition can also collectively decide to exit from GC, which is represented

by joint message e ≡ (eS , eA). In the event that e is chosen, the autarkic allocation

(XA = XS = q = 0) results. Hence the augmented message space is K̄ ∪ {e}.

For any allocation (defined over the type space K) we can define the correspond-

ing coalitional incentive scheme by the aggregate transfers between P and the coalition:

(X̂, q̂) = (uA + uS + θq, q) which is also defined over K. We can also extend this to the

augmented domain K̄, while allowing A and S to randomize their messages according to

the measure µ defined over K̄ ∪ {e}. Let ∆(K̄ ∪ {e}) denote the corresponding set of mea-

sures. With a slight abuse of notation, we denote the corresponding expected values of the

coalitional incentive scheme (defined over the augmented domain) as (X̂e(µ), q̂e(µ)) for any

given µ ∈ ∆(K̄ ∪ {e}), where (X̂e(e), q̂e(e)) ≡ (0, 0).

The side contracting problem can be represented as follows. Given a coalitional incentive

scheme, the coalition select a joint report µ ∈ ∆(K̄∪{e}) to send to P, and then redistribute

the resulting rents (ũA(θ, η), ũS(θ, η)) between A and S, i.e., such that ũA(θ, η)+ ũS(θ, η) =

X̂e(µ(θ, η))− θq̂e(µ(θ, η)). Conditional on both A and S agreeing to participate, this joint

decision is based on a θ report submitted by A to the third party. The side contract does

not stipulate any coalitional decision in the event that both A and S reject it. If A rejects it

while S does not, the side contract specifies a reporting strategy for S which acts as a threat.

Let this strategy be denoted by P (· | η) for each η ∈ Π, which is a probability function

defined on Π̄ such that Ση′∈Π̄P (η
′ | η) = 1 and 0 ≤ P (η

′ | η) ≤ 1 for all η
′ ∈ Π̄. Here

P (η
′ | η) denotes the probability that S reports η

′
in the state where η has been observed.

The strategy of reporting truthfully in state η i.e., (P (η | η) = 1 and P (η
′ | η) = 0 for any

η
′ 6= η) is denoted by I(η). Similarly, let I(θ, η) denote the strategy of reporting the state

truthfully in state (θ, η).

Using these definitions and notations, we define strong collusion-proof (SCP) allocation

as follows.
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Definition 3 Allocation (uA, uS , q) is strong collusion-proof (or SCP) for α ∈ [0, 1], if

(uA, uS , q) is IIC, and there exists an outside option payoff ω ≥ 0 for S, and an incentive

compatible augmentation (ueA, u
e
S , q

e) of (uA, uS , q) on K̄ satisfying ueS(θ, η0) = ω for any

θ ∈ Θ, such that for any η ∈ Π,

(µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) = (I(θ, η), uA(θ, η), uS(θ, η), I(η))

solves problem PS(α : η):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to (µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) satisfies for all θ ∈ Θ(η):

(i) µ(θ, η) ∈ ∆(K̄ ∪ {e}), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <, P (.|η) ∈ ∆(Π̄)

(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂e(µ(θ
′
, η)) for any θ

′ ∈ Θ(η)

(iii) ũA(θ, η) + ũS(θ, η) = X̂e(µ(θ, η))− θq̂e(µ(θ, η))

(iv) E[ũS(., η) | η] ≥ ω

(v) ũA(θ, η) ≥ Ση′∈Π̄P (η
′ | η)ueA(θ, η

′
).

We provide an informal explanation of this notion. A non-null side contract is repre-

sented by the following components. Provided both A and S have agreed to participate, and

following an internal type report θ by A and a common report η of the signal by A and S,

the coalition submits a message report to P according to the strategy µ(θ, η) (satisfying the

first part of condition (i)), and then reallocates the resulting coalitional allocation via side

payments to generate net payoffs (ũA(θ, η), ũS(θ, η)) for A and S respectively (the budget

balance condition (iii)). The side contract must provide A with an incentive to report θ

truthfully within the coalition (condition (ii)).

Moreover, the side contract includes threats in the event of unilateral rejection by either

party, that ensure their participation. In order to induce S to participate (conditional on A

agreeing to participate) in the collusion, condition (iv) must be satisfied. S’s participation

is induced by a threat by A to subsequently report to P in some way if S refuses, which

ensures that S cannot attain a payoff higher than ω. Since asymmetric information is one-

sided, the standard minimax theorem ensures that S’s minmax payoff is well-defined (given

an associated grand contract GC), and A has a reporting strategy that guarantees S cannot
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earn more than ω. The minmax payoff ω of S must be non-negative since S can always

exit from GC, and is effectively chosen by P while designing the mechanism. In particular,

the mechanism can be augmented to ensure that ω is earned by S upon submitting the

auxiliary message η0, no matter what A reports. We show below that this way of designing

the mechanism entails no loss of generality.

Finally, A’s participation (conditional on S’s participation) when both have observed

the signal η, is ensured by the threat of S reporting according to the strategy P (·|η) if A

refuses. A will then be a Stackelberg follower in noncooperative play of P’s mechanism,

and will select a best response to this threat. Since the augmented mechanism satisfies

individual incentive constraints for A, it will be optimal for A to report truthfully, no

matter what S reports.12 This will generate A a payoff of ueA(θ, η
′
) if S reports η

′
. Hence

the right hand side of (v) represents the outside option payoff of A to participating in the

collusion.

S-collusion proofness requires that the null side contract is an optimal choice for the

third party. The null side-contract is represented by a choice of a side contract allocation

which coincides with the allocation itself (i.e., there are no side-payments), and truthful

reports submitted to P. Moreover, no threats need to be used by S to coerce A into accepting

this contract, hence P (· | η) = I(η).

The set of strong collusion-proof (or SCP) allocations is denoted by AS(α). We now

show that it coincides with the set of achievable allocations in S-collusion.

Lemma 1 Allocation (uA, uS , q) is achievable in S-Collusion with α if and only if it is

strongly collusion-proof for α.

The proof is provided in the Appendix; it extends standard arguments to the context of

strong collusion, which requires augmenting any given equilibrium allocation in a particular

way that ensures the allocation satisfies the SCP property. Conversely, any SCP allocation

can be achieved as a WPBE(sc) allocation in a GC which can be constructed on the basis

of the incentive compatible augmentation of the allocation.

12Note that A reports after observing θ, so the realization of η does not affect A’s preferences.
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2.4 Comparison with Weak Collusion Proof Allocations

It is useful to compare the notion of strong collusion proofness to weak collusion-proofness,

which has been analyzed extensively in our previous paper (Mookherjee et al. (2016)). In

order to characterize weak collusion proof (WCP) allocations which are self-enforcing and

not reliant on additional threats to induce S and A to agree to a collusive agreement, it

suffices to consider revelation mechanisms without any augmentation. Hence the domain

of the mechanism is K ∪ {e}. Given a revelation mechanism (uA, uS , q) defined over K ∪

{e}, and given a mixed reporting strategy µ ∈ ∆(K ∪ {e}), the associated coalitional

incentive scheme is denoted by (X̂(µ), q̂(µ)), where (X̂(θ, η), q̂(θ, η)) ≡ (uA(θ, η)+uS(θ, η)+

θq(θ, η), q(θ, η)). and (X̂(e), q̂(e)) ≡ (0, 0). Using the terminology of this paper, a weak-

collusion proof allocation can be defined as follows.13

Definition 4 (uA, uS , q) is weak collusion-proof (or WCP) for α, if (uA, uS , q) is IIC, and

for any η ∈ Π,

(µ(θ, η), ũA(θ, η), ũS(θ, η)) = (I(θ, η), uA(θ, η), uS(θ, η))

solves problem PW (α : η):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to (µ(θ, η), ũA(θ, η), ũS(θ, η)) satisfies for all θ ∈ Θ(η):

(i) µ(θ, η) ∈ ∆(K ∪ {e}), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <

(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(µ(θ
′
, η)) for any θ

′ ∈ Θ(η)

(iii) ũA(θ, η) + ũS(θ, η) = X̂(µ(θ, η))− θq̂(µ(θ, η))

(iv) E[ũS(., η) | η] ≥ E[uS(., η) | η]

(v) ũA(θ, η) ≥ uA(θ, η).

Apart from the smaller range (K ∪ {e} instead of K̄ ∪ {e}) of the reporting strategy µ(.),

the main difference is in the participation constraints (iv) and (v). The outside options

13In Mookherjee et al. (2016), the definition of weak collusion-proof allocation did not include the indi-

vidual participation constraints of A and S. Here we include them for purposes of comparability.

