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Abstract

In a setting with complete contracts, we study strong collusion between an

informed agent and less well-informed supervisor, where each can commit to

threats to punish the other for refusing to enter into a hidden side-contract.

We show it is beneficial for the Principal to skew bargaining power in favor

of the supervisor, e.g. by delegating the right to appoint the agent, in order

to increase bargaining frictions within the coalition. By contrast, in contexts

of weak collusion where such commitments are not possible, the allocation of

bargaining power is irrelevant.
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1 Introduction

It is well known (e.g., Myerson (1982)) that delegation of authority to privately in-

formed agents is not worthwhile for a Principal that can commit perfectly to ‘complete

contracts’ — i.e., without any restrictions on message spaces of agents and absence

of collusion between agents. The effect of any mechanism which delegates authority

to some agents can be replicated by an incentive compatible revelation mechanism

where the Principal retains full authority over all decisions as a function of reports of

private information made by agents. Owing to this result, theories of decentralized

authority have been based on limited commitment power of the Principal4, contexts

with unforeseen contingencies, and communication or information processing costs

that restrict message spaces.5 The consequences of collusion among agents have not

been hitherto explored, with few exceptions.6

In this paper we explore the value of delegating authority as a means of controlling

the consequences of collusive behavior among agents. Collusion refers to hidden side-

contracts, wherein the Principal cannot prevent agents from side-contracts allowing

them to communicate with one another, coordinate their responses to the Principal

and exchange side-payments. We impose no restrictions on the size of message spaces,

and abstract entirely from ‘complexity’ costs or lack of commitment. We consider a

context with a supervisor (S) and agent (A), in which the latter is privately informed

about the unit cost of delivering a good to the Principal, and S obtains a noisy signal

4See e.g., Poitevin (2000), Aghion and Tirole (1997), Dessein (2002).
5Marschak and Radner (1972), Green and Laffont (1986, 1987), Melumad, Mookherjee and Re-

ichelstein (1992), Radner (1993), Van Zandt (1999), Battigali and Maggi (2002), Fadel and Segal

(2009), Mookherjee and Tsumagari (2014).
6A number of papers on decentralization and collusion present models where delegation of au-

thority is equivalent to centralization in the presence of collusion: e.g., Baliga and Sjostrom (1998) or

Faure-Grimaud, Laffont and Martimort (2003). The only paper we are aware of that shows superior-

ity of decentralization in the presence of collusion is Laffont and Martimort (1998), but their theory

requires presence of communication costs along with collusion. This paper focuses on collusion per

se, without any restrictions on message spaces.
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of this cost.7 A also observes the realization of S’s signal; hence collusion takes the

form of a side contract with one-sided asymmetric information between S and A. The

relevant notion of ‘authority’ refers to allocation of bargaining power over the side

contract. For instance, consider a setting where P needs to select one A and one S

from a large pool of ex ante identical agents and supervisors respectively. P could

select an S from the supervisor pool, and delegate to it the authority to select A from

the agent pool. This amounts to giving all the bargaining power in side-contracting to

S, since the option to select between different agents enables S to push A down to the

latter’s outside option. At the other extreme, P could skew bargaining power to the

agent by appointing an A and authorizing A to select an S. An intermediate option

would be for P to personally select an S and an A and then allow them to bargain

over the side-contract, which would allocate bargaining power more symmetrically.

The value of delegating ‘appointment authority’ thus translates into the value

of skewing bargaining power in favor of either S or A. We explore the idea that

favoring the relatively less informed party (S, in this case) generates greater bargaining

frictions, which is valuable to P by reducing the impact of collusion. We show this is

the case when (a) side contracting takes place at the ex ante stage, allowing S and A

to collude on both participation and reporting decisions at the interim stage, and (b)

collusion is ‘strong’, in the sense that the side contract allows each party to ‘threaten’

the other in the event of the latter refusing to accept the offered side contract at

the interim stage (by committing to specific messages to be sent thereafter to P).

Such threats enlarge the scope of collusion relative to ‘weak’ collusion where refusal

of the side contract by one party is followed by noncooperative behavior thereafter.

While papers on optimal auction design have explored the implications of strong and

weak collusion8, the existing literature on mechanism design with supervision and

7In contrast to Tirole (1986) or Laffont and Tirole (1993), and in line with subsequent literature

on supervision, we consider contexts of ‘soft’ information where supervisors and agents can send any

messages to the Principal.
8See Dequiedt (2007), Pavlov (2008) and Che and Kim (2009).
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collusion has been confined to ‘weak’ collusion. Under weak collusion the allocation

of bargaining power between colluding parties does not matter.9

Hence the main contributions of this paper are the exploration of strong ex ante

collusion in the context of supervisor-agent relationships, and the result that skewing

bargaining power in favor of the supervisor can enhance the Principal’s welfare by

reducing the scope for collusion. Moreover, we show that if the agent has greater

bargaining power, the presence of the supervisor is worthless to the Principal, as

the chosen side contract will not be subject to any frictions. Intuitively, this is

because the side contract will maximize the residual rents of the agent, while pushing

the supervisor down to a constant outside option payoff which is common knowledge

within the coalition. Skewing authority in favor of the supervisor, by contrast, ensures

that coalitional bargaining is subject to frictions owing to asymmetric information,

since the agent is better informed than the supervisor.

While delegation of authority to the supervisor over agent selection is valuable, it

turns out to not be optimal for the Principal to also delegate the choice of the contract

for the agent. In order for P to obtain value from the presence of the supervisor, it is

essential that P contracts personally with both agent and supervisor. This enables P

to manipulate the outside options of colluding parties and thereby restrict the scope

of collusion. In this respect there is no difference between weak and strong collusion.10

Relevant applications of our model and results include internal organization of

firms (where P is a firm owner, S a manager or supervisor and A a worker), government

procurement or regulation (P is the government, S a bureaucrat or regulator, and A a

private utility or contractor), or financial intermediaries (P is an investor, S an audi-

tor/financial advisor and A a borrower seeking to finance a project).11 The model sug-

9Faure-Grimaud, Laffont and Martimort (2003) and Mookherjee, Motta and Tsumagari (2018)

show this in settings of interim and ex ante collusion respectively.
10With weak collusion, the necessity of P contracting with both A and S was shown in Mookherjee,

Motta and Tsumagari (2018, Proposition 1 and 4) when collusion arises at the ex ante stage, and

by Celik (2009) when it arises at the interim stage.
11Evidence for such collusion is available in many real world contexts, e.g., between outside Di-
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gests that biasing the allocation of authority in favor of managers/regulators/intermediaries

over selection of workers/contractors/borrowers is beneficial in limiting the harmful

consequences of strong collusion. At the same time, firm owners/governments need

to retain control over the design of formal contracts.

The paper is organized as follows. Section 2 lays out the model, followed by Sec-

tion 3 which verifies the Collusion Proofness Principle holds for both strong and weak

collusion: that any feasible allocation in either setting can be achieved by a collusion

proof mechanism for some grand contract. This provides a characterization of alloca-

tions that can be supported with strong and weak collusion respectively. Using this

characterization, Section 4 provides our two main results for strong collusion proof

allocations for alternative ranges of bargaining power allocation. First, if A has at

least as much welfare weight as S, appointing a supervisor is worthless for P. In other

words, P can attain the same payoff by contracting directly with A, without trying to

elicit any information from any supervisor. Second, if S is assigned a higher welfare

weight, and S’s signal is coarse (in the sense of having only two possible realizations

while A’s cost is continuously distributed), appointing a supervisor is valuable, i.e., P

attains a strictly higher payoff compared to the option of not hiring S at all. Section

5 then shows that in order to derive any value from the supervisor it is essential for

P to contract with both parties. Section 6 concludes, while technical details of proofs

and relevant extensions of the model are provided in the online Appendix.12

rectors and CEOs (Hallock (1997), Hwang and Kim (2009), Fracassi and Tate (2012), Kramarz and

Thesmar (2013), Schmidt (2015)), between management and workers (Bertrand and Mullainathan

(1999, 2003), Atanassov and Kim (2009), Cronqvist et al. (2009)), ‘revolving doors’ between credit-

rating agencies and firms (de Haan et al. (2015), Cornaggia et al. (2016)) and between auditors and

their clients (Lennox (2005), Lennox and Park (2007), Firth et al. (2012)).
12The online Appendix is located at http://people.bu.edu/dilipm/wkpap/index.html.
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2 Model

2.1 Technology, Preferences and Information

An appointed agent A delivers an output q to the Principal P at a personal cost

of θq. P’s return from q is V (q), a twice continuously differentiable, increasing and

strictly concave function satisfying the Inada condition (limq→0 V
′
(q) = +∞ and

limq→+∞ V
′
(q) = 0) and V (0) = 0. The realization of θ is privately observed by A. Θ,

which denotes the support of θ, constitutes an interval [θ, θ̄] ⊂ (0,∞).13 It is common

knowledge that everybody shares a common distribution function F (θ) over Θ. It has

a density function f(θ) which is continuously differentiable and everywhere positive

on Θ. It is assumed that H(θ) ≡ θ + F (θ)
f(θ)

is strictly increasing in θ.

An appointed supervisor S costlessly acquires an informative signal η ∈ Π ≡

{η1, η2, ..., ηm} about A’s cost θ with m ≥ 2.14 The realization of S’s signal is observed

by A. a(η | θ) ∈ [0, 1], which denotes the likelihood function of η conditional on θ,

is continuously differentiable and positive-valued on Θ.15 We assume that for any

η ∈ Π, a(η | θ) is not a constant function on Θ, and there are some subsets of

θ with positive measure satisfying a(η | θ) 6= a(η
′ | θ) for every η, η

′ ∈ Π. In this

sense each possible signal realization conveys information about the agent’s cost. The

information conveyed is partial, since Π is finite. The cdf over θ conditional on η is

denoted F (θ|η). Conditional on η, the density function and distribution function

are respectively f(θ | η) ≡ f(θ)a(η | θ)/p(η) and F (θ | η) ≡
∫ θ
θ
f(θ | η)dθ, where

p(η) ≡
∫ θ̄
θ
f(θ)a(η | θ)dθ. Let K ≡ Θ× Π denote the set of possible states.

