Bypassing Intermediaries via Vertical Integration:
A Transaction-Cost-Based Theory¹

Dilip Mookherjee², Alberto Motta³ and Masatoshi Tsumagari⁴

This Version: September 1, 2018

Abstract

We provide a theory of vertical integration motivated to bypass intermediaries and contract directly with workers in order to reduce double marginalization of rents. Non-integration results in inefficiencies that cannot be overcome via sophisticated contract design if supplier costs are nonverifiable, owing to weak accounting systems and/or collusion between intermediaries and lower layer agents. Vertical integration lowers these inefficiencies, but incurs bureaucratic costs in order to control collusion. We discuss predictions of our theory concerning determinants of benefits and costs of integration, how they relate to those of Property Rights based theories, and to available empirical evidence.

KEYWORDS: vertical integration, intermediation, collusion, delegation, double marginalization of rents, foreign direct investment

JEL Classification Nos: D21, D23, D43, L2, F2

¹We thank Andy Newman, Stefania Garetto, Juan Ortner, Eiichi Tomiura and participants at various seminars for helpful comments and discussions.

²Department of Economics, Boston University, 270 Bay State Road Boston MA 02215; dilipm@bu.edu

³School of Economics, University of New South Wales, Australian School of Business, Sydney 2052, Australia; motta@unsw.edu.au

⁴Department of Economics, Keio University, 2-15-45 Mita Minato-ku Tokyo 108-8345, Japan; tsuma@econ.keio.ac.jp
1 Introduction

A frequently cited motive for a firm to integrate backward is to bypass intermediaries in order to limit their rents and increase efficiency by contracting directly with workers or primary suppliers. Consider, for instance, a multinational corporation (MNC) procuring an intermediate good from a developing country. It can invest directly in a production facility and employ production workers in that country to produce the good itself. Alternatively it can outsource delivery to an intermediary located in that country, the owner of a firm employing local workers. Apart from reducing intermediary rents, the commonly cited benefits of vertical integration include reduction in cascading inefficiencies arising from the double marginalization of rents (DMR), highlighted by numerous case studies and empirical analyses in the industrial organization literature. Global supply chains in food processing and retailing sectors are becoming increasingly dominated by large MNCs contracting directly with farmers in developing countries, with higher quality standards and increased vertical coordination within these chains (Dries and Swinnen (2004), Maertens et al. (2011), Michelson et al. (2013), Minten et al. (2009), Rao and Qaim (2011), Reardon et al. (1999)). These have been facilitated by FDI (foreign direct investment) deregulation under globalization, and advances in information technology that have made it easier for MNCs to bypass traditional intermediaries and contract directly with farmers and workers. Globalization policy debates concerning FDI involve assessment of their efficiency and distributive consequences, including spillover effects on welfares of local intermediaries and workers.

As Joskow (2010) and Bresnahan and Levin (2012) explain, ‘transaction cost’ (TC) theories of vertical integration focus on reducing ex post inefficiencies arising from contractual imperfections between vertically related parties subject to high de-

5Lafontaine and Slade (2005), Joskow (2010) and Bresnahan and Levin (2012) provide useful overviews of this literature.
grees of ‘specificity’. A vast body of empirical IO literature provides support of the main prediction of this approach, concerning the positive relationship between vertical integration and specificity. However, as elaborated by Gibbons (2005) this approach is subject to a number of conceptual difficulties owing to lack of appropriate micro-foundations. The theory is unclear regarding the precise source of both benefits and costs of integration. On the benefit side, it has been argued that more sophisticated contract design (e.g., nonlinear pricing, subsidizing intermediary costs) between separately owned firms can overcome the DMR problem. For instance, Villas-Boas (2007) and Mortimer (2008) provide evidence of departures from linear pricing in vertical relationships between manufacturers and retailers in specific US industries, which reduce inefficiencies resulting from DMR. An added problem with the TC theories is that they typically lack a satisfactory micro-founded model of commonly alleged ‘bureaucracy’ or ‘transaction costs’ of internal organization.

The purpose of this paper is to develop a theory of vertical integration that addresses these concerns, in the context of outsourcing-versus-foreign direct investment (FDI) decision faced by an MNC with regard to sourcing production in a developing country with ‘weak institutions’. The institutional weaknesses include high search and information costs, problems of contract enforcement of market transactions, and collusion within organizations. Search costs limit the ability of the MNC to identify and thus contract directly with local workers possessing requisite skills. They need to rely on a local intermediary with pre-existing relationships with such workers. The intermediary owns specific assets needed by these workers, and has specialized knowledge of local production conditions. If the MNC outsources production to the local intermediary, DMR problems cannot be overcome via sophisticated contract design owing to non-verifiability of contracts or transactions between intermediaries and workers. Alternatively, the MNC could vertically integrate by acquiring the assets

6 The TC approach is based on the work of Klein et al. (1978) and Williamson (1971, 1975, 1985); see Tadelis and Williamson (2012) for a survey.
owned by the intermediary, enabling it to organize production and contract directly with the appropriate workers. Besides the payments needed to purchase these assets, the MNC needs to incur a fixed setup cost (associated with the need to contract and set up direct communication channels with workers), and elicit the specialized knowledge of the intermediary to design efficient contracts for workers. The latter is rendered difficult owing to prospects of collusion between the intermediary and local workers. If the former intermediary is hired as a manager in the integrated firm in order to monitor the worker, integration incurs endogenous ‘costs of bureaucracy’ necessary to deter intra-firm collusion.

We develop a simple principal-supervisor-agent model with these features, and show that it generates interesting trade-offs between DMR costs of outsourcing, and the setup and collusion costs of vertical integration. The model generates testable predictions regarding circumstances under which vertical integration is the preferred organizational mode. These include the role of ‘asset specificity’, firm-level attributes and contextual attributes such as distance between the two countries, governance and contract enforcement institutions in the developing country. Numerical simulations of the model generates insights into welfare and distributional impacts of vertical integration which incorporate spillover effects on welfare of workers, as well as ‘pass-through’ of external shocks.

Owing to our focus on vertical integration as a way of bypassing intermediaries in order to reduce ex post inefficiency arising from DMR problems, our theory belongs to the TC branch of the literature. It differs from Property Rights (PR) theories based on incomplete contracts, which focus on ex ante investment effects of integration.\footnote{For surveys of this literature, see Gibbons (2005), Gibbons and Roberts (2012) or Dessein (2014). Our approach is closer in spirit to recent theories of firm scope of Hart and Holmstrom (2010) that focus on ex post inefficiencies arising from ex post noncontractibility problems, and also derive implications for internal organization of integrated firms. Our theory differs insofar as asymmetric information and collusion are the source of inefficiency within the integrated firm, instead of ex post noncontractibility and conflicting nonpecuniary preferences across stakeholders.} A
growing literature on MNCs in international economics is based on the PR approach, including both theoretical analyses and empirical testing (see Antras (2013), Antras and Yeaple (2013) for surveys of this literature). As we elaborate in Section 7, some of our predictions are similar to those of the PR approach, while others are different. We review available empirical evidence related to these predictions, which shows support for some of the distinctive predictions of our model pertaining to internal organization of integrated firms, pass-through of external price shocks or welfare spillover effects of integration on workers or primary suppliers.

The paper is organized as follows. Section 2 provides a self-contained overview of the basic model and main results. Additional model details are presented in Section 3 and results in Section 4. Section 5 provides extensions of the basic model to study effects of higher bargaining power of S in negotiating an acquisition by P; forward integration (where S buys P’s firm) as an alternative to backward integration, and alternative forms of collusion between S and A. Section 6 describes welfare implications of integration, using numerical computations of an example with uniformly distributed costs and signals with linear likelihood ratios. Section 7 concludes with a summary of the predictions, followed by a comparison of these with predictions of PR-based theories, and a discussion of available empirical evidence related to these predictions.

2 Overview of Model and Main Results

The status quo situation involves two separate firms, one owned by a Principal (P) which corresponds to the Northern MNC, and a Southern firm owned by a supplier S which employs worker A (referred to as the agent). P owns an asset consisting of a product and access to a world market where it can be sold at unit price V_P. The asset owned by S is the right to contract exclusively with agent A located within the Southern country, arising either from monopoly ownership of a productive asset that
A needs to work with, or knowledge of the ‘right’ agent A otherwise indistinguishable (by P, or any ‘outsider’) from a sea of other potential Southern workers. Prior to P’s arrival, S and A jointly produce a similar product that can be sold on local Southern markets at price $V_S < V_P$. Owing to the absence of other competitors owning similar assets, the relationship between P and S constitutes a bilateral monopoly. The difference $\sigma \equiv V_P - V_S$ represents the extent of appropriable quasi-rents or specificity in the relationship between P and S.

To simplify the analysis, we assume that the good to be produced is indivisible. Agent A is privately informed about the cost θ of producing the good. S has special expertise regarding production conditions in the S country, represented by a signal η which is partially informative regarding the realization of θ. P does not observe the realization of this signal. Owing to their prior connection, S and A can costlessly communicate and side-contract with one another privately; such communication or transactions are not observed by P or any third party.