15



correspond to truthful reporting in GC, which forms a noncooperative equilibrium. Hence

the outside options correspond exactly to interim payoffs associated with the allocation

itself. Comparing A’s participation constraint (v) between the two definitions, it is evident

that A’s outside option in strong collusion is lower, by an extent that can be controlled by

the coalition by selecting an arbitrary reporting strategy P (· | η) by S in the event that

A refuses to collude. Moreover S’s outside option ω in strong collusion is also lower, as it

is bounded above by S’s equilibrium payoff.14 Therefore strong collusion permits the third

party to offer a wider range of allocations, implying that strong collusion proofness is a

more restrictive property compared with weak collusion proofness.

The set of WCP allocations turns out to be independent of ex ante bargaining power

α.15 As we show in the next section, this is no longer true for SCP allocations. The WCP

notion allows the (S,A) coalition to deviate only when they can find a Pareto improving

allocation, while the SCP notion also allows deviations that reduce the welfare of one party

if it increases the welfare of the other party sufficiently.

3 Results

One class of allocations that can always be attained by P irrespective of collusion corre-

sponds to not utilizing reports regarding the supervisor’s signal η at all. We refer to this

as the No Supervision (NS) organization, in which the class of attainable allocations (de-

noted ANS) is defined as follows. There exists a nonnegative constant c and nonincreasing

real-valued functions (X(θ), Q(θ)) defined on Θ such that for any (θ, η):

(a) uS(θ, η) = c

(b) uA(θ, η) = X(θ)− θQ(θ) = maxθ′∈Π[X(θ
′
)− θQ(θ

′
)].

It is evident that any feasible allocation in NS is also feasible with weak or strong collusion

(irrespective of α), since it does not utilize any reports of η.

We now present our first main result.

14This follows from the requirement that the null side contract is feasible in the side contracting problem

in strong collusion.
15If an allocation is not WCP for some α ∈ (0, 1), there must exist a feasible allocation that ex ante Pareto

dominates it, so it will not be WCP for any other α
′
∈ (0, 1). As shown in Mookherjee et al. (2016), the

argument can be extended to include corner values of α owing to the existence of side-transfers.
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Proposition 1 An allocation which is strong collusion proof for any α ≥ 1
2 is also attain-

able in NS.

Proof of Proposition 1: Consider any allocation (uA(θ, η), uS(θ, η), q(θ, η)) which is

strong collusion proof for α ≥ 1
2 . By Lemma 1, there exists ω ≥ 0 and an incentive

compatible augmentation (ueA, u
e
S , q

e) of this allocation satisfying uS(θ, η) = ω, such that for

any η, (I(θ, η), uA(θ, η), uS(θ, η), I(η)) solves PS(α : η). Let the corresponding coalitional

incentive scheme be (X̂e(µ), q̂e(µ)). Define

µ∗(θ) ∈ arg max
µ∈∆(K̄∪{e})

X̂e(µ)− θq̂e(µ).

i.e., a reporting strategy that maximizes the ex post joint payoff of A and S in every state.

We claim that

(µ(θ, η), uA(θ, η), uS(θ, η)) = (µ∗(θ), X̂(µ∗(θ))− θq̂(µ∗(θ), ω)

is a solution of PS(α : η) for any η. Upon setting c = ω, X(θ) = X̂(µ∗(θ)) and Q(θ) =

q̂(µ∗(θ)), it is evident this claim will imply that the allocation is attainable in NS.

To establish the claim, we first derive an upper bound for the objective function in

the problem PS(α : η). From the constraint E[ũS(θ, η) | η] ≥ ω and the assumption that

α ≥ 1/2, for any reporting strategy µ(θ, η) the following is true:

E[αũA(θ, η) + (1− α)ũS(θ, η) | η]

= E[α{X̂e(µ(θ, η))− θq̂e(µ(θ, η))}+ (1− 2α)ũS(θ, η) | η]

≤ αE[X̂(µ∗(θ))− θq̂(µ∗(θ)) | η] + (1− 2α)ω.

This upper bound can be attained in PS(α : η) by choosing µ(θ, η) = µ∗(θ),

ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω,

ũS(θ, η) = ω

and P (η0 | η) = 1 and P (η
′ | η) = 0 for any η

′ 6= η0. This allocation satisfies A’s

participation constraint (v), since

ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω

≥ X̂e(θ, η0)− θq̂e(θ, η0)− ueS(θ, η0)

= ueA(θ, η0).
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As the other constraints are obviously satisfied, the claim is established.

When A has at least as much bargaining power ex ante as S, it is optimal for the

coalition to pin S down to her (constant) minmax payoff and provide all residual rents

to A. Reports by the coalition are then chosen to maximize A’s payoffs, implying that P

cannot derive any benefit from appointing S. The one-sided asymmetric information within

the coalition implies absence of any frictions in collusion when the informed party A has

more bargaining power than S. For P to derive some value from appointing S, she has to

exploit some frictions in coalitional bargaining.

Now consider the case where S has higher bargaining weight than A. To explore the value

of appointing S, we need to impose some structure on A’s type space and S’s information.

One necessary condition is that S should not be ‘too well informed’ about A’s cost; for

instance in the extreme case where S is perfectly informed about θ, there will again be no

frictions in coalitional bargaining and appointing S will not yield any value to P. For the rest

of this section, we focus on the context (denoted Context C) in which cost is continuously

distributed, and two possible signal realizations η1, η2 satisfying a Monotone Likelihood

Ratio Property (MLRP).

Specifically, Context C is described by the following properties: (a) Θ constitutes an

interval [θ, θ̄] ⊂ (0,∞); (b) the prior distribution is represented by a density function f(.)

which is continuously differentiable and everywhere positive on Θ; (c) H(θ) ≡ θ + F (θ)
f(θ) is

strictly increasing in θ; (d) the likelihood a(ηi|θ) of signal ηi conditional on θ is continuously

differentiable and positive-valued on Θ; and (e) a(η1 | θ) (respectively a(η2 | θ)) is decreasing

(respectively increasing) in θ. Conditional on ηi, the density function and distribution

function are respectively f(θ | ηi) ≡ f(θ)a(η | θ)/p(η) and F (θ | η) ≡
∫ θ
θ f(θ | η)dθ, where

p(η) ≡
∫ θ̄
θ f(θ)a(η | θ)dθ.

Our main result is that in this context, P can derive positive value from appointing S

if S has greater bargaining weight than A, for a non-generic set of information structures.

Given the previous result, this implies that (generically) P is better off when S has strictly

higher bargaining weight than A, compared to when this is not true.

Proposition 2 Consider Context C and assume α ∈ [0, 1/2). If there do not exist (ρ, ν, γ) ∈

<3 such that a(η1 | θ) = ρ + νF (θ)γ for all θ ∈ Θ, P can attain a strictly higher expected

payoff by appointing S, compared to not appointing S (i.e., the organization NS).
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As the proof is relegated to the Appendix, we outline the main steps in the argument

here.

First we show that in the problem PS(α : η), S’s participation constraint is never

binding for α ∈ [0, 1/2).

Lemma 2 S’s participation condition E[ũS(θ, η) | η] ≥ ω in PS(α : η) is not binding for

any α ∈ [0, 1/2).

The reason for this is that if the lemma is false, the solution to the relaxed version of prob-

lem PS(α : η) when S’s participation constraint is dropped, must violate this constraint,

implying that S ends up with an an expected payoff below his minmax payoff ω. The coali-

tion has the option of switching to the ‘A-residual-claimant’ (ARC) side-contract (which

is optimal for the coalition when A has more bargaining power, and has been used in the

proof of Proposition 1) in which S receives a constant payoff of ω and A receives the rest of

the aggregate coalitional rent. ARC induces ex post efficient reporting strategies, thereby

(weakly) expanding the aggregate rent in every state. Given α < 1
2 , the third party would

not want to deviate to the ARC side-contract only if A appropriates a disproportionate

share of the increase in coalitional rents. This implies that A must be better off in the

ARC side-contract. But S is also better off in this side contract. It must therefore Pareto

dominate the supposed solution, a contradiction.

We can therefore proceed to study problem PS(α : η) in which S’s participation con-

straint is dropped. P augments the mechanism in the manner described in Definition 3,

where the auxiliary message η0 is identified with the high-cost signal report η2 (i.e., results

in the same outcomes). Hence we can confine attention to two possible signal reports η1, η2

for A and S. If both report η2, P selects the optimal allocation

(uNSA (θ), uNSS (θ), qNS(θ))

in NS satisfying

uNSA (θ) =

∫ θ̄

θ
q̄(y)dy

uNSS (θ) = 0

qNS(θ) = q̄(θ) ≡ arg max
q

[V (q)−Hk(θ)q],
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where Hk(θ) ≡ θ + 2k−1
k

F (θ)
f(θ) and k denotes the weight assigned to P’s profit.16 Then P ’s

optimal payoff WNS in NS is E[V (q̄(θ))−Hk(θ)q̄(θ)].

