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Abstract

We present a theory of long run inequality and automation driven by capital accumulation rather
than technical progress. Rising capital-labor ratios lower the prices of “robots,” which then dis-
place human workers to different degrees in heterogeneous production sectors. Under a singular-
ity condition on the technology of the robot-producing sector, humans eventually get displaced
by robots in the production of robots. Thereafter, rising outputs can be produced using capital
and robots alone, leading to progressive automation of all other sectors in the economy, and caus-
ing capital’s share in national income to approach 100%. At the same time, real wages rise in
the long run in the absence of barriers to inter-sectoral mobility. However, when the singularity
condition does not hold, the robot sector and some final goods sectors are forever protected from
automation, allowing (human) labor to retain a positive fraction of income. Our theory is backed
by existing empirical evidence, and explains how capital’s share of income can rise following
capital accumulation despite low capital-labor elasticities of substitution in all sectors.

1. INTRODUCTION

The growing evidence for a declining labor share in income worldwide over the past few decades
(Karabarbounis and Neiman 2014, Piketty 2014) has generated active debate concerning possible
explanations. Piketty’s “r > g” theory has been severely criticized (Acemoglu and Robinson
2015, Mankiw 2015, Ray 2015). Explanations in terms of capital-labor substitution along some
aggregate CES production function have also been subject to controversy: e.g., standard theories
require capital-labor substitution elasticities exceeding one, rejected by panel studies of industry
level production functions (Chirinko and Mallick 2014).

An important driver of these distributional changes is the growing trend toward automation in
the workplace, commonly attributed to capital-augmenting technical progress. In this paper we
seek to draw attention to a different source of automation, which arises from ongoing capital
accumulation. To highlight this channel, we develop a model which abstracts away altogether

1Mookherjee thanks the Department of Economics at NYU for hosting his visit in Fall 2017 when this paper was
written. Ray acknowledges funding from the National Science Foundation under grant SES-1629370.
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from technical progress. Instead, labor replacement is driven by endogenous changes in rela-
tive prices that are consequences of the sustained rise in the economy wide capital-labor ratio.
There is empirical evidence for this channel: Karabarbounis and Neiman (2014) show that a sub-
stantial fraction of the decline in labor share worldwide is explained by declining capital good
prices, even after controlling for capital-augmenting technical progress, markup rates and skill
composition of the labor force.

At the risk of some caricature, think of two inanimate production inputs: robot services (or sim-
ply robots) and machines. The former could be software or hardware and is itself produced.
By automation, we refer to the substitution of human labor by robot services. That is, either
humans or robots — or both — generate an abstract “labor input” (operating tasks, supervision,
quality control and the like). Such labor is then combined with machines to produce various
intermediate or final goods. This production function is standard, and could incorporate various
degrees of substitution elasticity between labor and machines, generally varying across sectors.
Furthermore, sectors could differ with respect to their relative proneness to automation, as de-
tailed below. Though we discuss directed technical progress, our core model entirely abstracts
from technical change by assuming these sectoral characteristics are unchanging over time.

Capital, then, is a vector of different things. There is, of course, the usual distinction between
human and physical capital, and we retain that here (though without a specific focus on it) by
allowing human labor to acquire education. But in addition, we think of physical capital as
some abstract, durable object that can “produce” both machines and robots. We don’t draw any
distinction at all between physical capital and machines, and match these one for one. But robots
— or more precisely, robot services, are produced using both machines (“capital”) and labor.

Now consider physical capital accumulation, which causes the price of capital to fall relative to
human. Because robot services are created by capital and labor, the prices of such services will be
sandwiched between the return to capital and wages of humans, who are technicians, engineers
and researchers active in the robot sector. The central question is whether robot prices will be
tied more closely to human wages or to the price of capital as capital continues to accumulate.

We argue that the presence of a crucial singularity, first envisaged by von Neumann in his work
on self-reproducing automata,2 determines the answer to this question. If the robot sector can
itself be eventually automated — for which we provide conditions on the underlying technology
— the price of robots becomes tied to that of capital, causing sustained automation and pushing
the share of capital to approach 100% in the long run. This argument applies independently of
within-sector capital-labor substitution elasticities, specific patterns of demand, heterogeneity of
skills or opportunities for human capital accumulation. In short, the “effective economy-wide
substitution elasticity” exceeds one, even if it is less than one within every sector, owing to the
changing composition between automated and non-automated sectors.3