With non-integration (NI) where the two firms are separately owned, P and S negotiate an arms-length contract where P buys the good from S, who in turn contracts with A to produce the good. Throughout we assume P has all the bargaining power vis-a-vis S, and S has all the bargaining power vis-a-vis A. The key contracting friction between P and S in NI is that P is unable to verify payments made by S to A. This could either be the result of poor accounting standards in the Southern country (which allow S to costlessly produce ‘fake’ invoices for payments to A), or

8Most results extend to the context where the quantity produced is divisible. See Mookherjee, Motta and Tsumagari (2018) for details.

9Consistent with the literature on collusion in organizations following Tirole (1986), we assume S and A can enter into side contracts that are costlessly enforced (via a third party or on the basis of other parallel relationships between the two of them). The only friction in side-contracting between S and A is the superior information possessed by A regarding the realization of cost θ. Unlike the Tirole (1986) model, there is no ‘hard information’ that restricts reports that can be submitted, so the potential for collusion is considerably more severe in our setting.

10In later sections we describe the consequences of alternative distribution of bargaining power.
of collusion between S and A (whereby S can enter into side-payments with A that cannot be observed by any third party) or some combination of these. This prevents P from entering into cost-sharing contracts with S. Non-integration then results in DMR, owing to a cascading of information rents along the supply chain. Despite the absence of constraints on contracts or message spaces, we show that sophisticated design of contracts with S will not eliminate the DMR problem, as long as P is unable to contract directly with A.

Controlling procurement cost constitutes the prime motive for vertical integration, wherein P acquires the key assets owned by S that enables P to contract directly with A, upon incurring a fixed setup cost \(f \) (which includes the cost of necessary legal and communication infrastructure). In the integrated firm, P would seek to tap S’s expertise in order to design a contract for A: hence P invites and cross-matches reports from S and A of their respective private information. This gives rise to incentives for S and A to collude, thereby generating an (endogenous) transaction cost, in addition to the fixed setup cost.

Our first main result is that the gross profit of P in the integrated firm (excluding the fixed set-up cost \(f \)) is strictly higher compared to non-integration, under a mild parameter restriction ensuring existence of a DMR problem in the latter. In other words, P is able to reduce the severity of the DMR problem in the integrated firm, despite the problem of collusion. The increase in gross profit is independent of the setup cost \(f \). Hence vertical integration will occur when the set-up cost is smaller than the increase in gross profit achieved; otherwise non-integration will be chosen. The ability to contract directly with A and the setting up of a centralized mechanism with cross-reports enables a reduction in the DMR problem that was not achievable under non-integration. This is the benefit of integration, which has to be traded off against the setup cost \(f \).

The benefit of integration turns out to depend on the extent of specificity \(\sigma \equiv V_P - V_S \): it approaches zero as specificity approaches zero, and is strictly increasing
provided it exceeds some threshold value. The model thus formalizes one of the most important and robust prediction of the transaction cost approach: high specificity renders vertical integration more likely.

The model also generates the following predictions: (i) The integrated firm will benefit from eliciting S’s private information regarding worker costs, and setting up a cross-reporting mechanism; i.e., S will be engaged by the integrated firm as a consultant or manager. (ii) Vertical integration takes the form of P acquiring S’s firm rather than vice versa, i.e., backward rather than forward integration ought to result. This contrasts with the PR theory prediction that the owner of the integrated firm will be the party (i.e., S) with the more severe incentive problem. (iii) Vertical integration is more likely to arise if the Southern country has superior communication and legal infrastructure, and when the fixed setup costs of FDI in the South country are lower (e.g. when the distance between the two countries is smaller). (iv) Integration is more likely in industries with higher value products, and for Northern firms that are more productive. As discussed in Section 7, many of these predictions are supported by empirical evidence, while evidence on others are currently lacking.

Finally our model yields interesting implications for distributional and welfare impacts of vertical integration. Owing to the difficulty in obtaining explicit analytical solutions, we numerically compute optimal allocations in the vertically integrated firm in an example with uniformly distributed costs. In this example, integration when it occurs results in higher welfare and prices offered to A, in the context involving a bilateral monopoly between P and S.11 The aggregate rents of S and A (and therefore aggregate surplus, including P’s welfare) turn out to be higher under integration. For some parameter values involving low specificity S’s rents are unaffected; over this range integration is Pareto improving. The improvement in aggregate efficiency tends to increase in the extent of specificity. For fixed V_S, a larger fraction of increases in V_P

\footnote{11However, this result may not obtain in an extended version of the model where integration could be accompanied by an increase in monopsony power.}
are ‘passed on’ to A (i.e., A’s welfare increases by more) under integration, implying greater ‘trickle down’ effects of globalization benefits to workers. In Section 7 we discuss empirical evidence concerning effects of FDI that confirm these predictions.

3 Model Details

There are two firms, P and S, and a single worker A. A produces a single unit of the good, and delivers it to either S or P. P earns V_P by selling the good on the world market. S can earn $V_S < V_P$ by selling it in the local market; alternatively S can sell it to P. A is privately informed regarding his production cost θ. P and S share a common prior distribution $F(\theta)$ (with a positive, differentiable) density $f(\theta)$ on support $[\underline{\theta}, \bar{\theta}]$. Not owning a complementary productive asset (owned by S) and/or market reputation, A cannot supply the good to either local or the world market on his own.

From past experience, S has accumulated ‘local’ connections and expertise that P does not possess. This includes an ongoing relationship with A, who is more suited to the production task compared to other local producers in the S country. Apart from knowledge of the ‘right’ local worker A, S has ‘expertise’ represented by access to an informative signal η of A’s cost. The realization of this signal is observed by S and A jointly. η takes two possible values η_L, η_H. The likelihood of observing signal i is $a_i(\theta)$, a positive differentiable function on $(\underline{\theta}, \bar{\theta})$. Let $F_i(\theta) \equiv \frac{1}{\kappa_i} \int_{\underline{\theta}}^{\bar{\theta}} a_i(y)f(y)dy$ denote the distribution of θ conditional on η_i, where $\kappa_i \equiv \int_{\underline{\theta}}^{\bar{\theta}} a_i(y)f(y)dy \in (0, 1)$ denotes the probability of η_i. The density function of $F_i(\theta)$ is denoted by $f_i(\theta)$.

To ensure the problem is interesting we assume $V_P > V_S > \theta$. We also impose standard monotonicity conditions on likelihood ratios and hazard rates:

Assumption 1

(i) $\frac{a_L(\theta)}{a_H(\theta)}$ is decreasing in θ on $[\underline{\theta}, \bar{\theta}]$.

(ii) $H(\theta) \equiv \theta + \frac{F(\theta)}{f(\theta)}$, $h_i(\theta) \equiv \theta + \frac{F_i(\theta)}{f_i(\theta)}$ and $l_i(\theta) \equiv \theta + \frac{F_i(\theta) - 1}{f_i(\theta)}$ (i.e., L, H) are increasing in θ.

9
These can be interpreted in terms of corresponding assumptions regarding supply functions and their elasticity: a low signal corresponds to higher supply (a supply function shifted to the right) and lower price elasticity: $F_H(p) < F(p) < F_L(p)$ and $\sigma_L(p) < \sigma(p) < \sigma_H(p)$ where $F_i(p)$ denotes the likelihood of A supplying the good when offered payment of p, and $\sigma_i(p)$ the elasticity $\frac{p F_i(p)}{F_i(p)}$ conditional on signal η_i, while $F(p), \sigma(p)$ represent corresponding supply and supply elasticity functions. A specific example is a uniform prior ($F(\theta) = \theta$ on $[0,1]$) and linear likelihood ratio function $a_L(\theta) = 1 - \theta$ for $\theta \in [0,1]$ and $a_H(\theta) = \theta$ for $\theta \in [0,1]$. See Figure 1.

In the absence of P, S delivers the good to the local market after procuring from A. Following $\eta = \eta_i$, S offers a take-it-or-leave-it price $p_i(V_S)$ to A which maximizes $F_i(p_i)(V_S - p_i)$, and earns an expected payoff $u^S_i \equiv F_i(p_i(V_S))(V_S - p_i(V_S))$.

When P enters, there are two different ways for P to procure the good from the S country:

- Non-Integration (NI): The two firms are separately owned; P procures the good by contracting with S, who becomes a middleman between P and A. In the
North-South context, this corresponds to outsourcing.

- Backward Integration (BI): P acquires S’s firm, whose assets consist of knowledge of A’s identity and tools or other fixed inputs that A needs to work with. S transfers these assets to P, enabling P to procure directly from A. In the North-South context, this corresponds to foreign direct investment (FDI) by P via acquisition of a local firm.

In a later section, we shall also consider other alternatives such as forward integration (FI) where S acquires P’s firm, procures from A and supplies to the world market (besides greenfield ventures where P hires other local experts or methods to identify to lure A away from working for S). Figure 2 illustrates contract structures in NI, BI and FI.

3.1 Non-Integration

NI features a sequence of bilateral contracts: first P offers a contract to S, then S offers a contract to A. Since the two firms are separately owned, A does not divulge the identity of A to P, preventing P from directly contracting with A. Moreover, it is not possible for P to observe transactions or communication between S and A. Hence
P cannot condition the price offer to S on the latter’s ‘cost’, i.e., what S pays A. Cost observability is ruled out owing to absence of suitable accounting standards in the S country, combined with collusion between S and A that enables them to manipulate accounting costs via false invoices. Moreover, P is unable to prevent S from communicating with A before responding to P’s offer.