13All but the last result do not depend on any specific features of Θ. More general argument is

provided in the online Appendix.
14If S incurs a fixed cost c to acquire the signal, transfers received by S must be replaced by

transfers net of this fixed cost while measuring S’s payoff. Increases in c will of course lower the

value of appointing the supervisor, but it is easy to see how the results will be modified.
15This assumes that the support of θ given η is Θ for all η, in which sense θ has full support. We

adopt this assumption purely to simplify the exposition; our results extend to the case of non-full

support, as shown in the online Appendix.
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All players are risk neutral. S’s payoff is uS = XS + tS where tS is a transfer

received by S within the coalition. A’s payoff is uA = XA + tA − θq where tA is a

transfer received by A within the coalition. P’s objective is a weighted average of

profit (Π ≡ V (q)−XA−XS) and welfare of A and S (uA + uS), with a lower relative

weight on the latter. With k ∈ (1
2
, 1] which denotes the weight on profit, and 1−k on

welfare of A and S, P’s payoff reduces to k[V (q)−(XS+XA)]+(1−k)[XS+XA−θq].16

Hence the model applies both to the organization of private firms whose owners seek

to maximize profit (k = 1), as well as regulation or taxation contexts where P is a

social planner pursuing a welfare objective that includes payoffs of A and S as well

as profit, but assigns a higher weight to the latter.17

In this economic environment, a (deterministic) allocation is denoted by

{(uA(θ, η), uS(θ, η), q(θ, η)) | (θ, η) ∈ K}.

2.2 Mechanism, Collusion Game and Equilibrium Concept

P designs a grand contract (GC) played by an appointed pair of A and S, describing

production decisions and transfers made by P in response to message sent by S and

A. We focus on deterministic mechanisms:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA (resp. MS) denotes a message set for A (resp. S).18 Message spaces

include exit options for A and S respectively (eA ∈MA, eS ∈MS), where XA = q = 0

whenever mA = eA, and XS = 0 whenever mS = eS. The set of grand contracts

satisfying these restrictions is denoted by GC. As a special case, P has the option to

16We exclude k = 1
2 because in that case the first-best can be achieved (as in Baron and Myerson

(1982)).
17The latter would be the case e.g., if P represents the interests of consumers, who need to be

taxed to finance transfers to A and S, and these taxes involve deadweight losses.
18We ignore stochastic mechanisms which randomize the allocation conditional on messages, since

they lower P’s welfare (owing to strict concavity of V ) without affecting S or A’s payoffs.
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not hire S, which we denote by No Supervision (NS), where MS is null and XS ≡ 0.

Another special case considered in Section 5 is of full delegation, where P contracts

only with either S or A, not communicating or transacting with the other party. For

instance, if P contracts only with S, A contracts only with S and becomes a pure

subcontractor — effectively the entire authority to contract with A is delegated to S.

Centralization corresponds to P contracting with both S and A, whence MA and MS

are both non-null and XA, XS assume non-zero values for some message pairs.

It will be convenient to allow for randomized message choices. Let ∆(MA), ∆(MS)

and ∆(M) denote the set of probability measures on MA, MS and M ≡ MA ×MS

respectively. For (µA, µS) ∈ ∆(MA) × ∆(MS) and µ ∈ ∆(M), we define the mixed

strategy extensions of the grand contract, which are respectively described in the

expected value of corresponding allocations, as follows:19

ḠC ≡ (X̄A(µA, µS), X̄S(µA, µS), q̄(µA, µS))

=

∫
MA

∫
MS

(XA(mA,mS), XS(mA,mS), q(mA,mS))dµA(mA)dµS(mS)

and

G̃C ≡ (X̃A(µ), X̃S(µ), q̃(µ)) =

∫
M

(XA(m), XS(m), q(m))dµ(m).

Collusion between S and A takes the form of a side contract (SC) which is un-

observed by P. The allocation of bargaining power between S and A can be chosen

(or influenced) by P, by controlling the process by which S and A are appointed. For

now, we treat the allocation of bargaining power as a parameter, and represent it

by relative welfare weights on the ex ante payoffs of S and A at the time that the

side contract is chosen by the coalition in response to the contract GC offered by P.

Formally, the side contract is selected at the ex ante stage by a fictional (uninformed)

third party acting as a mediator, who maximizes αuA + (1− α)uS (α ∈ [0, 1]), where

19In order to avoid technical complications, we assume that MA and MS are compact subsets

of finite dimensional Euclidean spaces, and (X̄A, X̄S , q̄) are continuous for each of µA and µS and

(X̃A, X̃S , q̃) for each of µ. These assumptions enable us to apply the minimax theorem (Nikaido

(1954)) and guarantee the existence of an optimal side contract.
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uA and uS respectively denote ex ante payoffs of A and S, in response to choices of α

and GC made by P. The third party does not play any budget breaking role, hence

transfers within the coalition must balance: tA + tS ≤ 0. No side payments can be

exchanged at the ex ante stage; they can only be exchanged at the ex post stage after

payments from P have been received. The side contract cannot be renegotiated at

the interim or ex post stage. It allows exchange of private messages between A and

S, which determine a side payment and joint set of messages they respectively send

to P. Since message spaces include exit as well as type reports, collusion takes the ex

ante form studied in Mookherjee et al. (2018), rather than the interim form studied

by Faure-Grimaud et al. (2003) or Celik (2009).

The stages of the game are as follows. Following the choice of GC and α by P, at

stage 1 (the ex ante stage), the third party offers a side contract to S and A. A null

side contract (NSC) could also be offered.

Next at stage 2 (the interim stage) S observes η and A observes (θ, η). If a NSC

was offered, they play the GC noncooperatively based on their prior beliefs, just as

in a game without any collusion. If a non-null side contract was offered, S and A

independently decide whether to accept it. Specifically, the game proceeds as follows.

i = A, S selects a message di ∈ Di (i = A, S) where Di is i’s message set specified

in the side-contract. Di includes i’s exit option êi from the side-contract. If dA 6= êA

and dS 6= êS, their reports to P are selected according to µ(dA, dS) ∈ ∆(M), and side

payments to A and S are determined according to functions tA(dA, dS) and tS(dA, dS)

respectively. If dA = êA and dS = êS, A and S play GC non-cooperatively.

What happens when one accepts and the other does not, depends on whether

collusion is strong or weak. If it is strong, SC specifies a reporting strategy of the

party that accepted it, which can be interpreted as a threat that party commits to.

The party that rejected it then plays a best response to this threat. Hence with strong

collusion, if di 6= êi and dj = êj (i, j = A, S), i’s message to P is selected according to
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µi(di) ∈ ∆(Mi), and the side payment to i is ti(di).
20 On the other hand, j plays GC

without any constraint imposed by the side contract, and without any side transfer.

When collusion is weak instead, the side contract ceases to apply for the sub-

sequent messages for either player when one of them exits — S and A play GC

noncooperatively.

We focus on Perfect Bayesian Equilibrium (PBE) of this strong collusion game

induced by the grand contract GC and bargaining weight parameter α.21 However,

there may be multiple PBE in a given game. We assume collusion permits parties

to coordinate the choice of a PBE, hence the third party can specify a selected PBE

to maximize the welfare-weighted sum of ex ante payoffs of S and A in the event

of multiple PBE. The resulting equilibrium concept is denoted by PBE(sc). In case

there are two PBE(sc) where the third party receives the same payoff, we assume that

P can select the more desirable one.

Feasible allocations in strong collusion can now be defined:

Definition 1 An allocation (uA, uS, q) is achievable in strong collusion with α if it

is realized in PBE(sc) under α for some GC ∈ GC.

AS(α) will denote the set of achievable allocations in strong collusion with α.

The definition of feasible allocations in weak collusion is analogous.

2.3 Interpreting Choice of Bargaining Parameter α

Here is one possible setting which describes processes by which S and A can be

appointed, specific versions of which correspond to alternative values of the parameter

α representing allocation of bargaining power between S and A. Suppose there is a

pool Ci (i = A, S) of a countably infinite number of ex-ante identical candidates for

i. Each of them has an ex-ante outside option equal to zero. P can select one of the

following three options:

20Owing to the budget balance condition, ti(di) ≤ 0.
21For definition of PBE, see Fudenberg and Tirole (1991).
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• DSS (Delegation of Selection to S): P selects S randomly from CS and delegates

the selection of A from CA to S.

• DSA (Delegation of Selection to D): P selects A randomly from CA and delegates

the selection of S from CS to A.

• CS (Centralized Selection): P selects A and S randomly from CA and CS re-

spectively.

In DSS the S appointed by P has the authority to select any A in CA, and offer

it a side contract at the ex ante stage. The chosen A can accept or reject the offer;

in the latter case, S can select any other agent and make it an offer, and so on. The

ex ante stage allows an infinite number of rounds of such side contract offers to be

made. It is easy to see that S will end up with all the bargaining power over the

choice of a side contract: the outcome must maximize S’s ex ante payoff over the set

of achievable allocations (corresponding to the particular collusion concept), which

corresponds to α = 0.

The DSA game is the same as DSS, except that the roles of S and A are inter-

changed: this corresponds to α = 1.

In CS, the S and A appointed by P negotiate a side contract. We do not formally

model the bargaining game between S and A in CS, but invoke Binmore et al. (1986)

who show specific bargaining protocols whose outcomes reduce to the maximization

of a (weighted) sum of payoffs between S and A over the set of achievable allocations.

This corresponds to an interior value of α. As Binmore et al. (1986) show, the bar-

gaining weights correspond to the exact sequence of moves and underlying frictions

in the bargaining process (such as delays) and how they affect the participants (e.g.,

their relative impatience). Alternative assumptions about these details of the bar-

gaining process cause different bargaining weights to be generated. Hence there will

exist bargaining protocols which will end up assigning a welfare weight to the agent

which is not lower than the weight assigned to the supervisor. As we shall see, the
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outcome of CS will then coincide with the outcome of DSA under strong collusion,

while DSS will generate higher expected profits to P.

3 Collusion-Proofness Principle and Collusion-Proof

Allocations

We now show that the Collusion-Proofness Principle (see Tirole (1992)) holds for

strong collusion — i.e., that the outcome of any achievable allocation (for any given

value of α) can be replicated by a PBE of the strong collusion game following choice

of some grand contract in which it is optimal for the third-party to offer a null side

contract. This is useful in characterizing the set of achievable allocations with strong

collusion by a set of individual and coalitional incentive and participation constraints.