When both S and A report the low-cost signal η1, P selects the following variation on the

optimal allocation in NS. Let β ≡ 1−2α
1−α , which lies in the interval (0, 1). Let Λ(·) : Θ→ <

be such that (i) Λ(θ) is non-decreasing in θ with Λ(θ) = 0 and Λ(θ̄) = 1, and (ii) the

function zβ(θ) defined by

zβ(θ) = θ + β
F (θ | η1)− Λ(θ)

f(θ | η1)

is nondecreasing. P can then select the output schedule q(θ, η1) = q̄(zβ(θ)). Below we shall

describe how this Λ function can be chosen in more detail. Λ(·) can be thought of as a

variation on the cdf F (. | η1). zβ(θ) exceeds or falls below θ according as Λ(θ) is smaller or

larger than F (θ | η1), implying in turn that q(θ, η1) is smaller or larger than qNS(θ). Given

such a variation following reports of a low-cost signal, the payoffs are altered as follows:

uA(θ, η1) =

∫ θ̄

θ
q̄(zβ(y))dy

uS(θ, η1) = X̄(zβ(θ))− θq̄(zβ(θ))−
∫ θ̄

θ
q̄(zβ(y))dy

q(θ, η1) = q̄(zβ(θ))

where

X̄(z) ≡ zq̄(z) +

∫ θ̄

z
q̄(y)dy.

If both S and A report η2, the same allocation as in NS is selected:

(uA(θ, η2), uS(θ, η2), q(θ, η2)) = (uNSA (θ), 0, qNS(θ)).

When S and A submit different reports ηS 6= ηA, A is offered the same allocation as in

the case where the submitted η reports are ηS for both S and A, while S receives a payment

equal to what he would have received if their η reports had been ηA for both S and A,

minus a large positive number. This will ensure that the side contract will always involve

submission of a common report by S and A, besides individual incentive compatibility for

A to report θ truthfully.

16See Baron and Myerson (1982).
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The aim is to construct Λ(·) with the properties stated above, such that the resulting

allocation is SCP and improves P ’s payoff in state η1:

E[V (q̄(zβ(θ)))− 2k − 1

k
X̄(zβ(θ))− 1− k

k
θq̄(zβ(θ)) | η1]

> E[V (qNS(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θqNS(θ) | η1]. (1)

Since the allocation is unchanged in state η2, P will achieve a higher payoff than in NS.

The proof shows that such a variation is indeed SCP provided the following two condi-

tions are satisfied:

(a)E[uA(θ, η1)− uA(θ, η2) | η2] ≥ 0

(b)
∫ θ̄
θ [uA(θ, η2)− uA(θ, η1)]dΛ(θ) ≥ 0.

Intuitively, these two conditions (in combination with the choice of allocation for A corre-

sponding to conflicting η reports as specified above) ensure that a threat by S to report

a different signal from the one actually observed in GC if collusion breaks down, does not

lower A’s expected payoff. S is unable to coerce A to accept a lower payoff in the collusive

agreement, compared to a null side contract, thereby ensuring that the allocation is SCP

for α.

Conditions (a) and (b) can be rewritten as follows:

E[{q̄(zβ(θ))− q̄(θ)}F (θ | η2)

f(θ | η2)
| η2] ≥ 0 (2)

and

E[(zβ(θ)− hβ(θ | η1))(q̄(zβ(θ))− q̄(θ)) | η1] ≥ 0 (3)

where hβ(θ | η) = θ + β F (θ|η)
f(θ|η) .17

Consider a small variation of the zβ(θ) around θ. The corresponding pointwise variations

in the left-hand-sides of (1)-(3) are as follows18

[V
′
(q̄(z))q̄

′
(z)− 2k − 1

k
X̄

′
(z)− 1− k

k
θq̄

′
(z)]z=θf(θ | η1) = q̄

′
(θ)

2k − 1

k

F (θ)

f(θ)
f(θ | η1), (4)

[q̄
′
(z)

F (θ | η2)

f(θ | η2)
]z=θf(θ | η2) = q̄

′
(θ)F (θ | η2), (5)

17We use E[
∫ θ̄
θ
q̄(y)dy | η] = E[F (θ|η)

f(θ|η)
q̄(θ) | η] to derive these equations.

18We use V
′
(q̄(z)) = Hk(z) to obtain (4).
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and

[(q̄(z)− q̄(θ)) + (z − hβ(θ | η1))q̄
′
(z)]z=θf(θ | η1) = −βq̄′(θ)F (θ | η1). (6)

A necessary and sufficient condition for a variation which locally preserves the value of

the left-hand-sides of (2) and (3), while increasing the value of the left-hand-side of (1), is

that F (θ)
f(θ) f(θ | η1) does not lie in the space spanned linearly by F (θ | η2) and −F (θ | η1),

which turns out to be equivalent to the generic property stated in Proposition 2.

4 Conclusion

In summary, prospects of strong collusion between an informed agent and less-well-informed

supervisor can rationalize asymmetric authority granted to the latter in designing contracts

for the agent. If instead the agent has the upper hand, or at least the same welfare weight

as the supervisor at the contract design stage, strong collusion allows the agent to push

the supervisor down to her minmax payoff and extract all the residual rents. Collusion is

then subject to no frictions, as reports are chosen to maximize ex post payoffs of the agent,

completely undermining the role of the supervisor. Hence for the Principal to derive some

benefit from appointing a supervisor, it is essential that the supervisor has the upper hand

at the contract design stage. This ensures that collusion is subject to frictions resulting

from asymmetric information, which induce trade-offs between the supervisor’s rent and

the agent’s incentives. By contrast, when collusion is weak or absent, the allocation of

control authority between supervisor and agent is irrelevant.

Some open questions remain. In the context of continuously distributed cost of the

agent, we showed that the Principal can benefit from the presence of the supervisor if the

latter’s signal had only two possible realizations. We do not yet know if this result extends

when the signal can take a finite number of realizations. We also do not know if the Prin-

cipal’s payoff is monotone with respect to the allocation of welfare weights over the range

where the supervisor has a higher weight. However such a monotonicity result does obtain

in a variant of the model with three possible cost types and a partition information struc-

ture akin to the model of Celik (2009). It would be interesting to know if this monotonicity

property obtains more generally.
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Appendix: Proofs

Proof of Lemma 1

Proof of Necessity

Step 1: Some definitions:

Consider any WPBE(sc) allocation resulting from some grand contract GC. For this GC,

define wS(GC) as the minmax value of the S’s payoff:

wS(GC) ≡ min
µA∈∆(MA)

max
µS∈∆(MS)

X̄S(µA, µS).

Since ∆(MA),∆(MS) (endowed with the weak convergence topology) are compact, we can

apply the minimax theorem (Nikaido (1954)) to infer that there exists (µ
A
, µ̄S) which

satisfies

wS(GC) = X̄S(µ
A
, µ̄S) = min

µA∈∆(MA)
max

µS∈∆(MS)
X̄S(µA, µS)

= max
µS∈∆(MS)

min
µA∈∆(MA)

X̄S(µA, µS).

where µ
A

is A’s minmax strategy, and µ̄S is S’s maxmin strategy. Since S always has the

option to exit from the grand contract, wS(GC) ≥ 0 for any GC.

Given grand contract GC, a reporting strategy for S in this GC: µS(η) ∈ ∆(MS) and a

type of A: θ ∈ Θ, define

ûA(θ, µS(η), GC) ≡ max
µA∈∆(MA)

X̄A(µA, µS(η))− θq̄(µA, µS(η)),

which is interpreted as the A’s maximum payoff in the event that A is of type θ and exits

from the side-contract (whence S chooses µS(η)).

Step 2 Characterization of allocations achievable for a given grand contract GC:

Let (uA, uS , q) denote the allocation achieved as a WPBE(sc) outcome in GC, where

the third party selects a side contract SC.

In this step, we show that for any η and for µ(θ, η) which satisfies q(θ, η) = q̃(µ(θ, η))

for all θ ∈ Θ(η),

(ũA(θ, η), ũS(θ, η), µ̃(θ, η)) = (uA(θ, η), uS(θ, η), µ(θ, η)),
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associated with the selection of some µ̃S(η) = µS(η), solves the following problem PS(η :

α,GC):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to the constraint that for some µ̃S(η) ∈ ∆(MS) and for all θ ∈ Θ(η):

(i) µ̃(θ, η) ∈ ∆(MA ×MS), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <

(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̃(µ̃(θ
′
, η)) for any θ

′ ∈ Θ(η)

(iii) ũA(θ, η) ≥ ûA(θ, µ̃S(η), GC)

(iv) E[ũS(. | η)] ≥ wS(GC) and

(v) X̃A(µ̃(θ, η)) + X̃S(µ̃(θ, η))− θq̃(µ̃(θ, η)) = ũA(θ, η) + ũS(θ, η).