Formally, the sequence of moves as follows.

0. S observes \(\eta \), while A observes \((\theta, \eta)\).

1. P offers S a contract consisting of a message space \(M_S \), quantity \(q_S(m_s) : M_S \rightarrow \{0, 1\} \) and payment \(X_S(m_s) : M_S \rightarrow \mathbb{R} \), where \(M_S \) includes an exit option \(e_S \) and the contract is constrained to satisfy \(q_S(e_S) = 0 = X_S(e_S) \).

2. S offers A a contract consisting of a message space \(M_A \), quantity \(q_A(m_A) : M_A \rightarrow \{0, 1\} \) and payment \(X_A(m_A) : M_A \rightarrow \mathbb{R} \), where \(M_A \) includes an exit option \(e_A \) and the contract is constrained to satisfy \(q_A(e_A) = 0 = X_A(e_A) \).

3. A sends a message \(m_A \in M_A \) to S.

4. S sends a message \(m_S \in M_S \) to P, satisfying \(q_S(m_S) \leq q_A(m_A) \).

Proposition 1 Under Non-Integration, there is a Perfect Bayesian Equilibrium (PBE) resulting in an allocation that can be represented as follows. P delegates production (not deliver/deliver) decisions to S, and offers to pay 0 and \(b \) corresponding to non-delivery and delivery of the good respectively. Given any delivery bonus \(b \), in state \(\eta_i \), S offers A a take-it-or-leave-it price \(p_i(b) \equiv \arg \max_{p_i \in [\theta, \bar{\theta}]} F_i(p_i)(b - p_i) \) for \(i = L, H \).

The good is delivered only if \(p_i(b) \) exceeds \(\theta \). P selects the bonus \(b^{NI} \) which maximizes

\[
\kappa_L F_L(p_L(b)) + \kappa_H F_H(p_H(b))(V_P - b),
\]

subject to \(b \geq V_S \).

The proof of this result is straightforward, so we omit the technical details and provide a heuristic account. Sophisticated contracts do not succeed in screening S’s

\[12\]Melumad, Mookherjee and Reichelstein (1995) show verifiability of supplier cost is necessary for sequential bilateral contracting to achieve second-best allocations.
private information regarding cost conditions by conditioning trades on messages sent by S, because S can wait to obtain a cost report from A before responding to P’s offer. At that stage S is no longer uncertain about the realization of A’s cost θ. Conditional on the decision on whether the good will be delivered or not (which S knows at the time of responding to P), S can manipulate the report of A’s cost to P to maximize the payment promised by P. Hence P’s payments to S can only be conditioned on whether the good is delivered.13

Since the good is indivisible, the ‘outsourcing’ contract between P and S consists of two payments, corresponding to non-delivery (X_0) and delivery ($X_0 + b$) respectively. Payment X_0 in the event of non-delivery must be non-negative, otherwise the coalition of S and A would not accept the offer in that state. This prevents P from using a two-part tariff, where a negative X_0 is used by P to extract S’s rent upfront. The same is true for the ‘subcontract’ offered by S to A: it consists of two payments, corresponding to non-delivery and delivery. To satisfy A’s participation constraints, the payment in the event of non-delivery cannot be negative. It is also evident that it is optimal for S to not pay A anything in the event of non-delivery; hence the subcontract reduces to a single take-it-or-leave-it price offer. Since S receives a bonus of b from P for delivering the good, the optimal price offered by S in state η_i is $p_i(b)$.

Turning now to the contract offered by P to S, note that payment in the event of delivery $X_0 + b$ cannot be smaller than V_S, what S can earn by selling instead to the local market, if S is to be incentivized to accept P’s contract. The contract (X_0, b) generates an expected profit to P of $\kappa_L[F_L(p_L(b)) + \kappa_H F_H(p_H(b))](V_P - b) - X_0$, which is thus maximized by choosing X_0, b subject to $X_0 \geq 0$ and $b + X_0 \geq V_S$, where $p_i(b) \equiv \arg \max_{p_i \in [\underline{\theta}, \bar{\theta}]} F_i(p_i)(b - p_i)$ for $i = L, H$. Clearly the optimal X_0 is zero, and we then obtain Proposition 1.

The solution to NI features double marginalization of rents. S earns rents in

13See Baliga and Sjostrom (1998) for a similar argument in the context of a model of collusion with moral hazard.
Figure 3: Optimal Allocation in NI

contracting with P owing to private information regarding his own procurement cost. At the same time, A also earns rents in contracting with S. S’s monopsony power in contracting with A features the standard trade-off between extracting A’s rents and lowering the probability of A’s supply. In setting a price offer for A, S ignores P’s loss of rents when A fails to supply the item, and ends up offering a price to A which is inefficiently low. Alternatively, the supply curve facing P lies above and has a higher slope than the supply curve facing S, since the former additionally includes payments of S’s rents by P. Hence P offers a bonus which is not high enough to elicit an efficient supply response. See Figure 3 for an illustration of the outcomes in state η_i.

3.2 Backward Integration

In this arrangement, P makes an offer to acquire S’s assets, enabling P to organize production and contract directly with A. P would therefore offer to make payments
to S in order to acquire these rights. Since information possessed by S about the realization of η would be useful to P in designing a contract for A, it could be additionally beneficial for P to ask S to report this information and condition the payment to S on these reports (besides reports received from A). Of course, A may then have an incentive to bribe S to manipulate the latter’s report. Collusion limits the usefulness of P’s effort to elicit S’s information, as S and A can communicate privately with one another and enter into hidden side-contracts to ‘game’ the mechanism designed by P. We will later show that it is typically optimal for P to contract with S to elicit the latter’s information in the integrated firm. Hence we need to consider the implications of P contracting with both S and A in the integrated firm.

Since S and A already know one another before P arrives, collusion between S and A can occur ex ante, where they negotiate a side-contract prior to responding to P’s offer.\(^{14}\) We assume, in the tradition of Tirole (1986), that the side-contract between S and A is costlessly enforceable by some third party. Following private communication of a cost message by A to S, the side-contract coordinates their respective messages (which include participation decisions and cost reports) sent to P, besides a side payment between A and S. Unlike Tirole (1986), information is ‘soft’, i.e., message spaces are unrestricted, with both S and A able to send ‘false’ messages. S offers a side contract to A, which A accepts or refuses.

In the event of A refusing this side-contract, they play P’s mechanism non-cooperatively. Unlike NI, A receives a contract directly from P, which can now be conditioned on reports sent by S regarding the realization of η. As elaborated in Mookherjee, Motta and Tsumagari (2018) in the context of a more general version of this model, this allows P to manipulate the outside options of A in bargaining over a side contract, reducing the severity of the DMR problem. Raising A’s outside option

\(^{14}\)This is in contrast to interim collusion where S is required to communicate his participation decision to P before communicating with A, as in the analyses of Faure-Grimaud, Laffont and Martimort (2003) or Celik (2009). The implications of this contrast are elaborated in detail in Mookherjee, Motta and Tsumagari (2018).
forces S to offer a higher price to A for delivering the good, thereby alleviating the underproduction in NI.

The specific setting considered in this paper (i.e., an indivisible good being procured and two-point cost signals received by S) allows considerable simplification of the analysis of optimal mechanisms in BI. It can be shown that P loses nothing by confining attention to revelation mechanisms (in which message spaces are type spaces) that are (i) individually incentive compatible, i.e., S and A accept and report their types truthfully, and (ii) collusion-proof, which leave no room for S and A to enter into a non-null side contract.\(^\text{15}\) Hence P can confine attention to mechanisms satisfying a set of individual and coalition incentive compatibility constraints.

In order to describe the mechanism design problem in BI, it is necessary to be explicit about the exact sequence of events by which P negotiates the acquisition of S’s firm (depicted in Figure 4):

\begin{itemize}
 \item[(BI-i)] P offers S the following proposal, which is hereafter referred to as the BI mechanism. It specifies message spaces \(M_A, M_S\) for A and S respectively, production decision \(q(m_A, m_S)\) and transfers \(X_A(m_A, m_S), X_S(m_A, m_S)\) conditioned on submitted messages. A’s message space includes an exit option which is followed by absence of production and transfers to A. S has the opportunity to reject
\end{itemize}

\(^{15}\text{See the online Appendix of Mookherjee, Motta and Tsumagari (2018) for the detailed argument.}\)
P’s offer after communicating with A, so an additional exit option for S does not need to be included in M_S.

(BI-ii) S proposes a side-contract to A describing how they can jointly respond to P’s offer. The side-contract (SC) specifies a private report of the true cost θ from A to S, followed by joint messages $m(\theta, \eta) \in M_A \times M_S \cup \{\text{Exit}\}$ they respectively send to P, a private side-payment $t(\theta, \eta)$ from S to A, and production supplied to the local market $q(\theta, \eta) \in \{0, 1\}$ for (θ, η) in the event that they decide to reject P’s mechanism ($m(\theta, \eta) = \text{Exit}$). The set of side contracts includes the Null Side Contract (NSC), where S proposes no side contract at all, or equivalently that they play the rest of the game noncooperatively (as explained in more detail in (BI-iv) below).