3.1 Strong Collusion-Proof Allocations

We start by defining a class of allocations which are not vulnerable to either collusive

or individual deviations from contract acceptance and truthful reporting, and later

show that these characterize the class of all achievable allocations.

First, any achievable allocation must satisfy a set of individual incentive con-

straints, pertaining to truthful reporting of θ by A (ICA), and interim participation

constraints for A (PCA) and S (PCS) respectively:

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′
, η)

for any θ, θ
′ ∈ Θ and any η ∈ Π,

uA(θ, η) ≥ 0

for any (θ, η) ∈ K and

E[uS(θ, η) | η] ≥ 0
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for any η ∈ Π. We say that (uA, uS, q) satisfies individual incentive compatibility (IIC)

if and only if it satisfies ICA, PCA and PCS. Incentive compatibility with respect to

η reports do not have to be included since A and S observe the realization of η, so

P can elicit this information by cross-checking their respective reports if they do not

collude.

Now turn to coalitional incentive constraints. Collusion-proofness requires absence

of any scope for the third party to benefit by offering a non-null side contract. In the

context of strong collusion, threats not actually used on the equilibrium path play a

role. To capture their role, we need to go beyond standard revelation mechanisms

where each type report correspond to messages used on the equilibrium path, and

augment them with an auxiliary non-type message. Define K̄ ≡ Θ × Π̄ where Π̄ ≡

Π∪{η0}.22 The augmentation from Π to Π̄ allows one auxiliary message η0 regarding

the signal realization to be submitted. An augmentation of allocation (uA, uS, q) on

K̄ is represented by (ueA, u
e
S, q

e) with the selection of (uA(θ, η0), uS(θ, η0), q(θ, η0)).

Note that the coalition can also collectively decide to exit from GC, which is

represented by joint message e ≡ (eS, eA). In the event that e is chosen, the autarkic

allocation (XA = XS = q = 0) results. Hence the augmented message space is

K̄ ∪ {e}.

For any allocation (uA, uS, q) (defined over the type space K) and its augmented

allocation (ueA, u
e
S, q

e) (defined over the type space K̄), we can define the correspond-

ing coalitional incentive scheme by the aggregate transfers between P and the coali-

tion: (X̂e, q̂e) = (ueA + ueS + θqe, qe) which is also defined over K̄. We can also select

(X̂e(e), q̂e(e)) ≡ (0, 0). We also allow A and S to randomize their messages according

to the measure µ defined over K̄ ∪{e}. Let ∆(K̄ ∪{e}) denote the corresponding set

of measures. With a slight abuse of notation, we denote the corresponding expected

values of the coalitional incentive scheme (defined over the augmented domain) as

22This argument is based on our assumption of full support that the support of θ given η is always

Θ. The case of non-full support is provided in the online Appendix.
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(X̂e(µ), q̂e(µ)) for any given µ ∈ ∆(K̄ ∪ {e}).

The side contracting problem can be represented as follows. Given a coalitional

incentive scheme, the coalition select a joint report µ ∈ ∆(K̄ ∪ {e}) to send to P,

and then redistribute the resulting rents (ũA(θ, η), ũS(θ, η)) between A and S, i.e.,

such that ũA(θ, η) + ũS(θ, η) = X̂e(µ(θ, η)) − θq̂e(µ(θ, η)). Conditional on both A

and S agreeing to participate, this joint decision is based on a θ report submitted by

A to the third party. The side contract does not stipulate any coalitional decision

in the event that both A and S reject it. If A rejects it while S does not, the side

contract specifies a reporting strategy for S which acts as a threat. Let this strategy

be denoted by P (· | η) for each η ∈ Π, which is a probability function defined on Π̄

such that Ση′∈Π̄P (η
′ | η) = 1 and 0 ≤ P (η

′ | η) ≤ 1 for all η
′ ∈ Π̄. Here P (η

′ | η)

denotes the probability that S reports η
′

in the state where η has been observed. The

strategy of reporting truthfully in state η (i.e. P (η | η) = 1 and P (η
′ | η) = 0 for any

η
′ 6= η) is denoted by I(η). Similarly, let I(θ, η) denote the strategy of reporting the

state truthfully in state (θ, η).

Using these definitions and notations, we define strong collusion-proof (SCP) al-

location as follows.

Definition 2 Allocation (uA, uS, q) is strong collusion-proof (or SCP) for α ∈ [0, 1],

if (uA, uS, q) is IIC, and there exists an outside option payoff ω ≥ 0 for S, and an

augmentation (ueA, u
e
S, q

e) of (uA, uS, q) on K̄ with ueS(θ, η0) = ω for any θ ∈ Θ and

(ueA(θ, η0), qe(θ, η0)) satisfying (ICA) and (PCA) such that for any η ∈ Π,

(µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) = (I(θ, η), uA(θ, η), uS(θ, η), I(η))

solves problem P S(α : η):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to (µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) satisfies for all θ ∈ Θ:

(i) µ(θ, η) ∈ ∆(K̄ ∪ {e}), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <, P (.|η) ∈ ∆(Π̄)
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(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂e(µ(θ
′
, η)) for any θ

′ ∈ Θ

(iii) ũA(θ, η) + ũS(θ, η) = X̂e(µ(θ, η))− θq̂e(µ(θ, η))

(iv) E[ũS(., η) | η] ≥ ω

(v) ũA(θ, η) ≥ Ση′∈Π̄P (η
′ | η)ueA(θ, η

′
).

We provide an informal explanation of this notion. A non-null side contract is

represented by the following components. Provided both A and S have agreed to

participate at the interim stage, and following an internal type report θ by A and a

common report η of the signal by A and S, the coalition submits a message report

to P according to the strategy µ(θ, η) (satisfying the first part of condition (i)), and

then reallocates the resulting coalitional allocation via side payments to generate net

payoffs (ũA(θ, η), ũS(θ, η)) for A and S respectively (the budget balance condition

(iii)). The side contract must provide A with an incentive to report θ truthfully

within the coalition (condition (ii)).

Moreover, the side contract includes threats in the event of unilateral rejection

by either party, that ensure their participation. In order to induce S to participate

(conditional on A agreeing to participate) in the collusion, condition (iv) must be

satisfied. S’s participation is induced by a threat by A to subsequently report to P

in some way if S refuses, which ensures that S cannot attain a payoff higher than ω.

Since asymmetric information is one-sided, the standard minimax theorem ensures

that S’s minmax payoff is well-defined (given an associated grand contract GC), and

A has a reporting strategy that guarantees S cannot earn more than ω. The minmax

payoff ω of S must be non-negative since S can always exit from GC, and is effectively

chosen by P while designing the mechanism. In particular, the mechanism can be

augmented to ensure that ω is earned by S upon submitting the auxiliary message η0,

no matter what A reports. We show below that this way of designing the mechanism

entails no loss of generality. Hence ω is the outside option payoff for S.
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Finally, A’s participation (conditional on S’s participation) when both have ob-

served the signal η, is ensured by the threat of S reporting according to the strategy

P (·|η) if A refuses. A will then be a Stackelberg follower in noncooperative play of P’s

mechanism, and will select a best response to this threat. Since the augmented mech-

anism satisfies individual incentive constraints for A, it will be optimal for A to report

truthfully, no matter what S reports.23 This will generate A a payoff of ueA(θ, η
′
) if S

reports η
′
. Hence the right hand side of (v) represents the outside option payoff of A

to participating in the collusion.

Strong collusion proofness requires that the null side contract is an optimal choice

for the third party. The null side-contract is represented by a choice of a side contract

allocation which coincides with the allocation itself (i.e., there are no side-payments),

and truthful reports submitted to P. Moreover, no threats need to be used by S to

coerce A into accepting this contract, hence P (· | η) = I(η).

We now present the main result of this section.

Lemma 1 An allocation (uA, uS, q) is achievable in strong collusion with α if and

only if it is strongly collusion-proof for α.

The proof is provided in the Appendix; it extends standard arguments to the context

of strong collusion, which requires augmenting any given equilibrium allocation in

a particular way that ensures the allocation satisfies the SCP property. Conversely,

any SCP allocation can be achieved as a PBE(sc) allocation in a GC which can be

constructed on the basis of the incentive compatible augmentation of the allocation.

3.2 Comparison with Weak Collusion Proof Allocations

It is useful to compare the notion of strong collusion proofness to weak collusion-

proofness, which has been analyzed extensively in Mookherjee et al. (2018). In order

to characterize weak collusion proof (WCP) allocations, it suffices to consider reve-

23Note that A reports after observing θ, so the realization of η does not affect A’s preferences.
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lation mechanisms without any augmentation. Hence the domain of the mechanism

is K ∪ {e}. Given a revelation mechanism (uA, uS, q) defined over K ∪ {e}, and

given a mixed reporting strategy µ ∈ ∆(K ∪{e}), the associated coalitional incentive

scheme is denoted by (X̂(µ), q̂(µ)), where (X̂(θ, η), q̂(θ, η)) ≡ (uA(θ, η) + uS(θ, η) +

θq(θ, η), q(θ, η)) and (X̂(e), q̂(e)) ≡ (0, 0). Using the terminology of this paper, a

weak-collusion proof allocation can be defined as follows.24

Definition 3 (uA, uS, q) is weak collusion-proof (or WCP) for α, if (uA, uS, q) is IIC,

and for any η ∈ Π,

(µ(θ, η), ũA(θ, η), ũS(θ, η)) = (I(θ, η), uA(θ, η), uS(θ, η))

solves problem PW (α : η):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to (µ(θ, η), ũA(θ, η), ũS(θ, η)) satisfies for all θ ∈ Θ(η):

(i) µ(θ, η) ∈ ∆(K ∪ {e}), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <

(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(µ(θ
′
, η)) for any θ

′ ∈ Θ

(iii) ũA(θ, η) + ũS(θ, η) = X̂(µ(θ, η))− θq̂(µ(θ, η))

(iv) E[ũS(., η) | η] ≥ E[uS(., η) | η]

(v) ũA(θ, η) ≥ uA(θ, η).