In contrast to models of directed technical change, this is a simpler, more primitive theory. Under
the singularity condition, automation emerges as a consequence of myopic profit-maximizing

2See von Neumann and Burns (1966).
3Alternatively, the model can be applied at the level of a specific industry, which contains firms that vary in their

proneness to automation: industry-level substitution elasticities can then exceed one as an increasing proportion of
firms automate, even if they are below one within any given firm.
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decisions as capital is progressively accumulated per capita. As in classical theories, we focus
on the direct effect of such accumulation on the long run distribution of income between capital
and labor. Specifically, our treatment of labor as a fixed factor runs parallel to Ricardo’s theory
of rent, where land is a fixed factor, the relative returns to which rise as other inputs continue
to expand around it. Profit maximizing behavior must then favor the choice of technologies that
conserve on land needed in industrial production, which in turn limits the growth of rents and
frees industrial growth from the stranglehold of land fixity. In our world, it is labor that is the
fixed factor, and capital that accumulates. This raises wages, making labor more expensive as an
input in production. In the presence of the singularity condition, the resulting upward movement
in wages motivates firm owners to automate production. At the same time, the dance is delicate:
human wages cannot climb too fast, for then automation would be widespread, but they cannot
universally stagnate either, for then the motive to automate would vanish.

Without singularity, it may still be true that humans in some downstream industries face layoffs
or wage declines. But the rising demand for automation will raise employment and wages in the
upstream high-tech sectors. This offset vanishes in the presence of singularity: robots combine
with increasing flows of capital to produce more efficient robots, thereby ensuring perennial
robot creep into every sector in the economy. This is not merely a hypothetical possibility. The
Technology section of the New York Times (November 5, 2017) reports:

“They are a dream of researchers but perhaps a nightmare for highly skilled computer
programmers: artificially intelligent machines that can build other artificially intelligent
machines . . . Jeff Dean, one of Google’s leading engineers, spotlighted a Google project
called AutoML. ML is short for machine learning, referring to computer algorithms that
can learn to perform particular tasks on their own by analyzing data. AutoML, in turn, is a
machine-learning algorithm that learns to build other machine-learning algorithms. With it,
Google may soon find a way to create A.I. technology that can partly take the humans out
of building the A.I. systems that many believe are the future of the technology industry.”

The singularity condition we derive may be of some intrinsic interest, apart from its implications.
It compares two objects: the elasticity of substitution of capital for operating tasks (or labor for
short) performed by humans or their robot equivalents, and the efficiency of robots relative to
humans in providing labor. The condition is automatically met if the former elasticity equals or
exceeds 1, but it is consistent with sub-unitary elasticities of substitution, the exact magnitude
depending on the efficiency of robot-human substitution in the robot sector. It should be noted
that while the singularity condition has economy-wide ramifications, it is a condition on the robot
sector alone — we place no restriction on substitution elasticities in any other sector.

In summary, we examine the long run consequences of capital accumulation with a stationary
population. Workers can respond to changes in the labor market by investing in skills needed to
move to yet-to-be-automated sectors with higher wages. We establish the following results.

First, if the singularity condition holds, all final good sectors will eventually be automated,
though of course at any specific date there will exist sectors that still reply on human labor
(Proposition 1). Note well that a condition on a single sector has repercussions for all sectors.
Next, Proposition 2 describes the distributional consequences of such automation. Initially, there
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could be upward pressure on human wages in the robot-producing sector, thereby transferring to
workers some of the gains from downstream automation. But if the singularity condition holds,
this process will come to a halt at some stage, and the benefits from downstream automation
then no longer accrue to workers. Via this roundabout process, capital substitutes for labor in the
economy as a whole. Effectively, capitalists can appropriate a larger share of incomes generated
within the robot sector, and capital’s share of national income approaches 100%.

The singularity condition is also necessary for these results. If the robot sector is never au-
tomated, the labor share of earnings in that sector does not vanish, and humans appropriate a
positive share of income in the long-run via earnings in the robot sector, and possibly in other
final good sectors where humans are at least as hard to displace as in the robot sector.