(BI-iii) A responds by rejecting or accepting SC. A NSC is automatically accepted. If it is accepted, the SC is implemented and the game ends.

(BI-iv) (a) If S had offered a non-null SC and A rejects it, or if S had offered NSC, S and A play non-cooperatively thereafter. This consists of the following stages. (b) S decides whether or not to accept P’s offer. (c) If S does accept it, P sets up the integrated firm and offers the BI mechanism to S and A, which is played noncooperatively by S and A. If S rejects P’s offer, S offers a contract to A to deliver the product to the local market.

The solution concept employed is Perfect Bayesian Equilibrium (PBE) which is Pareto-undominated for the $\{S, A\}$ coalition, i.e., for any η, there does not exist any other PBE which improves S’s payoff, without making any type of A worse off.16

We now characterize properties of allocations that can be achieved as outcomes of PBE satisfying this criterion. To simplify the exposition we focus on equilibria in which BI is accepted by S in both states η_L, η_H. Proposition 3 below shows that

16This refinement is essential to capture the prospect of collusion between S and A, as explained in the online Appendix of Mookherjee, Motta and Tsumagari (2018).
such equilibria also generate higher profit for P than any equilibrium in which BI is accepted by S in only one of the two states.

Since the good is indivisible and the mechanism has to be individually incentive compatible and collusion-proof, abstract message spaces can be dispensed with and the allocation can be represented more simply by a set of prices that satisfy a set of constraints described below. We eschew the technical details and provide an intuitive account.

First, a contract offer to A in the BI mechanism reduces to a single take-it-or-leave-it price offer \(p_i \) made to A when the cost signal is \(\eta_i \). Second, in order to deter collusion, P must offer an aggregate payment to S and A which depends only on whether or not the good is produced. Let \(X_0 + b, X_0 \) denote the aggregate payments when the good is and is not produced respectively. The two prices \(p_L, p_H \) combined with \(X_0, b \) characterize a BI allocation entirely. This is associated with a mechanism where S and A are asked to submit reports \((\hat{\eta}_S, \hat{\eta}_A) \) of the signal \(\eta \) to P. If the two reports happen to match \((\hat{\eta}_S = \hat{\eta}_A = \eta_i) \), A is offered the option to produce and deliver the good directly to P in exchange for price \(p_i \), while S is paid \(X_0 \) if the good is not delivered, and \(b + X_0 - p_i \) if it is delivered. If the two reports do not match, there is no production and S and A are required to pay a high penalty to P. The key feature distinguishing BI from NI allocations is that in the former P makes a contract offer directly to A which is conditioned on reported signals. This provides an outside option to A which S is constrained to match while offering a side contract to A. This is an important strategic tool that enables P to manipulate the outcome of collusion between S and A, and reduce the severity of the DMR problem.

Along the equilibrium path where A and S decide to participate, report \(\eta_i \) truthfully to P, and do not enter into a deviating side-contract, A produces the good in state \(\eta_i \) and receives the payment \(p_i \) if and only if \(\theta_i \) is smaller than \(p_i \). Without loss of generality, A receives no payment in the event of non-production.\(^\text{17}\) This generates

\(^\text{17}\)It can be checked that any mechanism paying a positive amount to A in the event of non-
utility to A of $u_A(\theta, \eta_i) = \max\{p_i - \theta, 0\}$. S ends up with $X_0 + b - p_i$ in the event that production takes place, and X_0 otherwise.

The BI allocation p_L, p_H, X_0, b has to satisfy the following feasibility constraints. First, in order to ensure that ex post the coalition does not prefer to reject it or supply to the local market instead:

$$b + X_0 \geq V_S \tag{1}$$
$$X_0 \geq 0. \tag{2}$$

Second, in order to induce S to agree to participate in GC, S’s interim expected utility cannot fall below what he could earn by supplying to the local market instead:

$$F_H(p_H)(b - p_H) + X_0 \geq u^S_H \tag{3}$$
$$F_L(p_L)(b - p_L) + X_0 \geq u^S_L. \tag{4}$$

Third, S and A should not be tempted to enter a deviating SC. A deviating SC would involve a different set of prices \hat{p}_i offered to A (in state η_i) for delivering the good, combined with a lump-sum payment \hat{u}_i. A would then produce if θ is smaller than \hat{p}_i, and S would earn an expected payoff $F_i(\hat{p}_i)(b - \hat{p}_i) + X_0 - \hat{u}_i$. A would accept the deviating SC provided

$$\max\{\hat{p}_i - \theta, 0\} + \hat{u}_i \geq \max\{p_i - \theta, 0\} \tag{5}$$

Hence collusion-proofness requires $(\hat{p}_i, \hat{u}_i) = (p_i, 0)$ to maximize $F_i(\hat{p}_i)(b - \hat{p}_i) + X_0 - \hat{u}_i$ subject to (5).

This condition can be broken down as follows. First, if $p_i > \theta$, S should not benefit by deviating to a price $\hat{p}_i < p_i$. This would necessitate offering a lumpsum payment of $\hat{u}_i = p_i - \hat{p}_i$ to ensure that A accepts the SC, which would then generate S an interim expected payoff of $F_i(\hat{p}_i)(b - \hat{p}_i) + X_0 - p_i + \hat{p}_i$. This is equivalent to requiring that

$$b \geq p_i - \frac{1 - F_i(p_i)}{f_i(p_i)} \equiv l_i(p_i) \tag{6}$$
production is dominated by one that does not.
since \(l_i(p) \) is increasing in \(p \) as per the monotone hazard rate assumption 1(ii). Intuitively, offering a lower price than \(p_i \) is similar to S selling the good back to A. Condition (6) which states that the value \(b \) of the good to S exceeds its virtual value to A ensures that such a sale is not worthwhile.

Similarly, if \(p_i < \bar{\theta} \), S should not want to offer A a higher price \(\tilde{p}_i \). Unlike the case of a lower offer price, such a variation cannot be accompanied by a negative lump sum payment \(\tilde{u}_i \) to A, owing to the need for A’s ex post participation constraint to be satisfied in non-delivery states. Offering \(\tilde{p}_i > p_i \) will then generate an interim payoff of \(F_i(\tilde{p}_i)(b - \tilde{p}_i) + X_0 \). For S to not want to deviate to a higher price, it must be the case that

\[
b \leq p_i + \frac{F_i(p_i)}{f_i(p_i)} = h_i(p_i)
\]

given the monotone hazard rate assumption. This condition can be interpreted simply as the value of delivery (\(b \)) to S being lower than the virtual cost of A of delivering it.

(6, 7) can be combined into the single collusion-proofness condition

\[
\max\{\hat{l}_L(p_L), \hat{l}_H(p_H)\} \leq b \leq \min\{\hat{h}_L(p_L), \hat{h}_H(p_H)\}.
\]

where \(\hat{h}_i(p) \) denotes \(h_i(p) \) for \(p \neq \bar{\theta} \) and \(\infty \) otherwise, and likewise \(\hat{l}_i(p) \) denotes \(l_i(p) \) for \(p \neq \bar{\theta} \) and \(-\infty \) otherwise.

The preceding arguments explain the necessity of conditions (1, 2, 3, 4, 8) for an allocation \((p_L, p_H, b, X_0)\) to be feasible in BI. They are also sufficient: in the Appendix we show that a coalition-Pareto-undominated PBE can be constructed which results in this allocation.

Lemma 1 A BI allocation \((p_L, p_H, b, X_0)\) is feasible, i.e., incentive compatible and collusion-proof, if and only if it satisfies conditions (1, 2, 3, 4, 8).

Finally, an optimal BI allocation must maximize

\[
[k_H F_H(p_H) + k_L F_L(p_L)](V_P - b) - X_0
\]
subject to (1, 2, 3, 4, 8). We shall denote the solution by \((p_H^{BI}, p_L^{BI}, b^{BI}, X_0^{BI})\), and the accompanying expected profit of \(P\) by \(\Pi^{BI}\), gross of the fixed setup cost \(f\) that the BI mechanism entails. We shall hereafter refer to \(\Pi^{BI}\) as the operating profit of \(P\) in BI, which excludes the setup cost \(f\), so that the net profit equals \(\Pi^{BI} - f\). This needs to be compared with \(\Pi^{NI}\) when \(P\) decides whether or not to acquire S’s firm. An acquisition will occur only if BI earns a higher operating profit by enough to cover the setup cost: \(\Pi^{BI} - \Pi^{NI} > f\).

It is evident that at least one of either (1), (3) and (4) must be binding in the optimal allocation.\(^{18}\) It is also evident that \(P\)’s maximal profit \(\Pi^{BI}\) approaches zero as the extent of specificity \(V_P - V_S\) approaches zero.\(^{19}\) Hence it is necessary there be a non-negligible degree of specificity for BI to be chosen rather than NI.

4 Main Results

We now compare \(P\)’s operating profits in NI and BI. Note first that \(P\) can always attain in BI at least the profits achieved in NI, since the latter is equivalent to unconditionally delegating authority to \(S\) to contract with \(A\) within BI (i.e., where \(P\) does not offer a contract to \(A\), so \(A\) has no outside option in bargaining with \(S\) over the side contract).\(^{20}\) The question is whether \(P\) can achieve strictly higher profit in BI by enough to overcome its setup cost to be worthwhile.