Apart from the smaller range (K ∪ {e} instead of K̄ ∪ {e}) of the reporting strategy

µ(.), the main difference is in the participation constraints (iv) and (v). The outside

options correspond to truthful reporting in GC, which forms a noncooperative equi-

librium. Hence the outside options correspond exactly to interim payoffs associated

24In Mookherjee et al. (2018), the definition of weak collusion-proof allocation did not include the

individual participation constraints of A and S. Here we include them for purposes of comparability.
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with the allocation itself. Comparing A’s participation constraint (v) between the

two definitions, it is evident that A’s outside option in strong collusion is lower, by

an extent that can be controlled by the coalition by selecting an arbitrary reporting

strategy P (· | η) by S in the event that A refuses to collude. Moreover S’s outside

option ω in strong collusion is also lower, as it is bounded above by S’s equilibrium

payoff.25 Therefore strong collusion permits the third party to offer a wider range

of allocations, implying that strong collusion proofness is a more restrictive property

compared with weak collusion proofness.

The set of WCP allocations turns out to be independent of ex ante bargaining

power α.26 As we show in the next section, this is no longer true for SCP allocations.

The WCP notion allows the (S,A) coalition to deviate only when they can find a

Pareto improving allocation, while the SCP notion also allows deviations that reduce

the welfare of one party if it increases the welfare of the other party sufficiently.

4 The Main Results

One class of allocations that can always be attained by P irrespective of collusion

corresponds to not utilizing reports regarding the supervisor’s signal η at all. This

is the No Supervision (NS) organization, in which the class of attainable allocations

(denoted ANS) is as follows. There exists a nonnegative constant c and nonincreasing

real-valued functions (X(θ), Q(θ)) defined on Θ such that for any (θ, η):

(a) uS(θ, η) = c

(b) uA(θ, η) = X(θ)− θQ(θ) = maxθ′∈Θ[X(θ
′
)− θQ(θ

′
)].

25This follows from the requirement that the null side contract is feasible in the side contracting

problem in strong collusion.
26If an allocation is not WCP for some α ∈ (0, 1), there must exist a feasible allocation that ex

ante Pareto dominates it, so it will not be WCP for any other α
′ ∈ (0, 1). As shown in Mookherjee

et al. (2018), the argument can be extended to include corner values of α owing to the existence of

side-transfers.
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It is evident that any feasible allocation in NS is also feasible with weak or strong

collusion (irrespective of α), since it does not utilize any reports of η.

We now present our first main result.

Proposition 1 An allocation which is strong collusion proof for any α ≥ 1
2

is also

attainable in NS.

Proof of Proposition 1: Consider any allocation (uA(θ, η), uS(θ, η), q(θ, η)) which

is strong collusion proof for α ≥ 1
2
. By Lemma 1, there exists ω ≥ 0 and an incentive

compatible augmentation (ueA, u
e
S, q

e) of this allocation satisfying uS(θ, η0) = ω, such

that for any η, (I(θ, η), uA(θ, η), uS(θ, η), I(η)) solves P S(α : η). Let the corresponding

coalitional incentive scheme be (X̂e(µ), q̂e(µ)). Define

µ∗(θ) ∈ arg max
µ∈∆(K̄∪{e})

[X̂e(µ)− θq̂e(µ)]

i.e., a reporting strategy that maximizes the ex post joint payoff of A and S in every

state.

We claim that

(µ(θ, η), uA(θ, η), uS(θ, η)) = (µ∗(θ), X̂(µ∗(θ))− θq̂(µ∗(θ))− ω, ω)

is a solution of P S(α : η) for any η. Upon setting c = ω, X(θ) = X̂(µ∗(θ)) − ω and

Q(θ) = q̂(µ∗(θ)), it is evident this claim will imply that the allocation is attainable

in NS.

To establish the claim, we first derive an upper bound for the objective function in

the problem P S(α : η). From the constraint E[ũS(θ, η) | η] ≥ ω and the assumption

that α ≥ 1/2, for any reporting strategy µ(θ, η) the following is true:

E[αũA(θ, η) + (1− α)ũS(θ, η) | η]

= E[α{X̂e(µ(θ, η))− θq̂e(µ(θ, η))}+ (1− 2α)ũS(θ, η) | η]

≤ αE[X̂(µ∗(θ))− θq̂(µ∗(θ)) | η] + (1− 2α)ω.
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This upper bound can be attained in P S(α : η) by choosing µ(θ, η) = µ∗(θ),

ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω

and ũS(θ, η) = ω for any θ ∈ Θ, and P (η0 | η) = 1 and P (η
′ | η) = 0 for any η

′ 6= η0.

This allocation satisfies A’s participation constraint (v), since

ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω

≥ X̂e(θ, η0)− θq̂e(θ, η0)− ueS(θ, η0) = ueA(θ, η0).

As the other constraints are obviously satisfied, the claim is established.

When A has at least as much bargaining power ex ante as S, it is optimal for the

coalition to pin S down to her (constant) minmax payoff and provide all residual rents

to A. Reports by the coalition are then chosen to maximize A’s payoffs, implying that

P cannot derive any benefit from appointing S. The one-sided asymmetric information

within the coalition implies absence of any frictions in collusion when the informed

party A has more bargaining power than S. For P to derive some value from appointing

S, she has to exploit some frictions in coalitional bargaining.

Now consider the case where S has higher bargaining weight than A. We impose

some structure on A’s type space and S’s information. One condition is that S should

not be ‘too well informed’ about A’s cost; for instance in the extreme case where S is

perfectly informed about θ, there will again be no frictions in coalitional bargaining

and appointing S will not yield any value to P. For the rest of this section, we focus

on the context (denoted Context C hereafter ) with two possible signal realizations

η1, η2 satisfying a Monotone Likelihood Ratio Property (MLRP) such that a(η1 | θ)

is decreasing (while a(η2 | θ) is increasing) in θ.

Our main result is that in this context, P can derive positive value from appointing

S if S has greater bargaining weight than A, for a generic set of information structures.

Given the previous result, this implies that (generically) P is better off when S has

strictly higher bargaining weight than A, compared to when this is not true.
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Proposition 2 Consider Context C and assume α ∈ [0, 1/2). If there do not exist

(ρ, ν, γ) ∈ <3 such that a(η1 | θ) = ρ + νF (θ)γ for all θ ∈ Θ, P can attain a strictly

higher expected payoff by appointing S, compared to not appointing S.

As the proof is relegated to the Appendix, we outline the main steps in the argu-

ment here.

First we show that in the problem P S(α : η), S’s participation constraint is never

binding for α ∈ [0, 1/2).

Lemma 2 S’s participation condition E[ũS(θ, η) | η] ≥ ω in P S(α : η) is not binding

for any α ∈ [0, 1/2).

The reason for this is as follows. If the lemma is false, the solution to the relaxed ver-

sion of problem P S(α : η) when S’s participation constraint is dropped, must violate

this constraint, implying that S ends up with an expected payoff below his minmax

payoff ω. The coalition has the option of switching to the ‘A-residual-claimant’ (ARC)

side-contract (which is optimal for the coalition when A has more bargaining power,

and has been used in the proof of Proposition 1) in which S receives a constant payoff

of ω and A receives the rest of the aggregate coalitional rent. ARC induces ex post

efficient reporting strategies, thereby (weakly) expanding the aggregate rent in every

state. Given α < 1
2
, the third party would not want to deviate to the ARC side-

contract only if A appropriates a disproportionate share of the increase in coalitional

rents. This implies that A must be better off in the ARC side-contract. But S is

also better off in this side contract. It must therefore Pareto dominate the supposed

solution, a contradiction.

We can therefore proceed to study problem P S(α : η) in which S’s participation

constraint is dropped. P augments the mechanism in the manner described in Defini-

tion 2, where the auxiliary message η0 is identified with the high-cost signal report η2

(i.e., results in the same outcomes). Hence we can confine attention to two possible
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signal reports η1, η2 for A and S. If both report η2, P selects the optimal allocation

(uNSA (θ), uNSS (θ), qNS(θ))

in NS satisfying

uNSA (θ) =

∫ θ̄

θ

q̄(y)dy

uNSS (θ) = 0

qNS(θ) = q̄(θ) ≡ arg max
q

[V (q)−H(θ)q],

where H(θ) ≡ θ + 2k−1
k

F (θ)
f(θ)

and k denotes the weight assigned to P’s profit.27 Then

P ’s optimal payoff WNS in NS is E[V (q̄(θ))−H(θ)q̄(θ)].

When both S and A report the low-cost signal η1, P selects the following variation

on the optimal allocation in NS. Let β ≡ 1−2α
1−α , which lies in the interval (0, 1). Let

Λ(·) : Θ→ < be such that (i) Λ(θ) is non-decreasing in θ with Λ(θ) = 0 and Λ(θ̄) = 1,

and (ii) the function zβ(θ) defined by

zβ(θ) = θ + β
F (θ | η1)− Λ(θ)

f(θ | η1)

is nondecreasing. P can then select the output schedule q(θ, η1) = q̄(zβ(θ)). Below we

shall describe how this Λ function can be chosen in more detail. Λ(·) can be thought

of as a variation on the cdf F (. | η1). zβ(θ) exceeds or falls below θ according as Λ(θ)

is smaller or larger than F (θ | η1), implying in turn that q(θ, η1) is smaller or larger

than qNS(θ). Given such a variation following reports of a low-cost signal, the payoffs

are altered as follows:

uA(θ, η1) =

∫ θ̄

θ

q̄(zβ(y))dy

uS(θ, η1) = X̄(zβ(θ))− θq̄(zβ(θ))−
∫ θ̄

θ

q̄(zβ(y))dy

q(θ, η1) = q̄(zβ(θ))

where

X̄(z) ≡ zq̄(z) +

∫ θ̄

z

q̄(y)dy.

27See Baron and Myerson (1982).
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If both S and A report η2, the same allocation as in NS is selected:

(uA(θ, η2), uS(θ, η2), q(θ, η2)) = (uNSA (θ), 0, qNS(θ)).