Our third result (Proposition 3) describes the implications for wages as capital is progressively
accumulated. As each final good becomes automated, the wage in that sector is tied down by the
cost of robots in that sector, and there is potential displacement of human workers. The cost of
such displacement rises with the relative efficiency of humans vis-a-vis robots, and so there must
be upward pressure on some wages in order to generate further automation. Indeed, with free
worker mobility across sectors, there is a single economy-wide wage rate which tends eventually
to the upper bound of relative human efficiency across all sectors. Under specific assumptions
such as Cobb-Douglas preferences and technology, capital accumulation and progressive au-
tomation raises the real wage rate monotonically over time, at the same time that the share of
labor in income is declining.4

Our model deliberately avoids a number of potentially important and relevant complications. As
already mentioned, we abstract from technical progress so as to throw light on the effects of cap-
ital accumulation per se. In this respect our approach stands in contrast to the one in Acemoglu
and Restrepo (2017). We do not model the consumption-saving decisions of households, and the
resulting process of capital accumulation. These are inessential to our results. All we need is
that in the long run the net savings rate is bounded away from zero, thereby ensuring that per-
capita capital grows without bound. If long-run capital is bounded (by rising depreciation rates,
dwindling saving rates or limits to environmental resources), our results can be interpreted as
approximations to outcomes realized when the bound is sufficiently large. Moreover, we focus
on economies with a fixed set of goods, and do not allow for emergence of new sectors. To the
extent that new goods constantly appear in which humans are (at least temporarily) more efficient
than robots, labor could retain a positive share of income in the long run even if the singularity
condition holds.

Finally, as in 19th century classical theories, we focus on the functional distribution of income
between capital and labor, rather than the distribution of personal incomes (which obviously
depends on household investments in different kinds of capital). Whether any given household
will be able to earn incomes on par with the rest of the economy will depend on the extent to
which they either become capital owners, or move into sectors where humans are more efficient
relative to robots. The simplicity and tractability of the model may allow it to be useful in
analyzing effects of fiscal policies such as capital taxes, education subsidies, universal basic
income or other interventions to address the distributional consequences of automation.

4A monotonic rise of the human wage may not obtain in more general settings.
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2. RELATED LITERATURE AND EMPIRICAL EVIDENCE

Karabarbounis and Neiman (2014) provide evidence of a significant decline in labor share of
income (of the order of 5 percentage points) worldwide since the early 1980s, which occurred
within a large majority (6 out of 10) of industries. They show this can be explained by a decline
in the relative price of capital goods (of the order of 25% since 1975), attributed to advances
in information and communication technology. Using cross-country panel data at the economy-
wide as well as one-digit industry level, they estimate a capital-labor substitution elasticity of
1.25. Their results are unaffected by controlling for markup rates, capital-augmenting technical
change or skill composition of the labor force. In the model they present to explain their results,
however, the decline in the price of capital goods is explained by exogenous capital-augmenting
technical progress.

Our model can explain these findings, where the economy (or industry) is interpreted as a com-
posite of different sectors with differential proneness to automation. Our model predicts a de-
cline in the price of capital goods arising from capital accumulation, even in the absence of any
technical progress. Consistent with this, Chirinko and Mallick (2014) show a stable negative
relationship between changes in the the long run relative price of capital and growth in capital
output ratios within US industries between 1975-2000. The substitution elasticity within spe-
cific sectors could be less than one, which is what Chirinko and Mallick find at a lower level of
aggregation (2-digit industry level).

Models based on exogenous or endogenous technical progress could also account for rising au-
tomation, provided they are sufficiently capital-biased. Acemoglu and Restrepo (2017) provide
a model of endogenous technical progress where capital-biased shifts in the automation frontier
within the range of existing tasks can co-exist with labor-biased creation of new tasks. They
show the existence of balanced growth paths for suitable parameter values, where both kinds
of technical progress co-exist in the long run. For other parameter values (low enough rates of
time preference of households) which generate high rates of capital accumulation, the forces of
automation dominate, similar to our model. Our model is considerably simpler than theirs; our
approach which focuses on effects of capital accumulation per se complementary to theirs which
focuses on effects of technical progress. As mentioned above, the value of our approach is that it
helps explain the findings of Karabarbounis and Neiman (2014) which are robust to controlling
for capital-augmenting technical progress.