Note that this problem PS(η : α,GC) includes S’s threat µ̃S(η) in the event of A’s

non-participation as a choice variable. So the set of control variables can be written as

(ũA(θ, η), ũS(θ, η), µ̃(θ, η)), µ̃S(η)).

Note also that the problem PS(η : α,GC) refers to the given GC, and reporting strate-

gies of the players are confined to mixed strategies available in GC. In later steps, the

mechanism will be augmented so that the scope of collusion will be widened, as players will

then be able to select mixed strategies in augmented message spaces.

Proof of Step 2:

Since (uA, uS , q) is an achievable allocation, it is straightforward to check that it is feasi-

ble in the above problem. If (uA(θ, η), uS(θ, η), µ(θ, η), µS(η)) does not solve problem PS(η :

α,GC) for some η, we shall now show that there exists another side-contract and a continua-

tion equilibrium in which the third party can achieve a higher payoff, which will contradict

the hypothesis that the allocation resulted from a WPBE(sc) of GC. Suppose that for

some η, the solution of P (η : α,GC) is instead some (ũ∗A(θ, η), ũ∗S(θ, η), µ̃∗(θ, η), µ̃∗S(η)) 6=

(uA(θ, η), uS(θ, η), µ(θ, η), µS(η)).

Construct a side-contract SC
′

as follows. If both S and A accept it, the third party

requests a report from A of (θA, ηA) ∈ K, and report from S of ηS ∈ Π. The report to P is

subsequently selected according to µ̃∗(θA, ηS), while side-transfers are selected as follows.

tA(θA, ηA, ηS) = ũ∗A(θA, ηS)− [X̄A(µ̃∗(θA, ηS))− θAq̃(µ̃∗(θA, ηS))]− L(ηA, ηS)
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and

tS(θA, ηA, ηS) = ũ∗S(θA, ηA)− X̄S(µ̃∗(θA, ηS))

where L(ηA, ηS) is zero for ηA = ηS and a large positive number for ηA 6= ηS . If A

were to accept and S were to reject SC
′
, A would threaten to play µ

A
. Conversely, if S

accepts and reports ηS while A rejects SC
′
, S threatens to play µ̃∗S(ηS). It is easy to check

that there exists a continuation equilibrium where nobody rejects SC
′

on the equilibrium

path, and both A and S report truthfully to the third party, resulting in the allocation

(ũ∗A(θ, η), ũ∗S(θ, η)). The third party attains a higher payoff, contradicting the hypothesis

that we started with a WPBE(sc), completing the proof of Step 2.

The statement of Step 2 provides one characterization of allocations achievable for a

given grand contract GC. Our aim is to find a more general characterization which does

not depend on GC. This is the purpose of the following two steps.

Step 3: Construction of augmented allocation:

We continue with (uA, uS , q), an achievable allocation in GC in S-Collusion with α. Con-

struct an incentive compatible augmentation (ueA, u
e
S , q

e) of (uA, uS , q) to the domain K̄

satisfying the following conditions:

(i) ueA(θ, η) ≥ ûA(θ, µS(η), GC) on Θ, for any η ∈ Π.

(ii) ueS(θ, η) = −L on Θ\Θ(η) where L > 0 is sufficiently large (as explained later), for

any η ∈ Π.

(iii) (ueA(θ, η0), ueS(θ, η0), qe(θ, η0)) = (ûA(θ, µ̄S , GC), ω, q̄(µA(θ, µ̄S), µ̄S)) where µA(θ, µ̄S)

maximizes

X̄A(µA, µ̄S)− θq̄(µA, µ̄S)

subject to µA ∈ ∆(MA), and ω ≡ wS(GC).

We sketch the argument for existence of an incentive compatible augmentation satisfying

property (i), for the case where Θ is a closed interval [θ, θ̄] and Θ(η) is the union of a set

of closed intervals of Θ. The method can be extended in an obvious manner to other type

spaces. Note that Θ(η) may not include θ or θ̄. Define Θ̄(η) ≡ Θ(η) ∪ {θ, θ̄}. To simplify

notation, we fix η and suppress it as an argument in the functions below. We are given

functions (uA(θ), q(θ)) and ûA(θ) ≡ ûA(θ, µS(η), GC) which satisfy
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• (uA(θ), q(θ)) is defined on Θ(η) and satisfies (IC)

uA(θ) ≥ uA(θ
′
) + (θ

′ − θ)q(θ′)

for any θ, θ
′ ∈ Θ(η).

• ûA(θ) is convex and non-increasing on Θ by definition.

• uA(θ) ≥ ûA(θ) for θ ∈ Θ(η).

Our purpose is to construct (ueA(θ), qe(θ)) defined on Θ which satisfies

(a) (ueA(θ), qe(θ)) = (uA(θ), q(θ)) on Θ(η)

(b) ueA(θ) ≥ ueA(θ
′
) + (θ

′ − θ)qe(θ′) for any θ, θ
′ ∈ Θ

(c) ueA(θ) ≥ ûA(θ) for any θ ∈ Θ.

For any θ ∈ Θ, define θ(θ) and θ̄(θ) as follows:

θ(θ) ≡ max{θ′ ∈ Θ(η) ∪ {θ} | θ′ ≤ θ}

θ̄(θ) ≡ min{θ′ ∈ Θ(η) ∪ {θ̄} | θ′ ≥ θ}

Evidently if θ ∈ Θ(η), θ(θ) = θ̄(θ) = θ; otherwise θ(θ) < θ < θ̄(θ).

(IC) implies that uA(θ) is non-increasing and convex on Θ(η) (i.e., it is convex on each

interval contained in the latter).19

First in the case that θ /∈ Θ(η) or θ̄ /∈ Θ(η), we augment uA(θ) on Θ̄(η) as follows. If

θ /∈ Θ(η),

uA(θ) ≡ max{û(θ(η)), uA(θ(η)) + (θ(η)− θ)q(θ(η))}

while if θ̄ /∈ Θ(η),

uA(θ̄) ≡ uA(θ̄(η)).

This augmented function uA(θ) on Θ̄(η) is convex and non-increasing on Θ̄(η) and uA(θ) ≥

ûA(θ) on Θ̄(η).

Next select ueA(θ) as the maximum convex function defined on Θ such that uA(θ) ≥

ueA(θ) for any θ ∈ Θ̄(η). This function has the following properties.

19The proof can be extended to a general type space including discrete type spaces by defining the

convexity condition to be the following: [uA(θ′) − uA(θ)]/[θ′ − θ] ≤ [uA(θ′′) − uA(θ′)]/[θ′′ − θ′] for any

θ < θ′ < θ′′ in Θ(η), i.e., that the ‘slope’ is non-decreasing.
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• uA(θ) = ueA(θ) on Θ(η).

• For any θ /∈ Θ(η), ueA(θ
′
) is linear on [θ(θ), θ̄(θ)] with constant slope −uA(θ(θ))−uA(θ̄(θ))

θ̄(θ)−θ(θ) .

• ueA(θ) ≥ ûA(θ) on Θ, which implies property (c)). [Otherwise, consider max{ueA(θ), ûA(θ)}.

This is convex on Θ and uA(θ) ≥ max{ueA(θ), ûA(θ)} on Θ(η), contradicting the def-

inition of ueA(θ).]

The augmented function qe(θ) is constructed as follows:

qe(θ) = q(θ)

for θ ∈ Θ(η) and

qe(θ) =
uA(θ(θ))− uA(θ̄(θ))

θ̄(θ)− θ(θ)
.

for θ /∈ Θ(η). Then qe(θ) has the following properties

(P1) qe(θ) satisfies

ueA(θ) = ueA(θ̄(θ)) + (θ − θ̄(θ))qe(θ) = ueA(θ(θ)) + (θ(θ))− θ)qe(θ)

for any θ ∈ Θ.

(P2) qe(θ) is non-increasing on Θ for the following reasons:

• qe(θ) is non-increasing on Θ(η) from (IC)

• qe(θ′) is constant on [θ(θ), θ̄(θ)]

• (IC) implies that for any θ /∈ Θ(η),

q(θ(θ)) ≥ uA(θ(θ))− uA(θ̄(θ))

θ̄(θ)− θ(θ)
≥ q(θ̄(θ))

or

qe(θ(θ)) ≥ qe(θ) ≥ qe(θ̄(θ)).