When S and A submit different reports ηS 6= ηA, A is offered the same allocation

as in the case where the submitted η reports are ηS for both S and A, while S receives

a payment equal to what he would have received if their η reports had been ηA for

both S and A, minus a large positive number. This will ensure that the side contract

will always involve submission of a common report by S and A, besides individual

incentive compatibility for A to report θ truthfully.

The aim is to construct Λ(·) with the properties stated above, such that the

resulting allocation is SCP and improves P ’s payoff in state η1:

E[V (q̄(zβ(θ)))− 2k − 1

k
X̄(zβ(θ))− 1− k

k
θq̄(zβ(θ)) | η1]

> E[V (qNS(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θqNS(θ) | η1]. (1)

Since the allocation is unchanged in state η2, P will achieve a higher payoff than in

NS.

The proof shows that such a variation is indeed SCP provided the following two

conditions are satisfied:

(a)E[uA(θ, η1)− uA(θ, η2) | η2] ≥ 0

(b)
∫ θ̄
θ

[uA(θ, η2)− uA(θ, η1)]dΛ(θ) ≥ 0.

Intuitively, these two conditions (in combination with the choice of allocation for A

corresponding to conflicting η reports as specified above) ensure that a threat by S

to report a different signal from the one actually observed in GC if collusion breaks

down, does not lower A’s expected payoff. S is unable to coerce A to accept a lower

payoff in the collusive agreement, compared to a null side contract, thereby ensuring

that the allocation is SCP for α.
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Conditions (a) and (b) can be rewritten as follows:

E[{q̄(zβ(θ))− q̄(θ)}F (θ | η2)

f(θ | η2)
| η2] ≥ 0 (2)

and

E[(zβ(θ)− hβ(θ | η1))(q̄(zβ(θ))− q̄(θ)) | η1] ≥ 0 (3)

where hβ(θ | η) = θ + β F (θ|η)
f(θ|η)

.28

Consider a small variation of the zβ(θ) around θ. The corresponding point-wise

variations in the left-hand-sides of (1)-(3) are as follows29

[V
′
(q̄(z))q̄

′
(z)− 2k − 1

k
X̄

′
(z)− 1− k

k
θq̄

′
(z)]z=θf(θ | η1) = q̄

′
(θ)

2k − 1

k

F (θ)

f(θ)
f(θ | η1),

(4)

[q̄
′
(z)

F (θ | η2)

f(θ | η2)
]z=θf(θ | η2) = q̄

′
(θ)F (θ | η2), (5)

and

[(q̄(z)− q̄(θ)) + (z − hβ(θ | η1))q̄
′
(z)]z=θf(θ | η1) = −βq̄′(θ)F (θ | η1). (6)

A necessary and sufficient condition for a variation which locally preserves the

value of the left-hand-sides of (2) and (3), while increasing the value of the left-hand-

side of (1), is that F (θ)
f(θ)

f(θ | η1) does not lie in the space spanned linearly by F (θ | η2)

and −F (θ | η1), which turns out to be equivalent to the generic property stated in

Proposition 2.

5 Consequences of Full Delegation of Contracting

Authority to One Party

We now show that to realize some benefit from engaging a supervisor, it is essential

for P to personally contract with both S and A. Otherwise she would contract with

28We use E[
∫ θ̄
θ
q̄(y)dy | η] = E[F (θ|η)

f(θ|η) q̄(θ) | η] to derive these equations.
29We use V

′
(q̄(z)) = H(z) to obtain (4).
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only one of them, and effectively fully delegate authority to subcontract with the

other. Call an organization where P contracts only with S (resp. A) delegation of

contract to S (DCS) (resp. delegation of contract to A (DCA)). DCS is a special case

of GC with MA = φ and XA = 0, while DCA is a special case with MS = φ and

XS = 0. P could continue to retain control over the appointment process, thereby

determining α, which determines the objective of the third party that designs the

subcontract between A and S.

Consider first DCS, where P contracts only with S. If α ≥ 1/2, the same argument

employed in Proposition 1 shows that there would be no value from employing S. So

consider the case where α < 1/2, If S exits from the side contract, there is no scope

for A to deliver the good to P owing to the lack of a direct contract between P

and A. Hence in that event, there will be no production or payments made by P

to either S or A, implying both will attain a payoff of zero. For the same reason

there will be no production either if A exits from the side contract. Hence outside

options for both S and A in the side contract are zero. Moreover, with XA ≡ 0,

we have uS = XS − uA − θq, so the weighted average of S and A’s payoff reduces

to αuA + (1 − α)(XS − uA − θq) = (1 − α)[XS − 1−2α
1−α uA − θq]. Hence the optimal

subcontract in DCS solves the following problem:

maxE[X̃S(µS(θ, η))− θq̃(µS(θ, η))− 1− 2α

1− α
uA(θ, η)]

subject to µS(θ, η) ∈ ∆(MS) for all (θ, η),

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q̃(µS(θ
′
, η))

for any θ, θ
′ ∈ Θ and any η,

uA(θ, η) ≥ 0

for all (θ, η) and

E[X̃S(µS(θ, η))− θq̃(µS(θ, η))− uA(θ, η) | η] ≥ 0
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for all η. As we saw earlier, no incentive constraint for η is needed, since P can

elicit this information by cross-checking S and A’s reports. The third and the fourth

inequalities are the participation constraints of A and S respectively based on zero

outside option payoffs.

P’s problem of designing a contract for S then reduces to the problem of contract-

ing with a single supplier whose unit supply cost is θ + 1−2α
1−α

F (θ|η)
f(θ|η)

. Since α < 1
2
, this

exceeds θ for almost all values of θ. P would then earn higher profit by dispensing

with S and contracting directly with A, whose unit cost is almost surely lower.30 For

the same reason as in weak collusion (Mookherjee et al. (2018, Proposition 1)), full

delegation of authority to S to contract with A results in double marginalization of

rents, which is dominated by the organization NS which does not employ any S.

Next, consider DCA where P does not contract directly with S. With MS = φ and

XS = 0, S always receives zero payoff by rejecting a subcontract. Moreover, S does

not have any ability to penalize A in the event that A exits from the side contract in

strong collusion. Hence in the event of either exiting from the subcontract, GC will

involve A contracting unilaterally with P according to GC in the absence of any S:

A will select a report mA to maximize XA(mA)− θq(mA), while S will receive a zero

payoff. These payoffs are independent of η. There is then no scope for collusion, and

S’s information does not help create any value in the organization, regardless of α.

These arguments are summarized in the following proposition.

Proposition 3 DCA and DCS are weakly dominated by the organization NS where

S is not employed, regardless of α.

30Formally, applying standard methods (Myerson (1981), Baron and Myerson (1982)), the optimal

subcontract selects a message µS which maximizes X̃S(µS) − ĥα(θ | η)q̃(µS) where ĥα(θ | η) is a

transformation of θ+ 1−2α
1−α

F (θ|η)
f(θ|η) by the ironing rule based on F (θ | η). Then ĥα(θ | η) > θ for every

θ > θ, and we can apply the argument in Mookherjee et al. (2018, Appendix).
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6 Conclusion

In summary, prospects of strong collusion between an informed agent and less-well-

informed supervisor can rationalize asymmetric authority granted to the latter over

the appointment process. Otherwise if the agent had at least as much bargaining

power as the supervisor, the optimal side contract pushes the supervisor down to her

minmax payoff and allows the agent to extract all the residual rents. Collusion would

then be subject to no frictions, with reports chosen to maximize ex post payoffs of

the agent, thereby rendering the supervisor redundant. Hence for the Principal to

derive some benefit from the supervisor, it is essential that the supervisor has the

upper hand at the side-contract design stage. This ensures collusion will be subject

to frictions resulting from asymmetric information, inducing trade-offs between the

supervisor’s rent and the agent’s incentives. By contrast, when collusion is weak or

absent, the allocation of control authority between supervisor and agent is irrelevant.

We also showed the importance of P contracting directly with both parties, instead

of delegating choice of the agent’s contract to the supervisor. Hence the optimal

organizational design blends centralized control over contracts with some delegation

of authority over the appointment process.

Some open questions remain. In the context of continuously distributed cost of the

agent, we showed that the Principal can benefit from the presence of the supervisor

if the latter’s signal had only two possible realizations. We do not yet know if this

result extends when the signal can take a finite number of realizations. We also do

not know if the Principal’s payoff is monotone with respect to the allocation of welfare

weights over the range where the supervisor has a higher weight. However (as shown

in the online Appendix) such a monotonicity result does obtain in a variant of the

model with three possible cost types and a partition information structure akin to the

model of Celik (2009). It would be interesting to know if this monotonicity property

obtains more generally.
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Appendix: Proofs

Proof of Lemma 1

Proof of Necessity

Step 1: Here we define some notations. Consider any PBE(sc) allocation resulting

from some grand contract GC. For this GC, define wS(GC) as the minmax value of

the S’s payoff:

wS(GC) ≡ min
µA∈∆(MA)

max
µS∈∆(MS)

X̄S(µA, µS).

Since ∆(MA),∆(MS) (endowed with the weak convergence topology) are compact

and X̄S is continuous for µA and µS, we can apply the minimax theorem (Nikaido

(1954)) to infer that there exists (µ
A
, µ̄S) which satisfies

wS(GC) = X̄S(µ
A
, µ̄S) = min

µA∈∆(MA)
max

µS∈∆(MS)
X̄S(µA, µS)

= max
µS∈∆(MS)

min
µA∈∆(MA)

X̄S(µA, µS).

where µ
A

is A’s minmax strategy, and µ̄S is S’s maxmin strategy. Since S always has

the option to exit from the grand contract, wS(GC) ≥ 0 for any GC.

Given grand contract GC, a reporting strategy for S in this GC: µS(η) ∈ ∆(MS)

and a type of A: θ ∈ Θ, define

ûA(θ, µS(η), GC) ≡ max
µA∈∆(MA)

X̄A(µA, µS(η))− θq̄(µA, µS(η)),
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which is interpreted as the A’s maximum payoff in the event that A is of type θ and

exits from the side-contract (whence S chooses µS(η)).