Finally, alternative explanations for declining labor share is provided by Autor et al (2017) in
terms of heterogeneity of firms within industries in markup rates or ratio of fixed non-labor costs
to fixed labor costs which affect labor’s share of value added. Increasing competition shifts
the composition of industries in favor of ‘superstar’ firms with higher markup rates or fixed
non-labor costs, thereby lowering the share of labor at the industry level though not at the firm
level. This explanation is complementary to ours. As Karabarbounis and Neiman (2014) show,
higher markup rates do contribute to explaining some of the decline in labor’s share, but they are
orthogonal to the role of declining prices of capital goods that they document.
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3. MODEL

3.1. Technology and Preferences. There is a continuum of final goods indexed by i ∈ (0, 1),
each produced according to

(1) yi = fi(ki, `i)

where fi is an increasing, smooth, strictly quasi-concave, linearly homogeneous production func-
tion with fi(k, 0) = fi(0, `) = 0 and exhibiting continuity in the index i. The input k stands
for capital or machine input not including robots, and ` stands for labor, representing operating
tasks traditionally performed by humans (h), but which can be automated by the use of robots (r).
Each unit of human labor h is equivalent to one unit of labor `, while each unit of robot labor r
is worth 1

λi
units of labor ` in sector i. Hence λi denotes the efficiency of human labor relative to

robot labor in sector i. This is determined by the level of (exogenous) technical progress. Since
we seek to abstract from the presence of such progress, we treat λi as a technological parameter,
fixed once and for all in any given sector. We then have `i = (ri/λi) + hi.

While the assumption of linear substitutability of robots for humans simplifies the analysis, it is
not essential. Our results will extend to contexts of less than perfect substitutability where one
factor may cease to be used if its relative price is sufficiently high. Note also that humans may
continue to work in automated sectors in our model, provided they are willing to work at a wage
which renders employers indifferent between them and robots.5

Index sectors so that λi is nondecreasing in i, so that by construction, sectors with lower i are
ones where robots are intrinsically more capable of displacing humans. For ease of exposition,
assume that λi is continuous and strictly increasing in i. We assume that no sector can be freely
automated or is fully protected; that is, λi ∈ (0,∞) for all i ∈ [0, 1].

Robots are produced in a separate sector r with technology

(2) yr = fr(kr, `r),

with `r = (rr/λr)+hr, where λr ∈ (0,∞) is the efficiency of humans relative to robots.6 Hence
humans could be displaced from the production of robots if robot prices fall enough relative to
wages. We refer to such a scenario as the von Neumann singularity.

There is also an education sector with a corresponding production function

(3) ye = fe(ke, `e),

with `e = (re/λe) + he, and λe ∈ (0,∞). As in any other sector, human teachers could be
displaced by “robots” (say, MOOCs). This assumption is not essential to our results, and is used
only to derive implications for wage dynamics when labor is able to move across sectors.

In both these sectors, as in every final goods sector, the production function is assumed to be
increasing, smooth, strictly quasi-concave, and constant returns to scale, with both inputs needed

5This will happen, for instance, if workers have specific skills which tie them to particular sectors, and are limited
in their ability (at least in the short run) to move to other sectors. Then automation will be accompanied by continued
employment of those workers, while limiting their subsequent wage growth as the sector continues to expand.

6We hope that the slightly odd notation rr will not cause any confusion.
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for positive production. The index j will be used as generic notation for a final goods sector as
well as the robot or education sector, while we reserve the index i for a final good. The set of
final good sectors is denoted by I, and the set of all sectors by S ≡ I ∪ {r, e}.

Finally, on the preferences side, all households share the same homothetic utility function

(4) U = U(y)

where y is the output vector of final goods. By homotheticity, expenditure shares on each final
good are independent of income distribution, though they could depend on final goods prices
p = {pi}. For our purposes it will suffice to consider only bounded, continuous price functions.
An expenditure share function {β(p)} maps p to a distribution of nonnegative expenditures
over goods — with total income normalized to one — so that

∫ 1
0 βi(p)di = 1 for any bounded

continuous p. (Thus the demand for good i by a person with income y is given by βi(p)y/pi.)
Assume that βi(p) is positive for all i and continuous in i whenever p is continuous, positive
everywhere and bounded, and for each i βi(p) is continuous in all bounded p (in the sup norm).

3.2. Prices and Unit Costs. We use machine capital as numeraire, so the price of k will be
set at 1. The other prices are (p, pr, pe), which is the price system for all final goods, robots
and education, and ({ωi}, ωr, ωe), which is the wage system in all sectors (with free mobility of
labor, these wages would all be the same, but not otherwise).

By constant returns to scale and the assumption of a price-taking competitive economy, we know
that all prices will be pinned down by unit costs of production. That is, output and input prices
are connected by:

(5) pj = cj(1, νj),

where 1 is the normalized return to machine capital, νj ≡ min{ωj , λjpr} is the effective price
of the labor input in sector j, and cj is the unit cost function, dual to the production function fj .
This cost function has standard properties, which we shall have occasion to invoke below.