This cannot happen when \(V_S\) is large enough relative to the upper bound \(\hat{\theta}\) (specifically, if \(V_S \geq h_L(\hat{\theta})\)) that \(P\) always procures the good in NI, by offering a price large

\(^{18}\)Otherwise \(X_0 = 0\) and \(b = \max\{\hat{i}_L(p_L), \hat{i}_H(p_H)\}\). Then \(b < p_i\) for each \(i\), and \(S\)’s participation constraint will be violated.

\(^{19}\)(1) implies aggregate payments \(b + X_0\) to the coalition in the event of the good being delivered approaches what \(P\) can sell the good for, so \(P\)’s profit in this event approaches zero. And (2) ensures that \(P\) cannot make any profit if the good is not delivered.

\(^{20}\)Specifically, the optimal NI allocation corresponds to a BI allocation with \(p_i = p_i^{NI}, X_0 = 0, b = b^{NI}\).
enough to guarantee that the good is delivered ($p_{NI}^L = p_{NI}^H = \bar{\theta}$). In that case NI involves no underproduction and hence is not subject to any DMR problem: there cannot be any scope for achieving higher operating profit by acquiring S’s firm.

Our first main result is that in all other cases, BI does attain a higher operating profit.

Proposition 2 $\Pi^{BI} > \Pi^{NI}$ if and only if $h_L(\bar{\theta}) > V_S$.

Proposition 2 implies that whenever NI involves a price below the maximum cost $\bar{\theta}$ and is thereby potentially subject to a DMR problem, BI will be preferred if f is small enough, and NI will be preferred otherwise. The reasoning underlying this result is illustrated in Figure 5. Suppose that the price offered to A in NI in state L is smaller than $\bar{\theta}$, so there is scope for raising the price further in this state. Let P select $p_L' = p_L'$ in BI which is slightly higher than p_{L}^{NI}, while leaving

21Recall that $b^{NI} \geq V_S$ is necessary to satisfy S’s participation constraint in NI. Hence $V_S \geq h_L(\bar{\theta})$ implies $b^{NI} \geq h_L(\bar{\theta})$. Then $p_{L}^{NI} = \bar{\theta}$.

\[\begin{align*}
\text{Figure 5: Benefit of BI}
\end{align*}\]
the price in state H and S’s delivery bonus b unchanged ($p_H = p_H^{NI}, b = b^{NI}$). This raises the probability of the good being delivered, resulting in a first-order increase $[F_L(p'_L) - F_L(p_L^{NI})](V_P - b^{NI})$ in P’s expected profit. On the other hand, S’s payoff in L falls since p_L^{NI} had been optimally chosen by S in NI given the delivery bonus b^{NI} which remains unchanged. To compensate S for this, P needs to offer a positive lump-sum payment $X_0 = F_L(p_L^{NI})(b^{NI} - p_L^{NI}) - F_L(p'_L)(b^{NI} - p'_L)$. But S’s loss is second-order, so the cost of this compensation is smaller than the gain in P’s profit owing to the higher probability of delivery. As the resulting allocation is feasible in BI, i.e., satisfies conditions (1, 2, 3, 4, 8), it follows that P earns a higher operating profit in BI.\(^{22}\) Contracting directly with A allows the DMR problem to be reduced, as P offers a higher price to A which S is forced to match in BI.

Corollary 1
(i) If $h_L(\overline{\theta}) > V_S$, and given specificity $V_P - V_S$, P prefers BI to NI if fixed cost f of BI is sufficiently small.

(ii) Higher specificity enlarges the range of fixed costs for which P prefers BI, over a range of high levels of specificity (i.e., when V_S is small relative to V_P).

(iii) Given any f, if specificity is sufficiently low, P prefers NI to BI.

(i) is evident, while (ii) follows from the following argument. For fixed V_P consider the implications of varying the degree of specificity, i.e., letting V_S vary over the range $[0, V_P]$. When specificity is high (i.e., V_S is low), the solution to NI is locally independent of V_S as S’s participation constraint is not binding. On the other hand, some participation constraint is always binding in BI, and a fall in V_S relaxes these constraints, so P’s profit in BI increases as a result. Hence integration becomes more attractive with higher specificity. Over low ranges of specificity, optimal profits in both NI and BI are decreasing in V_S, and it is difficult to compare the rates at

\(^{22}\)Condition (8) holds since $b^{NI} = h_L(p_L^{NI}) > l_L(p_L^{NI})$, so p'_L slightly higher than p_L^{NI} implies $h_L(p'_L) > b^{BI} > l_L(p'_L)$. It is evident that the other conditions also hold.
which they respectively fall. See however the numerical examples in Section 6 where benefits of integration are everywhere increasing in specificity. Finally, result (iii) follows from the fact that P’s profits approach zero under either NI and BI when specificity approaches zero.

The next Proposition provides a rationale for focusing on equilibria where BI results in both states η_L, η_H. It shows that such equilibria generate higher profits for P compared with those in which BI results in only one state η_i, while in the other state $\eta_j, j \neq i$ S refuses to sell the firm to P, with either NI resulting in that state, or S does not sell to P at all and sells to the local market instead. The argument is essentially similar to that used in Proposition 2 above: reductions in DMR resulting from integration generate benefits to P in each and every state separately, though the argument is complicated by the feature that the feasibility constraints pertain jointly to both states.

Proposition 3 (a) Any equilibrium in which BI results in only one state η_i, while in the other state $\eta_j, j \neq i$ there is no trade between P and S (i.e., S supplies to the local market) generates less operating profit for P than an equilibrium in which BI results in both states.

(b) Suppose $V_P < h_H(\bar{\theta})$. Then any equilibrium in which BI results in one state, and NI in the other, generates less operating profit for P than an equilibrium in which BI results in both states.

4.1 Value of Engaging S in Integrated Firm

In BI, the potential advantage of engaging S is that the signal reported by S helps P reduce A’s rents. On the other hand, S will earn some rents owing to collusion, which

23 The Proposition compares operating profits. Under the assumption that the BI setup costs are incurred prior to P making the GC offer, it implies that the net profits of the allocation where BI results in both states is higher than when it results in only one state.
cannot be taxed away upfront by P (owing to the *ex ante* nature of the collusion). Is it then beneficial for P to hire S as a supervisor? Above we restricted attention to a particular form of BI in which P contracted with S to provide a cost signal report which is used by P to contract with A. We now consider whether P would be better off not engaging S.

What does it mean to not engage S in BI? By this we mean an arrangement in which P does not learn S’s signal while contracting with A. For this to happen, S must sell his firm to P in exchange for a lumpsum amount X_0 in both states η_L, η_H. S does not send any report of the signal η, and the payment to S does not depend on the output produced by A (i.e., $b = 0$). After acquiring S’s firm, P contracts with A on the basis of his prior beliefs over θ. Later we consider other more complicated alternatives, e.g., where S sells the firm only in one state but not the other.

Let the mechanism where P acquires S’s firm but does not engage S be denoted by NS. In this mechanism, P will directly offer A a price p (which does not depend on η), and offer S a lumpsum X_0 for acquiring the firm. These will be selected to maximize

$$\max F(p)(V_P - p) - X_0$$

subject to

$$X_0 \geq \max\{u_H^S, u_L^S\}$$

$$X_0 + p \geq V_S.$$

The first constraint is required to ensure S is willing to sell the firm in both states η_L, η_H. Since $u_L^S \geq u_H^S$ by Assumption 1(i), it reduces to $X_0 \geq u_L^S$. The second constraint prevents coalitional exit from the grand contract. Let (p^{NS}, X_0^{NS}) denote the solution to this problem, and Π^{NS} be the associated profit.

Proposition 4 Assume that $H(\bar{\theta}) > V_P > V_S > 0$. Then $\Pi^{BI} > \Pi^{NS}$.

The reasoning is as follows. Without learning S’s signal, it is optimal for P to offer an interior price $p^{NS} < \bar{\theta}$ to A, since $H(\bar{\theta}) > V_P$. The acquisition price X_0 paid to S
is at least u^S_L which is strictly greater than u^H_S, since $V_S > 0$. Hence S’s participation constraint is slack in state H. If P engages S, P can raise p_H slightly above p^{NS}, while selecting $b = p_L = p^{NS}$ and leaving X_0 unchanged. Owing to positive slack in S’s participation constraint in state H, this allocation is feasible in BI, and generates higher profit for P.

The result continues to hold when NS involves a sale of S’s firm in only one state, but not the other. Here P can learn the state from observing whether S accepts the BI offer. The case where S sells the firm in one state η_i but is not engaged is a special case of an allocation where BI results only in state η_i in which the payment to S is independent of what A produces ($b = 0$). Proposition 3 shows P can earn higher profit from an allocation where BI results with S engaged in both states.\footnote{Note that the conclusion relies on the assumption that NS and BI both involve the same fixed setup cost, which is reasonable since these setup costs pertain to the incremental (relative to NI) costs incurred by P of contracting and communicating with A.}

\section{Variations and Extensions}

5.1 Better Institutions in the South

What are the consequences of better institutions? The answer depends on the precise nature of the improvement. If the key problem with NI is poor accounting standards in the Southern country, there will be an improvement if S’s payments to A can be verified by P. In that case, sophisticated cost-based contracts can overcome the DMR problem, leaving no scope for integration to increase P’s profits.