Step 2: We characterize allocations achievable for a given grand contract GC. Let

(uA, uS, q) denote the allocation achieved as a PBE(sc) outcome in GC, where the

third party selects a side contract SC. In this step, we show that for any η and for

µ(θ, η) which satisfies q(θ, η) = q̃(µ(θ, η)) for all θ ∈ Θ,

(ũA(θ, η), ũS(θ, η), µ̃(θ, η)) = (uA(θ, η), uS(θ, η), µ(θ, η)),

associated with the selection of some µ̃S(η) = µS(η), solves the following problem

P S(α : η,GC):

maxE[αũA(θ, η) + (1− α)ũS(θ, η) | η]

subject to the constraint that for some µ̃S(η) ∈ ∆(MS) and for all θ ∈ Θ(η):

(i) µ̃(θ, η) ∈ ∆(MA ×MS), ũA(θ, η) ∈ <, ũS(θ, η) ∈ <

(ii) ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̃(µ̃(θ
′
, η)) for any θ

′ ∈ Θ

(iii) ũA(θ, η) ≥ ûA(θ, µ̃S(η), GC)

(iv) E[ũS(θ, η) | η] ≥ wS(GC) and

(v) X̃A(µ̃(θ, η)) + X̃S(µ̃(θ, η))− θq̃(µ̃(θ, η)) = ũA(θ, η) + ũS(θ, η).

Note that this problem P S(α : η,GC) includes S’s threat µ̃S(η) in the event of A’s

non-participation as a choice variable. So the set of control variables can be written

as (ũA(θ, η), ũS(θ, η), µ̃(θ, η), µ̃S(η)).

Note also that the problem P S(α : η,GC) refers to the given GC, and reporting

strategies of the players are confined to mixed strategies available in GC. In later steps,

the mechanism will be augmented so that the scope of collusion will be widened, as

players will then be able to select mixed strategies in augmented message spaces.

Proof of Step 2: Since (uA, uS, q) is an achievable allocation, it is straightforward to

check that it is feasible in the above problem. If (uA(θ, η), uS(θ, η), µ(θ, η), µS(η))
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does not solve problem P S(η : α,GC) for some η, we shall now show that there exists

another side-contract and a continuation equilibrium in which the third party can

achieve a higher payoff, which will contradict the hypothesis that the allocation re-

sulted from a PBE(sc) of GC. Suppose that for some η, the solution of P (η : α,GC) is

instead some (ũ∗A(θ, η), ũ∗S(θ, η), µ̃∗(θ, η), µ̃∗S(η)) 6= (uA(θ, η), uS(θ, η), µ(θ, η), µS(η)).

Construct a side-contract SC
′

as follows. If both S and A accept it, the third

party requests a report from A of (θA, ηA) ∈ K, and report from S of ηS ∈ Π. The

report to P is subsequently selected according to µ̃∗(θA, ηS), while side-transfers are

selected as follows.

tA(θA, ηA, ηS) = ũ∗A(θA, ηS)− [X̃A(µ̃∗(θA, ηS))− θAq̃(µ̃∗(θA, ηS))]− L(ηA, ηS)

and

tS(θA, ηA, ηS) = ũ∗S(θA, ηA)− X̃S(µ̃∗(θA, ηS))

where L(ηA, ηS) is zero for ηA = ηS and a large positive number for ηA 6= ηS. If A

were to accept and S were to reject SC
′
, A would threaten to play µ

A
. Conversely,

if S accepts and reports ηS while A rejects SC
′
, S threatens to play µ̃∗S(ηS). It

is easy to check that there exists a continuation equilibrium where nobody rejects

SC
′

on the equilibrium path, and both A and S report truthfully to the third party,

resulting in the allocation (ũ∗A(θ, η), ũ∗S(θ, η)). The third party attains a higher payoff,

contradicting the hypothesis that we started with a PBE(sc), completing the proof

of Step 2.

The statement of Step 2 provides one characterization of allocations achievable

for a given grand contract GC. Our aim is to find a more general characterization

which does not depend on GC. This is the purpose of the following step.

Step 3: We continue with (uA, uS, q), an achievable allocation in GC in strong col-

lusion with α. Evidently (uA, uS, q) is IIC. Consider an augmentation (ueA, u
e
S, q

e) of

(uA, uS, q) to the domain K̄ with the selection of

(ueA(θ, η0), ueS(θ, η0), qe(θ, η0)) ≡ (ûA(θ, µ̄S, GC), ω, q̄(µA(θ, µ̄S), µ̄S))
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where µA(θ, µ̄S) maximizes X̄A(µA, µ̄S) − θq̄(µA, µ̄S) subject to µA ∈ ∆(MA), and

ω ≡ wS(GC). By the definition, ω ≥ 0 and (ueA(θ, η0), qe(θ, η0)) satisfies (ICA) and

(PCA).

Now consider the problem P S(α : η) defined by the augmented allocation (ueA, u
e
S, q

e).

Note that this problem differs from the one considered in Step 2 (P S(α : η,GC)),

as it no longer refers to the original GC, and the coalition selects reports from the

augmented message space K̄ ∪ {e} rather than MA ×MS.

We show in this step that

(µ(θ, η), ũA(θ, η), ũS(θ, η), P (· | η)) = (I(θ, η), uA(θ, η), uS(θ, η), I(η))

solves problem P S(α : η).

It is straightforward to check that (I(θ, η), uA(θ, η), uS(θ, η), I(η)) satisfies all con-

straints of P S(α : η), and generates a payoff for the third party of

E[αuA(θ, η) + (1− α)uS(θ, η) | η].

Suppose that there exists some alternative choice of controls

(µ∗(θ, η), u∗A(θ, η), u∗S(θ, η), P ∗(· | η))

which is feasible in P S(α : η), such that

E[αu∗A(θ, η) + (1− α)u∗S(θ, η) | η] > E[αuA(θ, η) + (1− α)uS(θ, η) | η].

We show that in such a case there would exist µ̃(θ, η) : K → ∆(MA×MS), ũA(θ, η), ũS(θ, η), µ̃S(η)

which would be feasible in P S(α : η,GC) and generate a higher value in that prob-

lem compared to (µ(θ, η), uA(θ, η), uS(θ, η), µS(η)), thereby contradicting the result

established at Step 2.

µ∗(θ, η), which is a probability measure on K̄ ∪ {e}, divides its weight between

reports either in K∪{e} or satisfying η = η0. The former event corresponds to an out-

come of GC that results when S and A’s reports are chosen from MS and MA respec-

tively. And the latter event corresponds (by specification of (ueA(θ, η0), ueS(θ, η0), qe(θ, η0)))
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to an outcome of GC resulting when S reports µ̄S ∈ ∆(MS) and A reports according

to µA(θ, µ̄S) ∈ ∆(MA). In this case,

q̄(µA(θ, µ̄S), µ̄S) = qe(θ, η0)

while

X̂e(θ, η0) = ω + X̄A(µA(θ, µ̄S), µ̄S) ≤ X̄S(µA(θ, µ̄S), µ̄S) + X̄A(µA(θ, µ̄S), µ̄S)

since ω is S’s minmax payoff in GC. Hence the outcome of µ∗(θ, η) in P S(α : η) can be

attained by the coalition as an outcome of GC resulting from some reporting strategy

µ̃(θ, η) ∈ ∆(MA ×MS) that satisfies

X̃A(µ̃(θ, η)) + X̃S(µ̃(θ, η)) ≥ X̂e(µ∗(θ, η))

and

q̃(µ̃(θ, η)) = q̂e(µ∗(θ, η)).

Let µS(η) denote the optimal threat chosen by S in the event that A does not

participate in the side-contract, in the solution to problem P S(α : η,GC). Let us

select µS(η0) ≡ µ̄S. Then ueA(θ, η) ≥ ûA(θ, µS(η), GC) for any η ∈ Π̄. Define µ̃S(η) ∈

∆(MS) as the composite of the measures µS(η
′
) and P ∗(η

′ | η). Then by the definition

of ûA(θ, µS, GC),

Ση′∈Π̄P
∗(η

′ | η)ueA(θ, η
′
) ≥ Ση′∈Π̄P

∗(η
′ | η)ûA(θ, µS(η

′
), GC) ≥ ûA(θ, µ̃S(η), GC).

Since u∗A(θ, η) ≥ Ση′∈Π̄P
∗(η

′ | η)ueA(θ, η
′
), it follows that u∗A(θ, η) ≥ ûA(θ, µ̃S(η), GC).

Defining ũA(θ, η) ≡ u∗A(θ, η) and

ũS(θ, η) ≡ X̃A(µ̃(θ, η)) + X̃S(µ̃(θ, η))− θq(µ̃(θ, η))− u∗A(θ, η),

we infer that (ũA(θ, η), ũS(θ, η), µ̃(θ, η), µ̃S(η)) is feasible in the problem P S(α : η,GC),

and ũS(θ, η) ≥ u∗S(θ, η). Hence it generates a higher payoff for the third party than

E[αuA(θ, η) + (1−α)uS(θ, η) | η], and we obtain a contradiction to the result of Step
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2. So (I(θ, η), uA(θ, η), uS(θ, η), I(η)) must be a solution of P S(α : η), establishing

the necessity of the SCP property.

Proof of Sufficiency: Let (ueA, u
e
S, q

e) be an augmentation of (uA, uS, q) for which

the latter satisfies the SCP property. By Definition 3, ueS(θ, η0) = ω for any θ ∈ Θ

and (ueA(θ, η0), qe(θ, η0)) satisfies (ICA) and (PCA). P can construct a grand contract

GC as follows:

(XA(mA,mS), XS(mA,mS), q(mA,mS) : MA,MS)

where MA = K ∪ {eA}, MS = Π̄ ∪ {eS} and

• for any (θ, η) ∈ K and η
′ ∈ Π, choose (XA((θ, η), η

′
), XS((θ, η), η

′
), q((θ, η), η

′
)) =

(ueA(θ, η
′
) + θqe(θ, η

′
), ueS(θ, η)− L(η, η

′
), qe(θ, η

′
)) where L(η, η

′
) = 0 for η = η

′

and L > 0 (and sufficiently large) for η 6= η
′

• (XA((θ, η), eS), XS((θ, η), eS), q((θ, η), eS)) = (ueA(θ, η0) + θqe(θ, η0), 0, qe(θ, η0)).

• (XA((θ, η), η0), XS((θ, η), η0), q((θ, η), η0)) = (ueA(θ, η0) + θqe(θ, η0), ω, qe(θ, η0)).