We now show that the augmented functions satisfies the IC property (b). For θ, θ
′ ∈ Θ

(θ < θ
′
)

• If θ(θ) 6= θ(θ
′
), θ ≤ θ̄(θ) < θ(θ

′
) ≤ θ′ and

qe(θ) ≥ qe(θ̄(θ)) ≥ qe(θ(θ′)) ≥ qe(θ′)
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by (P2).

ueA(θ) = ueA(θ̄(θ)) + (θ̄(θ)− θ)qe(θ)

≥ ueA(θ(θ
′
) + (θ(θ

′
)− θ̄(θ))qe(θ(θ′)) + (θ̄(θ)− θ)qe(θ)

= ueA(θ
′
) + (θ

′ − θ(θ′)))qe(θ′)

+ (θ(θ
′
)− θ̄(θ))qe(θ(θ′)) + (θ̄(θ)− θ)qe(θ)

≥ ueA(θ
′
) + (θ

′ − θ)qe(θ′)

The first and third equalities use (P1). The second inequality uses (IC). The fourth

inequality uses θ ≤ θ̄(θ) < θ(θ
′
) ≤ θ′ and

qe(θ) ≥ qe(θ̄(θ)) ≥ qe(θ(θ′)) ≥ qe(θ′).

Similarly.

ueA(θ
′
) = ueA(θ(θ

′
)) + (θ(θ

′
))− θ′)qe(θ′)

≥ ueA(θ̄(θ)) + (θ̄(θ)− θ(θ′))qe(θ̄(θ)) + (θ(θ
′
))− θ′)qe(θ′)

= ueA(θ) + (θ − θ̄(θ))qe(θ) + (θ̄(θ)− θ(θ′))qe(θ̄(θ)) + (θ(θ
′
))− θ′)qe(θ′)

≥ ueA(θ) + (θ − θ′)qe(θ)

• If θ(θ) = θ(θ
′
), θ and θ

′
are not in Θ(η). By qe(θ) = qe(θ

′
) and the linearity of ueA,

ueA(θ) = ueA(θ
′
) + (θ

′ − θ)qe(θ′) = ueA(θ
′
) + (θ

′ − θ)qe(θ).

Hence (ueA(θ), qe(θ)) is IC on Θ.

Step 4

Now consider the problem PS(α : η) defined by the augmented allocation (ueA, u
e
S , q

e)

constructed in Step 3. Note that this problem differs from the one considered in Step 2

(PS(η : α,GC)), as it no longer refers to the original GC, and the coalition selects reports

from the augmented message space K̄ rather than MA ×MS .

We show in this step that

(µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) = (I(θ, η), uA(θ, η), uS(θ, η), I(η))

solves problem PS(α : η).
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It is straightforward to check that (I(θ, η), uA(θ, η), uS(θ, η), I(η)) satisfies all constraints

of PS(α : η), and generates a payoff for the third party of

E[αuA(θ, η) + (1− α)uS(θ, η) | η].

Suppose that there exists some alternative choice of controls

(µ∗(θ, η), u∗A(θ, η), u∗S(θ, η), P ∗(· | η))

which is feasible in PS(α : η), such that

E[αu∗A(θ, η) + (1− α)u∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η].

We show that in such a case there would exist µ̃(θ, η) : K → ∆(MA×MS), ũA(θ, η), ũS(θ, η), µ̃S(η)

which would be feasible in PS(η : α,GC) and generate a higher value in that problem com-

pared to (uA(θ, η), uS(θ, η), µ(θ, η)), thereby contradicting the result established at Step

2.

Note to start with that with a sufficiently large L (selected in Step 3), we can confine

attention to policies in which µ∗(θ, η) does not assign positive probability to reports with

η 6= η0 and θ ∈ Θ\Θ(η). Hence µ∗(θ, η) divides all its weight between reports either in

K or satisfying η = η0. The former event corresponds to an outcome of GC that results

when S and A’s reports are chosen from MS and MA respectively. And the latter event

corresponds (by (iii) in Step 3) to an outcome of GC resulting when S reports µ̄S ∈ ∆(MS)

and A reports according to µ(θ, µ̄S) ∈ ∆(MA). In this case,

q̄(µA(θ, µ̄S), µ̄S) = q(θ, η0)

while

X̂(θ, η0) = ω + X̄A(µA(θ, µ̄S), µ̄S)

≤ X̄S(µA(θ, µ̄S), µ̄S) + X̄A(µA(θ, µ̄S), µ̄S)

since ω is S’s minmax payoff in GC. Hence the outcome of µ∗(θ, η) in PS(α : η) can be

attained by the coalition as an outcome of GC resulting from some reporting strategy

µ̃(θ, η) ∈ ∆(MA ×MS) that satisfies

X̄A(µ̃(θ, η)) + X̄S(µ̃(θ, η)) ≥ X̂(µ∗(θ, η))
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and

q̄(µ̃(θ, η)) = q̂(µ∗(θ, η)).

Let µS(η) denote the optimal threat chosen by S in the event that A does not participate

in the side-contract, in the solution to problem PS(η : α,GC). Define µ̃S(η) ∈ ∆(MS) as

the composite of the measures µS(η
′
) and P ∗(η

′ | η). Then by (i) in Step 3 and the

definition of ûA(θ, µS , GC),

Ση′∈Π̄P
∗(η

′ | η)ueA(θ, η
′
) ≥ Ση′∈Π̄P

∗(η
′ | η)ûA(θ, µS(η

′
), GC) ≥ ûA(θ, µ̃S(η), GC).

Since u∗A(θ, η) ≥ Ση′∈Π̄P
∗(η

′ | η)ueA(θ, η
′
), it follows that

u∗A(θ, η) ≥ ûA(θ, µ̃S(η), GC).

Defining

ũA(θ, η) ≡ u∗A(θ, η)

and

ũS(θ, η) ≡ X̄A(µ̃(θ, η)) + X̄S(µ̃(θ, η))− θq(µ̃(θ, η))− u∗A(θ, η),

we infer that (ũA(θ, η), ũS(θ, η), µ̃(θ, η), µ̃S(η)) is feasible in the problem PS(η : α,GC),

and ũS(θ, η) ≥ u∗S(θ, η). Hence it generates a higher payoff for the third party than

E[αuA(θ, η) + (1 − α)uS(θ, η) | η], and we obtain a contradiction to the result of Step

2. So

(I(θ, η), uA(θ, η), uS(θ, η), I(η))

must be a solution of PS(α : η), establishing the necessity of the SCP property.

Proof of Sufficiency

Let (ueA, u
e
S , q

e) be the incentive compatible augmentation of (uA, uS , q) for which the latter

satisfies the SCP property. P can construct a grand contract GC as follows:

(XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where

MA = K ∪ {eA}

MS = Π̄ ∪ {eS}
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• for any (θ, η) ∈ K and η
′ ∈ Π, choose (XA((θ, η), η

′
), XS((θ, η), η

′
), q((θ, η), η

′
)) =

(ueA(θ, η
′
) + θqe(θ, η

′
), ueS(θ, η) − L(η, η

′
), qe(θ, η

′
)) where L(η, η

′
) = 0 for η = η

′
and

L > 0 (and sufficiently large) for η 6= η
′

• (XA((θ, η), eS), XS((θ, η), eS), q((θ, η), eS)) = (ueA(θ, η0) + θqe(θ, η0), 0, qe(θ, η0)).

• (XA((θ, η), η0), XS((θ, η), η0), q((θ, η), η0)) = (ueA(θ, η0) + θqe(θ, η0), ω, qe(θ, η0)).

• (XA(eA,mS), XS(eA,mS), q(eA,mS)) = (0, 0, 0) for any mS 6= η0

• (XA(eA, η0), XS(eA, η0), q(eA, η0)) = (0, ω, 0)

It is easy to check that (µA, µS) = ((θ, η), η) is a non-cooperative equilibrium of GC, and

S’s minmax payoff in GC is ω. The SCP property of (uA, uS , q) implies there is no room

for the third party to improve its payoff by offering a deviating side-contract, so (uA, uS , q)

is realized as the outcome of a WPBE(sc) under GC.

Proof of Proposition 2

We start with the proof of Lemma 2.

Proof of Lemma 2

Suppose that for some η, (I(θ, η), uA(θ, η), uS(θ, η), I(η)) does not solve the relaxed version

of PS(α : η) where the constraint E[ũS(θ, η) | η] ≥ ω is dropped. It implies E[ũrS(θ, η) |

η] < ω in the optimal solution of the relaxed problem represented by

(µr(θ, η), ũrA(θ, η), ũrS(θ, η), P r(· | η)).