3.3. Factor Endowments and Labor Supply. There is a given endowment K̄ of machine cap-
ital, which moves freely across sectors. Robot services are produced within the period and are
not part of the physical capital endowment. Note that the physical capital or hardware embod-
ied in robots constitute part of the capital endowment of the economy. The production function
yr describes how robot or IT services are produced from the robot or computer hardware, in
combination with operating tasks performed either by humans or computers.

The other endowment is human labor. We normalize the total population to 1. We want to
accommodate a variety of human capital models. We allow humans to differ in the skills they
are born with. Those skills could be sector-specific. So we take as given some initial allocation
of the population across sectors, and also invent a place-holding “null sector” where individuals
without any particular initial proclivity can be placed at some baseline wage of ω > 0. (Our
results are completely independent of these initial assignments.) Upon acquiring education, an
individual can move from one sector to another, hereafter providing one unit of labor to that
sector with no disutility. To move from sector j to j′ a person needs ejj′ units of education,
which is assumed to be continuous in the indices j and j′. Education is purchased from the
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education sector (already described) at a unit price of pe.7 Therefore equilibrium wages and
human allocation must satisfy the necessary condition that if any sector j is occupied by human
labor, then for each alternative sector i, there must exist some sector m such that it is preferable
to move from m to j rather than from m to i:

(6) ωj − peemj ≥ ωi − peemi.

If this (weak) necessary condition is not satisfied, it is not possible for sector j to have a positive
supply of human labor. As we shall see, our main results concerning the dynamics of automation
and income distribution between labor and capital do not depend on further explicit restrictions
on sectoral choice, or how workers are allocated across sectors at the beginning of any date.

Finally, we presume that moving to the null sector is costless. That is, an individual can drop out
of the labor market and earn ω > 0 on her own. This ensures a positive minimum wage in the
labor market in every sector.8

3.4. The Demand for Labor and Capital Inputs. Given capital endowment K̄ and human
labor allocation across sectors hi, i ∈ S, national income is given by

(7) Y = K̄ +

∫ 1

0
ωihi + ωrhr + ωehe,

recalling again that robots (or education) are competitively produced under constant returns to
scale and cannot contribute to national income over and above factor payments to labor and
capital. Subtracting off the payments for education, market clearing requires

(8) piyi = βi[Y − peye]

for every final good sector i, where each pi is given by (5).

Now turn to factor demands. In each sector j, labor demand (human or non-human) must satisfy

νj = pj
∂fj(kj , `j)

∂`j
= αj(νj)

pjyj
`j

,

where αj(νj) denotes the elasticity of output with respect to the labor input. Unless the pro-
duction function is Cobb-Douglas, this elasticity will depend on relative factor prices, which are
summarized by νj . Rearranging,

(9) `j = αj(νj)
pjyj
νj

for every sector j ∈ S . By exactly the same argument, and remembering that the elasticity of
production with respect to capital is 1− αj(νj), we have for every sector j ∈ S,

(10) kj = [1− αj(νj)]pjyj .

7If initial skills are not sector-specific, then everyone is in the null sector to start with, and education requirements
can be written only as a function of the “destination sector” j′. We can also accommodate “utility costs” of education
that are nonlinear in baseline wages, so as to mimic imperfect or missing capital markets.

8The minimum wage ω is denominated in units of capital. Given our assumptions, all prices will be bounded
relative to that of the capital good, so it does not really matter just how we denominate this minimum wage.
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3.5. Automation and the Demand for Humans and Robots. Now we pay more attention to
automated and non-automated sectors. Given linear substitution between robots and humans
within any production sector, it is immediate that all sectors j with ωj < λjpr will not be
automated. If hj denotes the demand for humans and rj the demand for robots/automation in
sector j, then in such sectors, (9) translates into a demand for humans, so that

(11) hj = αj
pjyj
ωj

and rj = 0.

For a “partially automated sector” j we have ωj = λjpr, and so

(12) hj +
rj
λj

= αj
pjyj
ωj

= αj
pjyj
λjpr

.

with firms indifferent across all such combinations of hj and rj . Finally, for “fully automated”
sectors in which νj = λjpr < ωj , equation (9) translates into a demand for robots:

(13) hj = 0 and rj = αj
pjyj
pr

.

A sector is automated if it uses robots; i.e., it is either partially or fully automated.