• (XA(eA,mS), XS(eA,mS), q(eA,mS)) = (0, 0, 0) for any mS 6= η0

• (XA(eA, η0), XS(eA, η0), q(eA, η0)) = (0, ω, 0).

It is easy to check that (µA, µS) = ((θ, η), η) is a non-cooperative equilibrium of GC,

and S’s minmax payoff in GC is ω. The SCP property of (uA, uS, q) implies there is

no room for the third party to improve its payoff by offering a deviating side-contract,

so (uA, uS, q) is realized as the outcome of a PBE(sc) under GC.

Proof of Proposition 2

We start with the proof of Lemma 2.

Proof of Lemma 2: Suppose that for some η, (I(θ, η), uA(θ, η), uS(θ, η), I(η)) does not

solve the relaxed version of P S(α : η) where the constraint E[ũS(θ, η) | η] ≥ ω is
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dropped. It implies E[ũrS(θ, η) | η] < ω in the optimal solution of the relaxed problem

represented by

(µr(θ, η), ũrA(θ, η), ũrS(θ, η), P r(· | η)).

As shown in the proof of Proposition 1, side contract S̃C defined as follows is

feasible in P S(α : η), hence also in the relaxed problem:

• µ̃(θ, η) = µ∗(θ) which maximizes X̂e(µ)− θq̂e(µ) subject to µ ∈ ∆(K̄ ∪ {e})

• P (η0 | η) = 1 and P (η
′ | η) = 0 for any η

′ 6= η0

• ũA(θ, η) = X̂e(µ∗(θ))− θq̂e(µ∗(θ))− ω (denoted by u+
A(θ, η) in later part)

• ũS(θ, η) = ω

Hence

E[αũrA(θ, η) + (1− α)ũrS(θ, η) | η]

= E[(1− α){X̂e(µr(θ, η))− θq̂e(µr(θ, η))} − (1− 2α)ũrA(θ, η) | η]

≥ E[(1− α){X̂e(µ∗(θ))− θq̂e(µ∗(θ))} − (1− 2α)u+
A(θ, η) | η].

But since E[X̂e(µ̃r(θ, η)) − θq̂e(µ̃r(θ, η)) | η] ≤ E[X̂e(µ∗(θ)) − θq̂e(µ∗(θ)) | η] by the

definition of µ∗(θ), α < 1
2

implies that E[u+
A(θ, η) | η] ≥ E[ũrA(θ, η) | η]. This implies

that the side contract S̃C creates a Pareto improvement over the solution to the

relaxed problem, yielding a strictly higher value of the third party’s expected payoff,

a contradiction.

The next step in the proof of Proposition 2 is to consider the specific mechanism

described in the text; we establish this allocation is SCP provided conditions (a) and

(b) are satisfied.

Owing to the previous lemma, we can drop S’s participation constraint (iv) from

problem P S(α : η). So consider the relaxed problem denoted by P̄ S(α : η), for this

allocation defined on Θ× {η1, η2}, which selects (µ(θ, η), ũA(θ, η), p(η)) to maximize

E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η]
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subject to µ(θ, η) ∈ ∆(Θ× {η1, η2} ∪ {e}) and p(η) ∈ [0, 1],

ũA(θ, η) ≥ p(η)uA(θ, η) + (1− p(η))uA(θ, η
′
)

and

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(µ(θ
′
, η))

for any θ, θ
′ ∈ Θ.

Specifically, we aim to show that (µ(θ, η), ũA(θ, η), p(η)) = ((θ, η), uA(θ, η), 1)

solves P̄ S(α : η), if

(a)E[uA(θ, η1)− uA(θ, η2) | η2] ≥ 0

(b)
∫ θ̄
θ

[uA(θ, η2)− uA(θ, η1)]dΛ(θ) ≥ 0.

Upon choosing Λ(., η1) ≡ Λ(.) and Λ(., η2) ≡ F (.|η2), we can unify conditions (a)

and (b) into the following single condition∫ θ̄

θ

[uA(θ, η
′
)− uA(θ, η)]dΛ(θ, η) ≥ 0

when η, η
′ ∈ {η1, η2} and η 6= η

′
.

Since Λ(θ, η) is non-decreasing in θ, this condition implies that

0 ≤
∫ θ̄

θ

[ũA(θ, η)− p(η)uA(θ, η)− (1− p(η))uA(θ, η
′
)]dΛ(θ, η)

≤
∫ θ̄

θ

[ũA(θ, η)− uA(θ, η)]dΛ(θ, η)

for any (ũA(θ, η), p(η)) satisfying constraints of P̄ S(α : η). This result can be used to

obtain an upper bound of the objective function in P̄ S(α : η). First note that

E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η]

≤ E[X̂(µ(θ, η))− θq̂(µ(θ, η))− βũA(θ, η) | η] + β

∫ θ̄

θ

[ũA(θ, η)− uA(θ, η)]dΛ(θ, η)

= E[X̂(µ(θ, η))− zβ(θ, η)q̂(µ(θ, η)) | η]− β
∫ θ̄

θ

uA(θ, η)dΛ(θ, η).
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The second equality uses the fact that

ũA(θ, η) = ũA(θ̄, η) +

∫ θ̄

θ

q̂(µ̃(y, η))dy.

Next, note that µ̃ = (θ, η) maximizes X̂(µ̃) − zβ(θ, η)q̂(µ̃). This implies that an

upper bound to the value of the objective function is given by :31

E[X̄(zβ(θ, η))− θq̄(zβ(θ, η))− βuA(θ, η) | η].

But this is attainable with (µ(θ, η), ũA(θ, η), p(η)) = ((θ, η), uA(θ, η), 1) (which sat-

isfies all constraints) in P̄ S(α : η), implying that it is the optimal solution of this

problem. This implies the allocation is SCP.

Let Z(η1) denote the set of non-decreasing functions z : Θ→ < such that z(θ) =

θ + β F (θ|η1)−Λ(θ)
f(θ|η1)

for some Λ(θ) which is non-decreasing in θ with Λ(θ) = 0 and

Λ(θ̄) = 1. In order to prove Proposition 2, it suffices to construct zβ(·) ∈ Z(η1)

where (1), (2) and (3) are satisfied at the same time. The rest of the proof is devoted

to this construction.

Step 1: Under the hypothesis of Proposition 2, there exist (λ1, λ2) and closed in-

tervals on Θ (Θ1 = [θ1, θ̄1], Θ2 = [θ2, θ̄2] and Θ3 = [θ3, θ̄3]) such that θ < θi < θ̄i <

θi+1 < θ̄i+1 < θ̄ (i = 1, 2), and the sign of

F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)

alternates among the interiors of Θ1, Θ2 and Θ3. The proof is provided in the online

Appendix. In later analysis, our focus is restricted to the case that there exists (λ1, λ2)

such that
F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)

31By definition of (X̂(µ), q̂(µ)),

X̂(θ, η)− zβ(θ, η)q̂(θ, η) = X̄(zβ(θ, η))− zβ(θ, η)q̄(zβ(θ, η)).
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is negative on the interior of Θ1 and Θ3, and positive on the interior of Θ2. We can

adopt the same analysis for the opposite case.

Step 2: For any closed interval [θ
′
, θ

′′
] ⊂ Θ such that θ < θ

′
< θ

′′
< θ̄, there exists

δ > 0 so that z(·) ∈ Z(η1) for any function z(·) satisfying the following properties:

(i) z(·) is increasing and differentiable with |z(θ)− θ| < δβ and |z′
(θ)− 1| < δβ for

any θ ∈ Θ

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ

′′
].

The proof is provided in the online Appendix.

Step 3: Here we construct zβ(·) ∈ Z(η1) where (1) − (3) are satisfied at the same

time. To simplify the notation, we use z(·) instead of zβ(·) in later argument. The

construction of z(θ) has the following four steps.

(i) Construction of z̄(·)

First let us define Φ(z, θ) by

Φ(z, θ) ≡ [H(z)− 2k − 1

k
z − (1− k)

k
θ +

(2k − 1)λ2

kβ
(z − hβ(θ | η1)) +

2k − 1

k
λ1
F (θ | η2)

f(θ | η1)
]q̄

′
(z)

+
(2k − 1)λ2

kβ
[q̄(z)− q̄(θ)]

where hβ(θ | η) ≡ θ + β F (θ|η)
f(θ|η)

. With z = θ,

Φ(θ, θ) ≡ 2k − 1

kf(θ | η1)
[
F (θ)

f(θ)
f(θ | η1) + λ1F (θ | η2)− λ2F (θ | η1)]q̄

′
(θ).

Since Φ(z, θ) is differentiable in z and θ, the statement in Step 1 guarantees the

existence of z̄(θ) such that (i) z̄(θ) is differentiable on Θ, (ii) z̄(θ) > θ on (θ1, θ̄1) and

Φ(z, θ) > 0 for any z ∈ [θ, z̄(θ)] and any θ ∈ (θ1, θ̄1), (iii) z̄(θ) < θ on (θ2, θ̄2) and

Φ(z, θ) < 0 for any z ∈ [z̄(θ), θ] and any θ ∈ (θ2, θ̄2), (iv) z̄(θ) > θ on (θ3, θ̄3) and

Φ(z, θ) > 0 for any z ∈ [θ, z̄(θ)] and any θ ∈ (θ3, θ̄3), and (v) z̄(θ) = θ elsewhere.

(ii) Construction of z1(·)

41



For θ̂1 ∈ (θ̄1, θ2) and θ̂2 ∈ (θ̄2, θ3) (chosen arbitrary), ρ1 and ρ2 are defined by

ρ1 ≡
F (θ̂1 | η2)

F (θ̂1 | η1)

and

ρ2 ≡
F (θ̂2 | η2)

F (θ̂2 | η1)
.