Proposition 5 Suppose that $V_P < h_L(\bar{\theta})$. If P can verify side-payments between A and S, second-best profits ($\equiv \Sigma_i \kappa_i [F_i(p_i(V_P))(V_P - p_i(V_P)) - u^S_i]$) can be achieved in NI.

The argument (provided in the Appendix) is that with verifiable costs P can effectively mandate what price p_i S must pay A for delivering the output following
a cost report of η_i made by S to P. Corresponding payments X_i, b_i from P to S in the event of output being not delivered and delivered can also be stipulated in the NI contract. The only room for S to behave strategically is to misrepresent the true cost signal to P. This turns out to not be a problem: under the same condition as in Proposition 2, P has enough instruments to induce S to report truthfully while implementing the second-best allocation in NI. Note in particular that with cost verifiability, collusion between S and A has no bite in NI.

Suppose on the other hand that accounting standards are poor (resulting in non-verifiability of costs of separately owned firms), and improved institutions consist of reduced prospects for collusion between S and A. For instance, side contracts can no longer be enforced or involve considerable enforcement costs that generate deadweight losses in side-contracts. Then NI continues to be plagued by DMR, while BI achieves higher profits owing to lower collusion costs. In this case, improved institutions make vertical integration more likely. Hence the impact of better institutions overall are ambiguous, and can go either way.

5.2 Varying Bargaining Power between P and S

So far we assumed P has all the bargaining power in negotiating the acquisition with S. What happens if S also has some bargaining power? Suppose, for instance, that after P has decided to try to acquire S’s firm and has incurred the setup cost f, a third-party assigning welfare weight $\alpha \in [0, 1]$ to S designs the grand contract instead of P. If P decides to go the outsourcing route instead, the NI contract is designed by the same third-party with the same welfare weight α assigned to S.

If $\alpha \geq \frac{1}{2}$, S is assigned greater bargaining power than P. In this case, the optimal mechanisms in both NI and BI award zero rent to P, whence the DMR problem disappears and both NI and BI can attain second-best allocations. Hence shifting

25A participation constraint for P has to be added, to ensure that P earns non-negative expected profit.
bargaining power in favor of S makes BI less likely. This is the consequence of the assumption that in the bargaining between P and S, there is one-sided asymmetric information; whence raising the bargaining power of the informed party reduces the inefficiency underlying DMR. If asymmetric information were bilateral (e.g., if P were privately informed regarding the realization of V_P), the result would depend on the allocation of bargaining power *vis-a-vis* private information.

5.3 Forward Integration

Consider an alternative form of integration, where S acquires P’s firm and thus the right to sell the product in the world market at price V_P. Call this FI. The game corresponding to P’s offering FI instead of BI is as follows.

The grand contract offered by P consists of a ‘price’ Q at which P is willing to sell her firm to S. It is easy to check that there is no value from basing this on a message submitted by S, for the same reason that there is no value from basing the outsourcing price in NI on messages sent by S (i.e., that S can respond to P’s offer after consulting A). If S accepts the offer, it thereafter operates the integrated firm FI, hiring A to produce the product which is sold abroad at price V_P. S then ends up earning a net price of $V_P - Q$ for selling abroad, after subtracting the cost of purchasing the firm from P. This is equivalent to the NI alternative we have already considered where P offers an outsourcing price of $b = V_P - Q$. Hence if $\Pi^{BI} - f > \Pi^{NI}$, P will prefer to acquire S rather than sell his own firm to S.

This shows one prediction of our model which differs sharply from PR-theories of ownership: ownership of the integrated firm should rest with the party with the ‘less severe’ incentive problem.
6 Incentive and Welfare Implications of Integration

In this section we address questions pertaining to production, incentive and welfare implications of vertical integration, using non-integration as a benchmark. Owing to the complexity of the mechanism design problem within BI, we are unable to derive analytical results concerning these questions. However, optimal BI and NI allocations can be numerically computed, in specific examples. Here we consider the case where \(V_P = 1, \theta \) is uniformly distributed on \([0,1]\), signal probabilities \(\kappa_H = \kappa_L = 1/2 \) and the distributions of \(\theta \) conditional on signal realizations are given by \(F_L(\theta) = 2\theta - \theta^2, F_H(\theta) = \theta^2 \) (which correspond to linear likelihood functions \(a_L(\theta) = 1 - \theta \) for \(\theta \in [0,1] \) and \(a_H(\theta) = \theta \) for \(\theta \in [0,1] \) of the signal conditional on \(\theta \)).

Figure 6 plots operating profits of P under BI and NI respectively, as \(V_S \) (and hence degree of specificity) is varied over the range \([0,V_P]\) = \([0,1]\). It shows \(\Pi_{BI} \) and \(\Pi_{BI} - \Pi_{NI} \) are both decreasing in \(V_S \), while \(\Pi_{NI} \) is decreasing over a range of high \(V_S \) where S’s participation constraint binds and is constant for lower values of \(V_S \) where it does not.

The likelihood of procurement in either regime depends on the prices offered to A. We expect that BI will feature higher prices owing to a reduction in DMR. This is confirmed in Figure 7.

It is often argued that intra-firm contracts feature low-powered incentives compared to market relationships. The comparison of prices offered to A indicates that the integrated firm offers higher incentives to production level workers at the bottom of the organization. On the other hand, the incentive component in the aggregate payments to S and A, given by the bonus \(b \), behaves differently. Figure 8 shows that BI features a lower bonus than NI for high levels of specificity, and the same bonus for low specificity. At the same time BI features a positive base payment \(X_0 \) when the integrated firm produces nothing, at low levels of specificity. BI therefore involves
Figure 6: NI vs BI

Figure 7: Optimal Prices in NI and BI

Figure 8: Incentive Schemes

Figure 9: A and S’s payoffs
a reallocation of incentive payments between A and S: increasing them for bottom layer members while lowering them for ‘managers’ at intermediate layers, with the latter effect dominating.

Consider next the welfare impacts of BI. Figure 9 plots expected payoffs of A and S respectively. It is evident that production workers welfare increases, owing to the higher prices (i.e., efficiency wages) offered to them. For high specificity (low \(V_S\)) S is worse off under BI, while for lower specificity S’s payoff is unaffected (owing to a binding participation constraint over this range). Hence BI redistributes welfare from S to A when specificity is high. Figure 10 shows a higher impact on welfare in the Southern country, measured by the sum of A and S’s payoffs. As P is better off with BI whenever it occurs, this is reinforced when we consider world welfare, the the sum of P, S and A’s payoffs. The black line in Figure 11 plots world welfare, corresponding to fixed cost set at \(f = 0.05\). It shows that BI occurs only when specificity is large: when \(V_S\) is smaller than 0.55. The integration decision involves an externality: P makes the decision based on consequences of P’s own profit, disregarding the benefits accruing to the South country. Hence there is a discontinuous downward drop in world welfare at \(V_S = 0.55\): as \(V_S\) rises slightly above the threshold, P decides not to integrate. Over a range of values of \(V_S\) slightly above 0.55, there is too ‘little’ integration owing to this externality. However, for \(V_S\) close enough to \(V_P = 1\) non-integration is welfare optimal and this externality ceases to be relevant.

Figure 12 examines ‘pass-through’ of increases in \(V_P\) to A and S’s payoffs, by fixing \(V_S = 0.2\) and varying \(V_P\) over the range [0.2, 1]. We see higher pass-through to A and lower pass-through to S in BI. Hence a larger fraction of benefits of increases in export prices are passed on to workers, and less to intermediaries under integration.

These results concerning benign effects of FDI on worker welfare are however sensitive to our assumption concerning market concentration. So far we have considered a bilateral monopoly between P and S; in such a context BI replaces the monopsony of the local employer S (in contracting with A) by that of the foreign employer P.
Figure 10: Implication for Southern Welfare

Figure 11: Implication for Global Welfare with $f = 0.05$

Figure 12: Trickle Down Effects
Concerns about possible adverse impacts of FDI on worker welfare are often based on the possibility that it may increase employer market power. The following example provides support for such concerns. Suppose there are two identical entrepreneurs S_1 and S_2 in the Southern country, instead of just one. Both S_1 and S_2 know A and own the assets that A needs to produce with. Prior to P’s arrival, they compete to employ A, and have access to the same local market where either can sell the good at price V_S. To simplify, assume that neither obtains any cost signal. With Bertrand competition in the labor market, S_1 and S_2 earn zero profit and offer A a price of V_S, prior to the arrival of P.

P earns V_P by selling the good on the world market. In NI, P can procure the good from either S_1 or S_2. If P offers them both a price $b(\geq V_S)$, subsequent competition between S_1 and S_2 induces them to both offer A a price equal to b. This eliminates intermediary rents and hence DMR in NI. P selects b which maximizes $F(b)(V_P - b)$ subject to $b \geq V_S$. Let p^+ denote the unconstrained maximizer of $F(p)(V_P - p)$. Then it is optimal for P to offer $b^* = \max\{p^+, V_S\}$. The payoff of A is $\max\{b^* - \theta, 0\}$ in state θ, while P’s expected payoff is $F(b^*)(V_P - b^*)$.