3.6. Equilibrium. Each final goods market clears by equation (8). In addition, supply has to
equal demand for the two intermediate goods (robots and education), as well as capital, robots
and human labor within each sector. For the robot sector as a whole, the equilibrium condition is

(14) yr =

∫ 1

0
ridi+ rr + re, where {rj} satisfies equations (11)–(13).

For capital we recall (10) to write the equilibrium condition as

(15) K̄ =

∫ 1

0
[1− αi(νi)]piyidi+ [1− αr(νr)]pryr + [1− αe(νe)]peye.

Finally the market for human labor has to clear, with demands given by equations (11)–(13),
and supplies by the initial assignment of the population across sectors, along with educational
choices that maximize wages net of educational costs for every worker, for which (6) is necessary.
Additional conditions are needed to describe the human labor supply correspondence across
sectors, but these are cumbersome and are not needed for any of the arguments.

By Walras’ Law, we can drop the equilibrium condition for the remaining (education) sector.

3.7. The von Neumann Singularity and Long-Run Automation. We state our main result:

PROPOSITION 1. Suppose that the following condition holds on the robot sector:

(16) λr lim
ρ→0

cr(ρ, 1) < 1.

Then, there exists K∗ > 0 such that for all K̄ ≥ K∗, the relative price of robots to capital
is fully pinned down at some number p∗r independent of K̄, and the robot sector itself becomes
automated. Moreover, as K̄ →∞, almost every final goods sector becomes automated as well.
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If (16) fails, then the robot sector remains protected for all K̄, and in general, so do some final
goods sectors. For instance, if there is costless mobility of labor across sectors, then all goods j
with λj ≥ λr are also protected irrespective of the value of K̄.

To understand the proposition, we begin by parsing the singularity condition (16). The cost
function c(ρ, 1) is to be interpreted as the unit cost of production when the cost of labor (human
or robotic) is set to 1, and the cost of machine capital is ρ. The condition sends ρ to zero. If the
production function for the robot industry (defined on labor and machine capital) has an elasticity
of substitution at least 1, the implications are clear: the unit cost of production will go to zero
with ρ. In that case (16) is trivially satisfied. On the other hand, cr(ρ, 1) will have a strictly
positive limit when the elasticity of substitution is below 1: there cannot be enough substitution
away from the expensive input for it not to matter.

As an example, assume fr is CES with elasticity parameter σ > 0; that is,

yr =

[
akk

σ−1
σ

r + a``
σ−1
σ

r

]σ/(σ−1)

for parameters (ak, a`)� 0 with ak + a` = 1. Then

cr(ρ, ν) =
[
aσkρ

1−σ + aσ` ν
1−σ]1/(1−σ)

,

so that
lim
ρ→0

cr(ρ, 1) = lim
ρ→0

[
aσkρ

1−σ + aσ`
]1/(1−σ)

.

It is easy to verify that this limit equals zero whenever σ ≥ 1, so that in the CES case, (16) is
equivalent to the condition

(17) Either σ ≥ 1, or σ ∈ (0, 1) and λr < a
σ/σ−1
` .

In summary, condition (16) is always satisfied if the production function in the robot sector
exhibits at least unit elasticity of substitution between capital and labor. It is also consistent with
a positive elasticity smaller than one. Indeed, even with a Leontief technology where σ = 0, the
condition requires λr < 1/a`, where a` is the number of (human-equivalent) labor units needed
to produce one robot.

Turning now to the automation implications of the singularity condition (16), notice that in any
equilibrium,

(18) pr = cr(1, νr) ≤ cr(1, λrpr),

the inequality holding, of course, because νr ≤ λrpr. That inequality could hold strictly for
every equilibrium, which is just another way of saying that automation in the robot sector cannot
occur. However, if the singularity condition does hold, then — provisionally viewing pr as a
parameter — the curve cr(1, λrpr) must ultimately dip below the 450 line; see Panel A of Figure
1. Now we see that strict inequality can only hold at all capital stocks if, defining

(19) p∗r = cr(1, λrp
∗
r),

pr perennially lies strictly below p∗r . But it can’t. Imagine a sequence of economies along which
the capital stock is exogenously increased without bound. Consumer demand must grow ad
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pr

c (1, !r pr)

Singularity condition guarantees this cut.