As shown in the proof of Proposition 1, side contract S̃C defined as follows is feasible

in PS(α : η), hence also in the relaxed problem:

• µ̃(θ, η) = µ∗(θ) which maximizes X̂e(µ)− θq̂e(µ) subject to µ ∈ ∆(K̄ ∪ {e})

• P (η0 | η) = 1 and P (η
′ | η) = 0 for any η

′ 6= η0

• ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω (denoted by u+
A(θ, η) in later part)

• ũS(θ, η) = ω
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Hence

E[αũrA(θ, η) + (1− α)ũrS(θ, η) | η]

= E[(1− α){X̂e(µr(θ, η))− θq̂e(µr(θ, η))} − (1− 2α)ũrA(θ, η) | η]

≥ E[(1− α){X̂e(µ∗(θ))− θq̂e(µ∗(θ))} − (1− 2α)u+
A(θ, η) | η].

But since

E[X̂e(µ̃r(θ, η))− θq̂e(µ̃r(θ, η)) | η]

≤ E[X̂e(µ∗(θ))− θq̂e(µ∗(θ)) | η]

by the definition of µ∗(θ), α < 1
2 implies that

E[u+
A(θ, η) | η] ≥ E[ũrA(θ, η) | η].

This implies that the side contract S̃C creates a Pareto improvement over the solution to

the relaxed problem, yielding a strictly higher value of the third party’s expected payoff, a

contradiction.

The next step in the proof of Proposition 2 is to consider the specific mechanism de-

scribed in the text; we establish this allocation is SCP provided conditions (a) and (b) are

satisfied.

Owing to the previous lemma, we can drop S’s participation constraint (iv) from problem

PS(α : η). So consider the relaxed problem denoted by P̄S(α : η), for this allocation defined

on Θ× {η1, η2}, which selects (µ(θ, η), ũA(θ, η), p(η)) to maximize

E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η]

subject to µ(θ, η) ∈ ∆(Θ× {η1, η2} ∪ {e}) and p(η) ∈ [0, 1],

ũA(θ, η) ≥ p(η)uA(θ, η) + (1− p(η))uA(θ, η
′
)

and

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(µ(θ
′
, η))

for any θ, θ
′ ∈ Θ.

Specifically, we aim to show that

(µ(θ, η), ũA(θ, η), p(η)) = ((θ, η), uA(θ, η), 1)

solves P̄S(α : η), if
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(a)E[uA(θ, η1)− uA(θ, η2) | η2] ≥ 0

(b)
∫ θ̄
θ [uA(θ, η2)− uA(θ, η1)]dΛ(θ) ≥ 0.

Upon choosing Λ(., η1) ≡ Λ(.) and Λ(., η2) ≡ F (.|η2), we can unify conditions (a) and

(b) into the following single condition∫ θ̄

θ
[uA(θ, η

′
)− uA(θ, η)]dΛ(θ, η) ≥ 0

when η, η
′ ∈ {η1, η2} and η 6= η

′
.

Since Λ(θ, η) is non-decreasing in θ, this condition implies that

0 ≤
∫ θ̄

θ
[ũA(θ, η)− (1− p(η))uA(θ, η

′
)− p(η)uA(θ, η)]dΛ(θ, η)

≤
∫ θ̄

θ
[ũA(θ, η)− uA(θ, η)]dΛ(θ, η)

for any (ũA(θ, η), p(η)) satisfying constraints of P̄S(α : η). This result can be used to obtain

an upper bound of the objective function in P̄S(α : η). First note that

E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η]

≤ E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η]

+ β

∫ θ̄

θ
[ũA(θ, η)− uA(θ, η)]dΛ(θ, η)

= E[X̂(µ(θ, η))− zβ(θ, η)q̂(µ(θ, η)) | η]− β
∫ θ̄

θ
uA(θ, η)dΛ(θ, η).

The second equality uses the fact that

ũA(θ, η) = ũA(θ̄, η) +

∫ θ̄

θ
q̂(µ̃(y, η))dy.

Next, note that µ̃ = (θ, η) maximizes X̂(µ̃) − zβ(θ, η)q̂(µ̃). This implies that an upper

bound to the value of the objective function is given by :20

E[X̄(zβ(θ, η))− θq̄(zβ(θ, η))− βuA(θ, η) | η].

20By definition of (X̂(µ), q̂(µ)),

X̂(θ, η)− zβ(θ, η)q̂(θ, η) = X̄(zβ(θ, η))− zβ(θ, η)q̄(zβ(θ, η)).
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But this is attainable with (µ(θ, η), ũA(θ, η), p(η)) = ((θ, η), uA(θ, η), 1) (which satisfies all

constraints) in P̄S(α : η), implying that it is the optimal solution of this problem. This

implies the allocation is SCP.

Let Z(η1) denote the set of non-decreasing functions z : Θ → < such that z(θ) =

θ+β F (θ|η1)−Λ(θ)
f(θ|η1) for some Λ(θ) which is non-decreasing in θ with Λ(θ, η) = 0 and Λ(θ̄, η) = 1.

In order to prove Proposition 2, it suffices to construct zβ(·) ∈ Z(η1) where (1), (2) and (3)

are satisfied at the same time. The rest of the proof is devoted to this construction.

Step 1: There exists (λ1, λ2) 6= 0 such that

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1) = 0

for all θ ∈ Θ, if and only if if there exist (ρ, ν, γ) ∈ <3 such that a(η1 | θ) = ρ+ νF (θ)γ for

all θ ∈ Θ.

Proof of Step 1

Proof of (If)

a(η1 | θ) = ρ+ νF (θ)γ implies

F (θ)

f(θ)
f(θ | η1) =

ρF (θ) + νF (θ)γ+1

ρ+ ν
γ+1

F (θ | η1) =
ρF (θ) + ν

γ+1F (θ)γ+1

ρ+ ν
γ+1

F (θ | η2) =
1

1− ρ− ν
γ+1

[(1− ρ)F (θ)− ν

γ + 1
F (θ)γ+1].

Then by choosing

λ1 = ργ
1− ρ− ν

γ+1

ρ+ ν
γ+1

λ2 = 1 + (1− ρ)γ,

we obtain
F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1) = 0

for any θ ∈ Θ.

Proof of (Only if)
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Suppose that there exists (λ1, λ2) 6= 0 such that

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1) = 0 (7)

for any θ ∈ Θ. Using F (θ)
f(θ) f(θ | η1) = F (θ)a(η1 | θ)/p(η1), and taking the derivative of both

sides of (7) with respect to θ, we obtain

F (θ)

p(η1)

da(η1 | θ)
dθ

+ λ1f(θ | η2) + (1− λ2)f(θ | η1) = 0.

for any θ. This can be rewritten as

da(η1|θ)
dθ

(λ1p(η1)
p(η2) − (1− λ2))a(η1 | θ)− λ1p(η1)

p(η2)

=
f(θ)

F (θ)
. (8)

Solving this differential equation, we obtain

a(η1 | θ) =
1

(λ1p(η1)
p(η2) − (1− λ2))

[F (θ)
λ1p(η1)
p(η2)

−(1−λ2)
C +

λ1p(η1)

p(η2)
].

for some constant C. It implies that there exists (ρ, ν, γ) ∈ <3 such that a(η1 | θ) =

ρ+ νF (θ)γ .

Step 2: Under the hypothesis of Proposition 2, there exist (λ1, λ2) and closed intervals on

Θ (Θ1 = [θ1, θ̄1], Θ2 = [θ2, θ̄2] and Θ3 = [θ3, θ̄3]) such that θ < θi < θ̄i < θi+1 < θ̄i+1 < θ̄

(i = 1, 2), and the sign of

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)

alternates among the interiors of Θ1, Θ2 and Θ3.