Now consider the case where P offers BI to both S_1 and S_2 for a small payment of $\epsilon > 0$. If accepted by S_i ($i = 1, 2$), S_i promises to disclose A’s identity to P and not compete with P in offering a contract to A. If both S_1 and S_2 accept this offer, P acquires both firms, and thereafter contracts directly with A, offering p^+ which maximizes $F(p)(V_P - p)$. P’s payoff is then $F(p^+)(V_P - p^+) - 2\epsilon$. If both reject P’s offer, S_1 and S_2 receive zero payoff as in the status quo. If S_i accepts, while S_j does not, competition between P and S_j results in S_j earning zero while S_i earns ϵ. Therefore accepting P’s offer is a dominant strategy for both S_1 and S_2. Since ϵ can be made arbitrarily small, P can earn the right to contract directly with A via BI at negligible cost in this manner.

It is evident that P will be better off with BI than NI when $V_S > p^+$ and $F(p^+)(V_P - p^+) - f > F(V_S)(V_P - V_S)$. In contrast to our results above, A is
worse off whenever BI is selected, receiving a lower price \((p^+ \text{ instead of } V_S) \). Here vertical integration eliminates competition between \(S_1 \) and \(S_2 \) which ends up hurting \(A \). Non-integration which involves zero rents earned by intermediaries, is replaced by integration where \(P \) earns rents at the expense of \(A \).

Finally, many empirical studies of FDI have shown that it is more likely to happen in industries with more R&D intensive and higher quality products involving higher export values as well as production costs. Such products would involve higher values of \(V_P \) and \(V_S \), as well as cost \(\theta \). The effect of scaling up \(V_P, V_S, \theta \) uniformly will make BI more likely, since this is equivalent to scaling down the setup cost \(f \) for fixed \(V_P, V_S, \theta \).

7 Conclusion: Summary of Predictions, Related Literature and Empirical Evidence

Our model yields the following predictions: vertical integration is more likely to be observed when (a) specificity is high; (b) fixed costs of setting up an integrated firm in the Southern country are low, owing to fewer regulations, superior communication and information technology, and closer proximity between the two countries; (c) in higher value industries and products. The effects of better institutions depend on the precise source of improvement: improved accounting standards \textit{per se} lower the value of integration, while lower collusion prospects within firms raise the value of integration.

Other predictions pertain to the nature of integrated firms, and their welfare effects. (e) Intermediaries whose firms are acquired will be engaged as consultants or managers in the integrated firm. Delegation of authority to such managers is limited, in order to ensure better treatment of workers compared with non-integration. (f) Worker welfare, wages and productivity will be higher in integrated firms. (g) Intermediaries will be worse off, if specificity is high enough. In such instances they
will lobby Southern country governments to prevent FDI deregulation, though aggregate Southern welfare will be higher with FDIs. (h) Integrated firms will pass on a larger share of increased firm revenues to workers when consumers are willing to pay more for the product. (i) Backward rather than forward integration occurs when the Southern country supplier rather than the Northern firm is subject to incentive problems.

The empirical literature on multinational firms provides evidence consistent with predictions (a), (b) and (c), which also coincide with predictions made by PR-based theories. Many studies have confirmed that the share of intra-firm trade in total trade is positively correlated with capital intensity, R&D intensity and skill intensity both across industries and across firms. More productive firms are more likely to engage in FDI rather than outsourcing (Tomiura (2007)). Greater distance (both physical and cultural) between countries makes FDI less likely (Gorodnichenko et al. (2015)), while enhanced information and communication technology raise intra-firm trade shares (Chen and Kamal (2016), Cristea (2015)).

Regarding effects of better institutions in the South, no study that we are aware of distinguishes between effects of improved accounting standards and reduced collusion. While some studies (e.g., Corcos et al. (2013)) show FDI positively correlated with governance and contract enforcement institutions in the host country, other studies show ambiguous results: e.g., Bernard et al. (2010) find that increased governance quality raises the probability that foreign affiliates are present, it also lowers intra-firm trade shares conditional on existence of a foreign affiliate.

Standard PR-based theories do not make any particular predictions analogous to (e)–(h) concerning internal organization of integrated firms, spillover welfare effects or pass-through of firm revenues to workers or customers. A number of empirical papers provide evidence consistent with our predictions. Neiman (2010) and Hellerstein and Villas-Boas (2010) show in specific US industries that integrated firms pass on

effects of exchange rate or other external shocks at a significantly rate to customers; they explain this result by lower incidence of DMR. Conyon et al. (1999) show that acquisitions by foreign firms raised worker wages significantly while those acquired by domestic owners lowered wages, after controlling for firm, industry and year dummies in a sample of 600 British firms. Similar wage effects of FDI are reported by Lipsey (2004). Studies of FDI effects on farming sector in various African, Asian and East European countries generally show positive effects on farmers and small suppliers (Dries and Swinnen (2004), Minten et al. (2009), Maertens et al. (2011), Rao and Qaim (2011) and Michelson et al. (2013)).

Finally, concerning prediction (i) regarding backward versus forward integration, which differentiates our theory from the PR-approach, casual empiricism suggests that backward integration by Northern MNCs is more common. However, we are not aware of any careful evidence on this issue. Our model therefore suggests the need for further empirical work testing predictions (e)-(i).

References

Appendix: Proofs

Proof of Lemma 1:

For an arbitrary allocation which satisfies (1, 2, 3, 4, 8), construct the following grand contract. If A and S report the same \(\eta = \eta_i \) to P, S receives \(b + X_0 - p_i \) and A receives \(p_i \) when A delivers the good, while S receives \(X_0 \) and A receives 0 when A does not deliver. If they submit different reports, they are punished with large negative transfers.

Given this grand contract, there exists a PBE in which S offers a null side-contract to A. Along the equilibrium path, S and A play P’s mechanism non-cooperatively, participate in the mechanism and report \(\eta_i \) truthfully. A produces the good if and only if \(\theta \leq p_i \). If S offers a non-null SC, attention can be confined to SC’s which A always accepts and behaves in an incentive compatible fashion. The stated conditions ensure that there is a PBE where S offers a null side contract, and there does not exist any alternative PBE which is interim Pareto superior for the coalition.

Proof of Proposition 2: If \(p^{NI}_L < \tilde{\theta} \), the argument described in the text shows that \(\Pi^{BI} > \Pi^{NI} \). So suppose that \(p^{NI}_L = \tilde{\theta} \). Since \(p^{NI}_L \leq p^{NI}_H \) (owing to \(h_L(\theta) > h_H(\theta) \) on \((\theta, \tilde{\theta}] \) by Assumption 1(i)), we have \(p^{NI}_L = p^{NI}_H = \tilde{\theta} \). This implies that \(b^{NI} \geq h_L(\tilde{\theta}) > h_H(\tilde{\theta}) \).

First consider the case that \(h_L(\tilde{\theta}) > V_S \). Then P would never want to raise \(b^{NI} \) above \(h_L(\tilde{\theta}) \) as this is an upper bound to the cost incurred by S in ensuring that the good is delivered. Hence we have \(b^{NI} = h_L(\tilde{\theta}) \) and P attains a profit of \(\Pi^{NI} = V_P - h_L(\tilde{\theta}) \). On the other hand, P can select the following allocation in BI: \((p_L, p_H, b, X_0) = (\tilde{\theta}, \tilde{\theta}, h_L(\tilde{\theta}) - \epsilon, 0) \). For sufficiently small \(\epsilon > 0 \), this satisfies all constraints of the problem in BI and P earns a profit of \(V_P - b^{NI} + \epsilon \), which is higher than \(\Pi^{NI} \).

Next consider the case that \(h_L(\tilde{\theta}) \leq V_S \). Then \(b^{NI} = V_S \) and \(\Pi^{NI} = V_P - V_S \). On the other hand, P’s payoff in BI cannot exceed \(V_P - V_S \), since \([\kappa_H F_H(p_H) + \]
\[\kappa_L F_L(p_L)(V_P - b) - X_0 \leq [\kappa_H F_H(p_H) + \kappa_L F_L(p_L)](V_P - b - X_0) \leq V_P - V_S. \] This completes the proof.

Proof of Proposition 3:

(a) Here we show that any allocation achieved with BI only for state \(\eta_i \), with no trade between P and S in the other state \(\eta_j \) generates strictly lower payoff than \(\Pi^{BI} \).

Since S earns at least \(u^S_i \) in \(\eta_i \), an upper bound to P’s payoff is

\[\kappa_i [F_i(p_i(V_P))(V_P - p_i(V_P)) - u^S_i] \]

where \(p_i(V_P) \equiv \arg\max_{p_i \in [0,1]} F_i(p_i(V_P))(V_P - p_i(V_P)) \).