450

pr*
(A) Singularity Holds

pr

c (1, !r pr)

450

(B) Singularity Fails

FIGURE 1. Condition (16) and the Non-Substitution Bound on Robot Prices

infinitum with capital, because the bound on robot prices just derived also serves to bound all
other goods prices via the inequality

pi = ci(1, νi) ≤ ci(1, λipr) ≤ ci(1, λip∗r).
But then all these sectors must get automated (otherwise, their human wages ωi must drift above
λip
∗
r , a contradiction). That, in turn, means that robot demand must climb without bound. This in

turn implies the robot sector must eventually get automated (otherwise, human wages in the robot
sector will rise without limit, guaranteeing that at some point, ωr > λrp

∗
r , where the finiteness

of p∗r is assured by the singularity condition and (19)).

And once the robot sector is automated, the robot price pr hits p∗r and remains there, regardless
of the remainder of the price system. This is a special case of the non-substitution theorem
in action: robot production has essentially been reduced to dated quantities of capital, which
pins down the robot price relative to capital. It then follows that all final good sectors must get
automated, by the same logic as used above: their prices are bounded above, so their demands
and outputs must grow without limit, and the only way this can happen is if they get automated
eventually.

It should also be noted that the education sector may or may not be automated as K̄ → ∞.
But this does not matter for the economy as a whole, as that sector shrinks relative to all other
sectors combined. If the model is extended to accommodate potentially unbounded demand for
education, then — under the singularity condition — the education sector will be automated as
well.

Proposition 1 contains a converse, when (16) fails. Now cr(1, λrpr) never intersects pr and the
inequality in (18) always holds strictly; see Panel B of Figure 1. That in itself guarantees that
the robot sector will never be automated. Now, as machine capital stocks rise, so will human
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wages, but that will also ensure that robot prices also keep pace with human compensation, both
departing in tandem from the normalized price of physical capital. Moreover, it is now possible
— though not inevitable — that several final good sectors will remain populated by human labor.

3.8. The von Neumann Singularity and Factor Shares in National Income. The singularity
condition (16) has implications not just for long-run automation but also for the limiting shares
of capital and human labor in national income. No other factor obtains a positive share, including
robot services or education, because these sectors all produce under constant returns to scale. For
instance, in any final goods sector, there will be a capital share, a human labor share, and a robot
share of income produced. But the last item will flow to the robot industry, where the proceeds
will be divided again among capital, humans and robots, leaving no surplus behind because of
the zero-profit feature of a constant-returns-to-scale technology. The robot share (if any) in the
robot sector again decomposes. Summing across such infinite chains, we obtain — in the end —
only shares to physical capital (via the rental rate on capital) and to human labor (by aggregating
across all wages and occupations) which must together exhaust national income.

In fact, when the singularity condition holds, even human labor is removed from consideration:

PROPOSITION 2. Suppose that the singularity condition (16) holds. As K̄ → ∞, the share of
machine capital in national income converges to 1, and that of human labor converges to zero.

This Proposition captures the fundamental concern in this paper. Under the singularity condition
(16), the functional share of machine capital must go to 1. It is the same concern that informs
Piketty (2014), though in that work the presumed “central contradiction of capitalism” (r > g)
is used to “explain” the rising capital share.9 Note that the result is a statement about functional,
not personal distribution, and it is embedded in two presumptions: (a) that machine capital is ac-
cumulated faster than human labor, and (b) that automation occurs sector by sector. A standard
model without “micro-level” automation will not generate this result, as it would push us di-
rectly into the debate about the elasticity of substitution across capital and labor in the aggregate,
which as already observed is an unsettled matter. With automation and the singularity condition,
however, the rising share of capital is an inevitability. To harmonize our observations with the
debates about the aggregate elasticity of substitution, we need an aggregation procedure that is
firmly based on possible automation at the firm or industry level. In that aggregation, the overall
elasticity of substitution is not a fixed parameter, but discipline would nevertheless be imposed
by the structure of the model. Such an aggregation exercise (not conducted here) would form the
basis for confronting our model with the data.

3.9. Capital Accumulation and Wages. Wage shares aside, we can also ask about the behavior
of absolute wages. Despite ever-encroaching automation, it could remain sizable, and indeed,
the overall wage level must rise with the extent of automation. We can guess where wages must
go in the limit. Assume that the singularity condition holds. For every level of capital K̄ the
set of non-automated sectors is given by {j ∈ [0, 1] ∪ e ∪ r|ωj > λjpr}. As capital continues
to accumulate, the robot sector must become automated, by Proposition 1. Once that happens,

9As Ray (2015) has observed, this is a well-known transversality condition, an efficiency requirement rather than
a “central contradiction,” and cannot explain the rising share of capital.
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the robot price settles at the value p∗r , which is easily computed by reference to the robot sector
alone; see (19). Because all the other final goods sectors must get automated as well, the highest
earned wage10 must have a limit point of at least λ∗p∗r , where λ∗ ≡ max{λr, λ1}. On the other
hand, the highest earned wage cannot have a limit point any larger than the largest of the three
values λ1p

∗
r , λep

∗
r , and λrp∗r . After all, employment is strictly positive at every earned wage, and

passing all three thresholds just described is tantamount to a zero demand for human labor.