Then define

Ψi(z, θ) ≡ [
F (θ | η2)

f(θ | η1)
+
ρi
β

(z − hβ(θ | η1))]q̄
′
(z) +

ρi
β

(q̄(z)− q̄(θ)).

z1(θ) is defined such that Ψ1(z1(θ), θ) = 0 is satisfied. There always exists such a z1(θ),

since for each θ, Ψi(z, θ) is continuous for z and is negative for z > max{θ, hβ(θ |

η1) − βF (θ|η2)
ρ1f(θ|η1)

} and is positive for z < min{θ, hβ(θ | η1) − βF (θ|η2)
ρ1f(θ|η1)

}. It also implies

that z1(θ) < hβ(θ | η) for any θ. If there are multiple z which satisfies Ψ1(z, θ) = 0,

we choose one which is the closest to θ. Then rewriting Ψ1(z1(θ), θ) = 0, we obtain

z1(θ)− θ +
q̄(z1(θ))− q̄(θ)

q̄′(z1(θ))
=
βF (θ | η1)

ρ1f(θ | η1)
[ρ1 −

F (θ | η2)

F (θ | η1)
].

Since F (θ|η2)
F (θ|η1)

is increasing in θ by the monotone likelihood ratio assumption, z1(θ) > θ

for θ < θ̂1 and z1(θ) < θ for θ > θ̂1. Since Ψ1(θ, θ) > 0 (or < 0) for θ < θ̂1 (or

θ > θ̂1), Ψ1(z, θ) > 0 for any z ∈ (θ, z1(θ)) and for any θ < θ̂1 and Ψ1(z, θ) < 0 for

any z ∈ (z1(θ), θ) and for any θ > θ̂1. On the other hand, Ψ2(z, θ) is positive for (θ, z)

such that z < θ < θ̂2 and negative for (θ, z) such that θ̂2 < θ < z from the definition

of Ψ2(z, θ) and θ2. Then the argument is summarized as

• For z ∈ (θ, z1(θ)), Ψ1(z, θ) > 0 for any θ ∈ Θ1

• For z ∈ (z1(θ), θ), Ψ1(z, θ) < 0 and Ψ2(z, θ) > 0 for any θ ∈ Θ2

• For z > θ, Ψ2(z, θ) < 0 for any θ ∈ Θ3.

(iii) Construction of z2(·)
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Next let us define

Γ(z, θ) ≡ d[(z − hβ(θ | η1))(q̄(z)− q̄(θ))]
dz

= q̄(z)− q̄(θ) + (z − hβ(θ | η1))q̄
′
(z).

Γ(z, θ) > 0 for z ≤ θ and Γ(z, θ) < 0 at z = hβ(θ | η1). Then we can choose z2(θ)(> θ)

which is the minimum z such that Γ(z, θ) = 0. Therefore (z−hβ(θ | η1))(q̄(z)− q̄(θ))

is increasing in z on z < z2(θ).

(iv) Construction of z(·)

Finally let us construct z(·), based on z̄(·), z1(·) and z2(·). According to the procedure

in Step 2, for [θ
′
, θ

′′
] = [θ1, θ̄3], choose δ > 0. We construct z(θ) as follows:

(i) z(θ) is differentiable and increasing in θ on Θ with |z(θ)−θ| < δβ and |z′
(θ)−1| <

δβ

(ii) z(θ) ∈ (θ,min{z̄(θ), z1(θ), z2(θ)}) on (θ1, θ̄1)

(iii) z(θ) ∈ (max{z̄(θ), z1(θ)}, θ) on (θ2, θ̄2)

(iv) z(θ) ∈ (θ,min{z̄(θ), z2(θ)}) on (θ3, θ̄3)

(v) z(θ) = θ elsewhere

(vi) E[(z(θ)− hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1] = 0

(vii) E[(q̄(θ)− q̄(z(θ)))F (θ|η2)
f(θ|η2)

| η2] = 0.

(i) implies z(θ) ∈ Z(η1). We argue that there exists z(θ) which satisfies (i)-(vii). It

is evident that there exists z(·) which satisfies (i)-(v). In addition, since (z − hβ(θ |

η1))(q̄(z)− q̄(θ)) is increasing in z for z < z2(θ), z(θ) > θ on Θ1 and Θ3 (or z(θ) < θ

on Θ2) has the effect on raising (or reducing) E[(z(θ)−hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1]

away from zero. By making a balance between two effects, z(·) can also satisfy (vi).

Suppose z(·) which satisfies (i)-(vi), but does not satisfy (vii). It is shown that we

can construct a new function which satisfies all of (i)-(vii) with small adjustment of
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z(·). First we define z̃(·, ε) (ε = (ε1, ε2, ε3)) as z̃(θ, ε) ≡ θ+εi(z(θ)−θ) on Θi (i = 1, 2, 3)

and z̃(θ, ε) = θ elsewhere. It is evident that for any εi ∈ (0, 1] (i = 1, 2, 3), z̃(·, ε)

satisfies (i)-(v), since z̃(·, ε) is closer to θ̂(·) than z(·) in both the distance and the

slope. For the convenience of the exposition, define Π(ε1, ε2, ε3) as

Π(ε1, ε2, ε3) ≡ E[(z̃(θ, ε)− hβ(θ | η1))(q̄(z̃(θ, ε))− q̄(θ)) | η1].

It is evident that Π(1, 1, 1) = 0, since z(·) satisfies (vi), and Π(0, 0, 0) = 0. Π(ε1, ε2, ε3)

is continuous for each εi (i = 1, 2, 3), increasing in ε1 and ε3 and decreasing in ε2. Then

since Π(1, 0, 0) > 0 and Π(1, 1, 0) < 0, there exists ε
′
2 ∈ (0, 1) such that Π(1, ε

′
2, 0) = 0.

Similarly since Π(0, 0, 1) > 0 and Π(0, 1, 1) < 0, there exists ε
′′
2 ∈ (0, 1) such that

Π(0, ε
′′
2 , 1) = 0. Define ε

′ ≡ (1, ε
′
2, 0) and ε

′′ ≡ (0, ε
′′
2 , 1). It is shown that there exists

a function ε(t) on t ∈ [0, 1] such that ε(t) is continuous and monotonic function with

ε(0) = ε
′

and ε(1) = ε
′′
, and Π(ε(t)) = 0 for any t ∈ [0, 1]. Evidently ε(t) 6= 0 for

any t ∈ [0, 1]. Suppose the case that ε
′
2 < ε

′′
2 . (The same argument is applied for

the case of ε
′
2 ≥ ε

′′
2 , and so we omit the argument for the latter case.) We choose

arbitrary continuous and monotonic functions (ε1(t), ε2(t)) with (ε1(0), ε2(0)) = (1, ε
′
2)

and (ε1(0), ε2(0)) = (0, ε
′′
2). ε2(t) is increasing in t. Then for t ∈ (0, 1),

Π(ε1(t), ε2(t), 0) < Π(1, ε
′

2, 0) = 0 = Π(0, ε
′′

2 , 1) < Π(ε1(t), ε2(t), 1).

It implies that there exists ε3(t) ∈ (0, 1) such that Π(ε1(t), ε2(t), ε3(t)) = 0. The

continuity of Π(ε), ε1(t), ε2(t) implies that ε3(t) is continuous. For t, t
′ ∈ [0, 1] such

that t < t
′
, and for any ε3 ∈ (0, 1), Π(ε1(t), ε2(t), ε3) > Π(ε1(t

′
), ε2(t

′
), ε3), implying

that ε3(t) is increasing in t. For ε
′ ≡ (1, ε

′
2, 0),

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′
))− q̄(θ)) | η2]

= E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′
))− q̄(θ)) | η2] +

ρ1

β
E[(z̃(θ, ε

′
)− hβ(θ | η1))(q̄(z̃(θ, ε

′
))− q̄(θ)) | η1]

= E[

∫ z̃(θ,ε
′
)

θ

[{F (θ | η2)

f(θ | η1)
+
ρ1

β
(z − hβ(θ | η1))}q̄′(z) +

ρ1

β
(q̄(z)− q̄(θ))]dz | η1]

= E[

∫ z̃(θ,ε
′
)

θ

Ψ1(z, θ)dz | η1] > 0,
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since Ψ1(z, θ) > 0 for any z ∈ (θ, z(θ)) and any θ ∈ Θ1 and Ψ1(z, θ) < 0 for any

z ∈ (θ + ε
′
2(z(θ)− θ), θ) and any θ ∈ Θ2. Similarly for ε

′′ ≡ (0, ε
′′
2 , 1).

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η2]

= E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η2] +

ρ2

β
E[(z̃(θ, ε

′′
)− hβ(θ | η1))(q̄(z̃(θ, ε

′′
))− q̄(θ)) | η1]

= E[

∫ z̃(θ,ε
′′

)

θ

Ψ2(z, θ)dz | η1] < 0,

since Ψ2(z, θ) > 0 for any z ∈ (θ + ε
′′
2(z(θ) − θ), θ) and any θ ∈ Θ2 and Ψ2(z, θ) < 0

for any z ∈ (θ, z(θ)) and any θ ∈ Θ3. Moreover E[F (θ|η2)
f(θ|η2)

(q̄(z̃(θ, ε)) − q̄(θ)) | η2] is

continuous for ε. Therefore there exists t ∈ (0, 1) such that

E[
F (θ | η2)

f(θ | η2)
(q̄(z̃(θ, ε(t)))− q̄(θ)) | η2] = 0.

This argument implies that there exists ε 6= 0 such that both (vi) and (vii) are satisfied

under z̃(·, ε). For this z̃(·, ε), all conditions (i)-(vii) are satisfied.

Step 4: Finally we check that under z(θ) which is constructed in Step 3,

E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η]

> E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η].

For (λ1, λ2) specified in Step 1,

E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η1]

− E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η1]

= E[V (q̄(z(θ)))− 2k − 1

k
X̄(z(θ))− 1− k

k
θq̄(z(θ)) | η1]

+
(2k − 1)λ2

kβ1

E[(z(θ)− hβ(θ | η1))(q̄(z(θ))− q̄(θ)) | η1]

+
2k − 1

k
λ1[E[

F (θ | η2)

f(θ | η2)
(q̄(z(θ))− q̄(θ)) | η2]

− E[V (q̄(θ))− 2k − 1

k
X̄(θ)− 1− k

k
θq̄(θ) | η1] = E[

∫ z(θ)

θ

Φ(z, θ)dz | η1] > 0.

The first equality comes from (vi) and (vii) in Step 3. Therefore P ’s payoff is improved

over the optimal NS. It completes the proof.
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