Proof of Step 2

Under the conditions of Proposition 2, there exists (θ1, θ2, θ3) with θ < θ1 < θ2 < θ3 < θ̄

such that

A(θ1, θ2, θ3) ≡


F (θ1)
f(θ1) f(θ1 | η1) F (θ1 | η2) −F (θ1 | η1)

F (θ2)
f(θ2) f(θ2 | η1) F (θ2 | η2) −F (θ2 | η1)

F (θ3)
f(θ3) f(θ3 | η1) F (θ3 | η2) −F (θ3 | η1)


is non-singular. To see this, for arbitrary θ

′
and θ

′′
(θ

′ 6= θ
′′

and θ
′
, θ

′′ ∈ (θ, θ̄)), consider

|A(θ, θ
′
, θ

′′
)|

|B(θ′ , θ′′)|
=
F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)
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with

λ1 ≡ −
1

|B(θ′ , θ′′)|

∣∣∣∣∣∣
F (θ

′
)

f(θ′ )
f(θ

′ | η1) −F (θ
′ | η1)

F (θ
′′

)

f(θ′′ )
f(θ

′′ | η1) −F (θ
′′ | η1)

∣∣∣∣∣∣
and

λ2 ≡ −
1

|B(θ′ , θ′′)|

∣∣∣∣∣∣
F (θ

′
)

f(θ′ )
f(θ

′ | η1) F (θ
′ | η2)

F (θ
′′

)

f(θ′′ )
f(θ

′′ | η1) F (θ
′′ | η2)

∣∣∣∣∣∣
where

B(θ
′
, θ

′′
) ≡

 F (θ
′ | η2) −F (θ

′ | η1)

F (θ
′′ | η2) −F (θ

′′ | η1)

 .

Since |B(θ
′
, θ

′′
)| 6= 0 because of the monotone likelihood ratio property, the expressions

above are well-defined. Our presumption and Step 1 imply that we can find θ 6= θ
′
, θ

′′

(θ ∈ (θ, θ̄)) such that the above equation is not zero, i.e., A(θ, θ
′
, θ

′′
) is non-singular.

Next for θ̄ < θ1 < θ2 < θ3 < θ̄ such that |A(θ1, θ2, θ3)| 6= 0 and for arbitrary (b1, b2, b3) 6=

0 such that Sign b1 = Sign b3 6= Sign b2, consider the set of equations

A(θ1, θ2, θ3)


λ̃0

λ̃1

λ̃2

 =


b1

b2

b3

 .

Since |A(θ1, θ2, θ3)| 6= 0, these equations have a unique solution for (λ̃0, λ̃1, λ̃2). Moreover

we can show λ̃0 6= 0. Otherwise, suppose that λ̃0 = 0. Then there must exist (λ̃1, λ̃2)

such that the sign of λ̃1F (θ | η2) − λ̃2F (θ | η1) alternates between θ1, θ2, θ3. However this

contradicts the monotone likelihood ratio property which states that F (θ|η1)
F (θ|η2) is monotone in

θ. So we can define λ1 ≡ λ̃1/λ̃0 and λ2 ≡ λ̃2/λ̃0, and the sign of

F (θi)

f(θi)
f(θi | η1) + λ1F (θi | η2)− λ2F (θi | η1) = bi/λ̃0

alternates among i = 1, 2, 3.

By the continuity of F (θ)
f(θ) f(θ | η1)+λ1F (θ | η2)−λ2F (θ | η1) for θ, we can choose closed

intervals Θ1, Θ2 and Θ3 (Θi ∩Θi+1 = φ and θ < θ1 < θ̄3 < θ̄) such that

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)

has the same sign as at θi on the interior of Θi (i = 1, 2, 3).
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In later analysis, our focus is restricted to the case that there exists (λ1, λ2) such that

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)

is negative on the interior of Θ1 and Θ3, and positive on the interior of Θ2. We can adopt

the same analysis for the opposite case.

Step 3: For any closed interval [θ
′
, θ

′′
] ⊂ Θ such that θ < θ

′
< θ

′′
< θ̄, there exists δ > 0 so

that z(·) ∈ Z(η1) for any function z(·) satisfying the following properties:

(i) z(·) is increasing and differentiable with |z(θ)− θ| < δβ and |z′
(θ)− 1| < δβ for any

θ ∈ Θ

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ

′′
].

Proof of Step 3

(i) and (ii) means that a function z(·) is sufficiently close to identity function θ̂(·) (with

θ̂(θ) = θ) in both distance and the slope. For arbitrary closed interval [θ
′
, θ

′′
] ⊂ Θ such

that θ < θ
′
< θ

′′
< θ̄, we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)

and

ε2 ≡ max
θ∈[θ′ ,θ′′ ]

|f ′
(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive on Θ, ε1 > 0,

and ε2 is non-negative and bounded above. We choose δ > 0 such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, consider a function z(·) which satisfies the condition (i) and (ii) of the statement.

Define

Λ(θ) ≡ (θ − z(θ))
β

f(θ | η1) + F (θ | η1).

Since z(θ) is differentiable on Θ, Λ(θ) is also so. It is equal to Λ(θ) = F (θ | η1) on

θ /∈ [θ
′
, θ

′′
]. For θ ∈ [θ

′
, θ

′′
],

∂Λ(θ)

∂θ
= (

1− z′
(θ)

β
+ 1)f(θ | η1) +

(θ − z(θ))
β

f
′
(θ | η1)

> (1− δ)f(θ | η1)− δ|f ′
(θ | η1)|

≥ (1− δ)ε1 − δε2.
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This is positive by the definition of (ε1, ε2, δ). Then Λ(θ) is increasing in θ on Θ with

Λ(θ) = 0 and Λ(θ̄) = 1. Since z(θ) is increasing in θ by the definition, z(·) ∈ Z(η1) by the

definition of Z(η1).

Step 4: Construction of zβ(·)

Here we construct zβ(·) ∈ Z(η1) where (1)− (3) are satisfied at the same time. To simplify

the notation, we use z(·) instead of zβ(·) in later argument. The construction of z(θ) has

the following four steps.

(i) Construction of z̄(·)

First let us define Φ(z, θ) by

Φ(z, θ) ≡ [Hk(z)−
2k − 1

k
z − (1− k)

k
θ +

(2k − 1)λ2

kβ
(z − hβ(θ | η1)) +

2k − 1

k
λ1
F (θ | η2)

f(θ | η1)
]q̄

′
(z)

+
(2k − 1)λ2

kβ
[q̄(z)− q̄(θ)]

where hβ(θ | η) ≡ θ + β F (θ|η)
f(θ|η) . With z = θ,

Φ(θ, θ) ≡ 2k − 1

kf(θ | η1)
[
F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)]q̄

′
(θ).

Since Φ(z, θ) is differentiable in z and θ, the statement in Step 2 guarantees the existence

of z̄(θ) such that (i) z̄(θ) is differentiable on Θ, (ii) z̄(θ) > θ on (θ1, θ̄1) and Φ(z, θ) > 0

for any z ∈ [θ, z̄(θ)] and any θ ∈ (θ1, θ̄1), (iii) z̄(θ) < θ on (θ2, θ̄2) and Φ(z, θ) < 0 for

any z ∈ [z̄(θ), θ] and any θ ∈ (θ2, θ̄2), (iv) z̄(θ) > θ on (θ3, θ̄3) and Φ(z, θ) > 0 for any

z ∈ [θ, z̄(θ)] and any θ ∈ (θ3, θ̄3), and (v) z̄(θ) = θ elsewhere.

(ii) Construction of z1(·)

For θ̂1 ∈ (θ̄1, θ2) and θ̂2 ∈ (θ̄2, θ3) (chosen arbitrary), ρ1 and ρ2 are defined by

ρ1 ≡
F (θ̂1 | η2)

F (θ̂1 | η1)

and

ρ2 ≡
F (θ̂2 | η2)

F (θ̂2 | η1)
.

Then define

Ψi(z, θ) ≡ [
F (θ | η2)

f(θ | η1)
+
ρi
β

(z − hβ(θ | η1))]q̄
′
(z) +

ρi
β

(q̄(z)− q̄(θ)).
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z1(θ) is defined such that Ψ1(z1(θ), θ) = 0 is satisfied. There always exists such a z1(θ), since

for each θ, Ψi(z, θ) is continuous for z and is negative for z > max{θ, hβ(θ | η1)− βF (θ|η2)
ρ1f(θ|η1)}

and is positive for z < min{θ, hβ(θ | η1) − βF (θ|η2)
ρ1f(θ|η1)}. It also implies that z1(θ) < hβ(θ | η)

for any θ. If there are multiple z which satisfies Ψ1(z, θ) = 0, we choose one which is the

closest to θ. Then rewriting Ψ1(z1(θ), θ) = 0, we obtain

z1(θ)− θ +
q̄(z1(θ))− q̄(θ)

q̄′(z1(θ))
=
βF (θ | η1)

ρ1f(θ | η1)
[ρ1 −

F (θ | η2)

F (θ | η1)
].

Since F (θ|η2)
F (θ|η1) is increasing in θ by the monotone likelihood ratio assumption, z1(θ) > θ for

θ < θ̂1 and z1(θ) < θ for θ > θ̂1. Since Ψ1(θ, θ) > 0 (or < 0) for θ < θ̂1 (or θ > θ̂1),

Ψ1(z, θ) > 0 for any z ∈ (θ, z1(θ)) and for any θ < θ̂1 and Ψ1(z, θ) < 0 for any z ∈ (z1(θ), θ)

and for any θ > θ̂1. On the other hand, Ψ2(z, θ) is positive for (θ, z) such that z < θ < θ̂2

and negative for (θ, z) such that θ̂2 < θ < z from the definition of Ψ2(z, θ) and θ2. Then

the argument is summarized as

• For z ∈ (θ, z1(θ)), Ψ1(z, θ) > 0 for any θ ∈ Θ1.