27 P can design the BI mechanism which exactly achieves (10) in an equilibrium. Consider the BI mechanism as follows. In state \(i \), S receives \(b - p_i + X_0 \) (or \(X_0 \)) for the delivery (or non-delivery) of the good, while A does \(p_i \) (or none) for the delivery (or non-delivery). In state \(j \) (\(j \neq i \)), S receives \(b - p_j + X_0 - u_{Aj} \) (or \(X_0 - u_{Aj} \)) and A does \(p_j + u_{Aj} \) (or \(u_{Aj} \)) for the delivery (or non-delivery).

In the non-cooperative play of the mechanism, the truthful telling of each state (\(i \) or \(j \)) is ensured by the cross checking scheme. P can select \(u_{Aj} \) such that S prefers to reject BI offer only in \(j \). It is easy to find \((b, X_0, p_i, p_j)\) which achieves (10), satisfying all conditions.
which is strictly greater than (10) since \(V_P > b \). We need to check that this allocation satisfies all conditions in Lemma 1. Since (2, 3, 4) are obviously satisfied from the construction. Since \(u_i^S \geq F_i(p_i(V_P))(V_S - p_i(V_P)) \) implies \(b + x_0 = b \geq V_S \) or (1). The selection of \(b \) implies \(b \geq \max\{p_i(V_P), p_j(V_P)\} \geq \max\{\hat{l}_i(p_i(V_P)), \hat{l}_j(p_j(V_P))\} \).

If \(p_i(V_P) < \bar{\theta} \), \(h_i(p_i(V_P)) = V_P > p_i(V_P) + \frac{u_i^S}{F_i(p_i(V_P))} = b \). Similarly if \(p_j(V_P) < \bar{\theta} \), \(h_j(p_j(V_P)) = V_P > b \). This argument guarantees (8).

Case 2

By the definition of \(u_j^S, u_i^S = F_i(p_i(V_S))(V_S - p_i(V_S)) \geq F_i(p_i(V_P))(V_S - p_i(V_P)), \)

implies

\[
p_j(V_P) + \frac{u_j^S}{F_j(p_j(V_P))} > p_i(V_P) + \frac{u_i^S}{F_i(p_i(V_P))} \geq V_S = p_j(V_S) + \frac{u_j^S}{F_j(p_j(V_S))}.
\]

Since \(p_j(V_S) < p_j(V_P) \), there exists \(\hat{p}_j \in [p_j(V_S), p_j(V_P)) \) such that

\[
\hat{p}_j + \frac{u_j^S}{F_j(p_j)} = p_i(V_P) + \frac{u_i^S}{F_i(p_i(V_P))}
\]

and

\[
d[p_j + \frac{u_j^S}{F_j(p_j)}]/dp_j \big|_{p_j=\hat{p}_j} = 1 - \frac{u_j^S f_j(\hat{p}_j)}{F_j(\hat{p}_j)} \geq 0.
\]

Obviously \(\hat{p}_j > \bar{\theta} \). The latter condition can be rewritten as

\[
h_i(\hat{p}_j) \geq \hat{p}_j + \frac{u_j^S}{F_j(\hat{p}_j)} = b.
\]

Consider allocation \((p_i, p_j, b, x_0) = (p_i(V_P), \hat{p}_j, p_i(V_P) + \frac{u_j^S}{F_j(p_j(V_P))}, 0)\). P’s payoff in this allocation is

\[
\kappa_i[F_i(p_i(V_P))(V_P - p_i(V_P)) - u_i^S] + \kappa_j F_j(\hat{p}_j)(V_P - b),
\]

which is strictly greater than (10) since \(V_P > b \) and \(\hat{p}_j > \bar{\theta} \). (2, 3, 4) are obviously satisfied. The same argument as (Case 1) can apply to show (1), \(b \geq \max\{\hat{l}_i(p_i(V_P)), \hat{l}_j(p_j)\} \) and \(h_i(p_i(V_P)) > b \) for \(p_i(V_P) < \bar{\theta} \). We also have already
checked that \(h_i(\hat{p}_j) \geq \hat{p}_j + \frac{u_j^S}{f_j(\hat{p}_j)} = b \), guaranteeing (8). This completes the proof of (a).

We now prove (b). Suppose that the optimal payoff is achieved with NI for signal state \(i \) \((i = L, H)\) and BI for signal state \(j \) \((j \neq i)\). Then optimal allocation \((b^*, X_0^*, p_i^*, p_j^*)\) satisfies \(h_i(p_i^*) = b^* \) and \(p_i^* < \bar{\theta} \), since \(b^* < V_p < h_H(\bar{\theta}) < h_L(\bar{\theta}) \). Now consider a small rise of \(p_i \) from \(p_i^* \) to \(p_i^{**} \) such that \(p_i^{**} = p_i^* + \epsilon < \bar{\theta} \) with \(\epsilon > 0 \). \(X_0 \) is also raised from \(X_0^* \) to

\[
X_0^{**} = F_i(p_i^*)(b^* - p_i^*) + X_0^* - F_i(p_i^{**})(b^* - p_i^{**}).
\]

Notice that \(X_0^{**} \) is greater than \(X_0^* \) since \(p_i^* \) maximizes \(F_i(p_i)(b^* - p_i) \). Now consider allocation \((b^*, X_0^{**}, p_i^{**}, p_j^*)\). It is evident that P’s payoff in this allocation is greater than that in the original one for sufficiently small \(\epsilon \). We can also check that this allocation satisfies all conditions in Lemma 1 for sufficiently small \(\epsilon \). This completes the proof of Proposition 3.

Proof of Proposition 4: Let \(p^* \) be the maximizer of \(F(p)(V_p - p) \). Then \(p_L^L(V_S) < p^* < \bar{\theta} \) from our conditions. First it is shown that \(p_{NS} < \bar{\theta} \) (or interior solution) under \(H(\bar{\theta}) > V_P > V_S > \theta \). We can consider two cases: \(u_L^S \geq V_S - p^* \) and \(u_L^S < V_S - p^* \):

(i) If \(u_L^S \geq V_S - p^* \) (which occurs with small \(V_S \)), \(X_0 + p \geq V_S \) is not binding. Then the solution is \((p_{NS}^*, X_0^{NS}) = (p^*, u_L^S)\). It also implies \(p_{NS}^* < \bar{\theta} \).

(ii) If \(u_L^S < V_S - p^* \), the second constraint is binding in the solution or \(X_0^{NS} + p_{NS} = V_S \). Then \(X_0^{NS} = V_S - p_{NS} \geq u_L^S \). Since \(V_S - \bar{\theta} < u_L^S \) with \(p_L(V_S) < p^* < \bar{\theta} \), \(p_{NS} < \bar{\theta} \).

Next let us consider allocation \((p_L, p_H, b, X_0) = (p_{NS}^*, p_{NS}^*, p_{NS}^*, X_0^{NI})\) as a starting point. It is evident that this satisfies all constraints of BI problem and generates \(\Pi_{NS} \) to P. Now we consider a small variation from this allocation to

\[
(p_L^*, p_H^*, b^*, X_0^*) = (p_{NS}^*, p_{NS}^* + \epsilon, p_{NS}^*, X_0^{NI}).
\]
Since \(u_L^S > u_H^S \) for \(V_S > 0 \), this satisfies

\[
F_H(p'_H)(b'_H - p'_H) + X'_0 = -\epsilon F_H(p^{NS} + \epsilon) + X'_0 \geq -\epsilon F_H(p^{NS} + \epsilon) + u_L^S \geq u_H^S
\]

for sufficiently small \(\epsilon > 0 \). It means that this allocation also satisfies all constraints of the problem in BI, and P’s payoff is greater than \(\Pi^{NS} \).

Proof of Proposition 5: Suppose that P offers \((b_i, X_i, p_i)\) to S in NI. For S’s report of \(\eta = \eta_i \), this specifies payments to S \((b_i + X_i)\) for the delivery and the non-delivery, and also price \(p_i \) paid from S to A. Without loss of generality, our attention is restricted to a mechanism which induces the S’s participation and truthful telling of \(\eta \), which satisfies the following conditions:

\[
F_i(p_i)(b_i - p_i) + X_i \geq u_i^S
\]

and

\[
F_i(p_i)(b_i - p_i) + X_i \geq F_i(p_j)(b_j - p_j) + X_j.
\]

We check that the second-best allocation is achievable in this mechanism. The second-best allocation requires \(p_i = p_i^{SB} \equiv p_i(V_P) \) and \(F_i(p_i^{SB})(b_i - p_i^{SB}) + X_i = u_i^S \) to be satisfied for \(i = L, H \). There conditions are equivalent to \((b_L, b_H)\) which satisfies

\[
u_L^S \geq u_H^S + [F_L(p_H^{SB}) - F_H(p_H^{SB})](b_H - p_H^{SB})
\]

and

\[
u_H^S \geq u_L^S + [F_H(p_L^{SB}) - F_L(p_L^{SB})](b_L - p_L^{SB}).
\]

Our assumption \((V_P < h_L(\bar{\theta}))\) implies \(p_L^{SB} < \bar{\theta} \) and \(F_H(p_L^{SB}) < F_L(p_L^{SB}) \). These conditions are satisfied at \(b_H = p_H^{SB} \) and

\[
\frac{u_L^S - u_H^S}{F_L(p_L^{SB}) - F_H(p_L^{SB})}.
\]