• For z ∈ (z1(θ), θ), Ψ1(z, θ) < 0 and Ψ2(z, θ) > 0 for any θ ∈ Θ2

• For z > θ, Ψ2(z, θ) < 0 for any θ ∈ Θ3.

(iii) Construction of z2(·)

Next let us define

Γ(z, θ) ≡
d[(z − hβ(θ | η1))(q̄(z)− q̄(θ))]

dz
= q̄(z)− q̄(θ) + (z − hβ(θ | η1))q̄

′
(z).

Γ(z, θ) > 0 for z ≤ θ and Γ(z, θ) < 0 at z = hβ(θ | η1). Then we can choose z2(θ)(> θ)

which is the minimum z such that Γ(z, θ) = 0. Therefore (z − hβ(θ | η1))(q̄(z) − q̄(θ)) is

increasing in z on z < z2(θ).

(iv) Construction of z(·)

Finally let us construct z(·), based on z̄(·), z1(·) and z2(·). According to the procedure in

Step 3, for [θ
′
, θ

′′
] = [θ1, θ̄3], choose δ > 0. We construct z(θ) as follows:

(i) z(θ) is differentiable and increasing in θ on Θ with |z(θ)− θ| < δβ and |z′
(θ)− 1| < δβ

(ii) z(θ) ∈ (θ,min{z̄(θ), z1(θ), z2(θ)}) on (θ1, θ̄1)
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(iii) z(θ) ∈ (max{z̄(θ), z1(θ)}, θ) on (θ2, θ̄2)

(iv) z(θ) ∈ (θ,min{z̄(θ), z2(θ)}) on (θ3, θ̄3)

(v) z(θ) = θ elsewhere

(vi) E[(z(θ)− hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1] = 0

(vii) E[(q̄(θ)− q̄(z(θ)))F (θ|η2)
f(θ|η2) | η2] = 0.

(i) implies z(θ) ∈ Z(η). We argue that there exists z(θ) which satisfies (i)-(vii). It is evident

that there exists z(·) which satisfies (i)-(v). In addition, since (z − hβ(θ | η1))(q̄(z)− q̄(θ))

is increasing in z for z < z2(θ), z(θ) > θ on Θ1 and Θ3 (or z(θ) < θ on Θ2) has the effect on

raising (or reducing) E[(z(θ)− hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1] away from zero. By making

a balance between two effects, z(·) can also satisfy (vi).

Suppose z(·) which satisfies (i)-(vi), but does not satisfy (vii). It is shown that we can

construct a new function which satisfies all of (i)-(vii) with small adjustment of z(·). First

we define z̃(·, ε) (ε = (ε1, ε2, ε3)) as z̃(θ, ε) ≡ θ+εi(z(θ)−θ) on Θi (i = 1, 2, 3) and z̃(θ, ε) = θ

elsewhere. It is evident that for any εi ∈ (0, 1] (i = 1, 2, 3), z̃(·, ε) satisfies (i)-(v), since

z̃(·, ε) is closer to θ̂(·) than z(·) in both the distance and the slope. For the convenience of

the exposition, define Π(ε1, ε2, ε3) as

Π(ε1, ε2, ε3) ≡ E[(z̃(θ, ε)− hβ(θ | η1))(q̄(z̃(θ, ε))− q̄(θ)) | η1].

It is evident that Π(1, 1, 1) = 0, since z(·) satisfies (vi), and Π(0, 0, 0) = 0. Π(ε1, ε2, ε3) is

continuous for each εi (i = 1, 2, 3), increasing in ε1 and ε3 and decreasing in ε2. Then since

Π(1, 0, 0) > 0 and Π(1, 1, 0) < 0, there exists ε
′
2 ∈ (0, 1) such that Π(1, ε

′
2, 0) = 0. Similarly

since Π(0, 0, 1) > 0 and Π(0, 1, 1) < 0, there exists ε
′′
2 ∈ (0, 1) such that Π(0, ε

′′
2 , 1) = 0.

Define ε
′ ≡ (1, ε

′
2, 0) and ε

′′ ≡ (0, ε
′′
2 , 1). It is shown that there exists a function ε(t) on

t ∈ [0, 1] such that ε(t) is continuous and monotonic function with ε(0) = ε
′

and ε(1) = ε
′′
,

and Π(ε(t)) = 0 for any t ∈ [0, 1]. Evidently ε(t) 6= 0 for any t ∈ [0, 1]. Suppose the case

that ε
′
2 < ε

′′
2 . (The same argument is applied for the case of ε

′
2 ≥ ε

′′
2 , and so we omit the

argument for the latter case.) We choose arbitrary continuous and monotonic functions

(ε1(t), ε2(t)) with (ε1(0), ε2(0)) = (1, ε
′
2) and (ε1(0), ε2(0)) = (0, ε

′′
2). ε2(t) is increasing in t.

Then for t ∈ (0, 1),

Π(ε1(t), ε2(t), 0) < Π(1, ε
′
2, 0) = 0 = Π(0, ε

′′
2 , 1) < Π(ε1(t), ε2(t), 1).
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It implies that there exists ε3(t) ∈ (0, 1) such that Π(ε1(t), ε2(t), ε3(t)) = 0. The continuity

of Π(ε), ε1(t), ε2(t) implies that ε3(t) is continuous. For t, t
′ ∈ [0, 1] such that t < t

′
, and for

any ε3 ∈ (0, 1),

Π(ε1(t), ε2(t), ε3) > Π(ε1(t
′
), ε2(t

′
), ε3),

implying that ε3(t) is increasing in t.

For ε
′ ≡ (1, ε

′
2, 0),

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′
))− q̄(θ)) | η2]

= E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′
))− q̄(θ)) | η2]

+
ρ1

β
E[(z̃(θ, ε

′
)− hβ(θ | η1))(q̄(z̃(θ, ε

′
))− q̄(θ)) | η1]

= E[

∫ z̃(θ,ε
′
)

θ
[{F (θ | η2)

f(θ | η1)
+
ρ1

β
(z − hβ(θ | η1))}q̄′(z)

+
ρ1

β
(q̄(z)− q̄(θ))]dz | η1]

= E[

∫ z̃(θ,ε
′
)

θ
Ψ1(z, θ)dz | η1] > 0,

since Ψ1(z, θ) > 0 for any z ∈ (θ, z(θ)) and any θ ∈ Θ1 and Ψ1(z, θ) < 0 for any z ∈

(θ + ε
′
2(z(θ)− θ), θ) and any θ ∈ Θ2. Similarly for ε

′′ ≡ (0, ε
′′
2 , 1).

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η2]

= E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η2]

+
ρ2

β
E[(z̃(θ, ε

′′
)− hβ(θ | η1))(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η1]

= E[

∫ z̃(θ,ε
′′

)

θ
Ψ2(z, θ)dz | η1] < 0,

since Ψ2(z, θ) > 0 for any z ∈ (θ+ ε
′′
2(z(θ)− θ), θ) and any θ ∈ Θ2 and Ψ2(z, θ) < 0 for any

z ∈ (θ, z(θ)) and any θ ∈ Θ3. Moreover E[F (θ|η2)
f(θ|η2) (q̄(z̃(θ, ε))− q̄(θ)) | η2] is continuous for ε.

Therefore there exists t ∈ (0, 1) such that

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε(t)))− q̄(θ)) | η2] = 0.

This argument implies that there exists ε 6= 0 such that both (vi) and (vii) are satisfied

under z̃(·, ε). For this z̃(·, ε), all conditions (i)-(vii) are satisfied.

44



Step 5: Improvement of P ’s payoff

Finally we check that under z(θ) which is constructed in Step 4,

E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η]

> E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η]

For (λ1, λ2) specified in Step 2,

E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η1]

− E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η1]

= E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η1]

+
(2k − 1)λ2

kβ1
E[(z(θ)− hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1]

+
2k − 1

k
λ1[E[

F (θ | η2)

f(θ | η2)
(q̄(z(θ))− q̄(θ)) | η2]

− E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η1]

= E[

∫ z(θ)

θ
Φ(z, θ)dz | η1] > 0.

The first equality comes from (vi) and (vii) in Step 4. Therefore P ’s payoff is improved

over the optimal NS. It completes the proof.
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