Summarizing, the sequence of highest earned wages must have all its limit points in the interval
[λ∗p∗r ,max{λ∗, λe}p∗r ], where p∗r is defined by (19). If, in addition, there is free human mobility
across sectors, then every sectoral wage is identical and the education sector is irrelevant, and so
the limit of the wage rate in that case is given precisely by λ∗p∗r . This value could be high. It
could conceivably be infinite, if there is a sequence of sectors protected without bound: λi →∞
as i → 1.11 The fact that the labor share goes to zero, as stated in Proposition 2, certainly does
not eliminate the possibility that absolute wages can be high.

Moreover, it is generally the case that wages must rise with the value of the capital stock, or at
least just preceding every wave of automation. Wages could rise monotonically over time even as
labor is displaced. With some more restrictions on preferences and production technology to rule
out perverse general equilibrium effects, this observation can be stated as a formal proposition.

In what follows, we assume that there is free human mobility across all sectors (so that emj = 0
for all m, j). Let ω denote the common wage across all sectors. To cut down on different cases,
assume that λr ∈ (λ0, λ1), where we think of λ0 as very small (or prone to automation) and λ1

as very large (or highly protected). At any equilibrium, let ι stand for the equilibrium sector at
the automation threshold: it is the smallest value of the index i such that

(20) λip
r = ω,

so that it is clear that under the equilibrium in question, all sectors with i < ι will be automated,
and all sectors with i > ι will be protected.

PROPOSITION 3. Assume that:

(i) Preferences and technology are both Cobb-Douglas, so that for every sector j, αj(νj) = αj
and for every good i, βi(p) = βi.

(ii) There is full mobility of labor across sectors (in particular, the education sector is inactive.)

Then:

(I) Under (i), the singularity condition (16) is automatically satisfied, and universal automation
occurs as K̄ →∞.

(II) Capital accumulation strictly increases the automation threshold ι and the equilibrium wage
rate ω provided that λι 6= λr. If λι = λr, the monotonicity is weak.

10Formally, define the highest earned wage to be the supremum over all human wages in sectors where positive
employment occurs.

11We have eliminated this case in the formal analysis to handle technicalities regarding the continuity of demand,
but of course we could make λ1 arbitrarily high. In addition, with CES preferences, we can fully allow for this
possibility by replacing λ1 <∞ with a suitable integrability condition on the collection {λi}.
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(III) At the same time, capital accumulation increases the share of capital in national income.

This Proposition asserts that in the Cobb-Douglas case with free mobility of labor across sectors,
automation of all sectors is inevitable: the singularity condition holds free of charge (Part I), as
the machine capital stock increases, the equilibrium wage rate rises monotonically (Part II), but
(Part III) the share of capital in national income rises at the same time that the real wage is rising.
This brings out the implications of increased capital in the starkest possible way: functional
inequality moves unambiguously in favor of physical capital while at the same time, real wages
rise. With technical change, this co-movement could be reversed — real wages might fall with
automation. Be that as it may, our baseline result without technical progress brings out the
fundamental Ricardian drive underlying automation: that it is precisely the rising wage rate that
contains within it the seeds of its own relative destruction, in the form of a reduced labor share.

4. PROOFS

Under the singularity condition (16), the following two lemmas establish a uniform upper bound
on the price of capital relative to robots.

LEMMA 1. If (16) holds, then there is a unique value x∗ ∈ (0,∞) such that

(21) λrcr(1, x) ≷ x for x ≶ x∗, with equality when x = x∗.

On the other hand, if (16) fails, then

(22) λrcr(1, x) > x for all x > 0.

Proof. Define the function h(x) = λrcr(1, x) for all x > 0. This is a continuous, increasing and
concave function, and moreover,

h(x)

x
= λrcr

(
1

x
, 1

)
is strictly decreasing in x (after all, the right-hand side of this equation is strictly increasing in
1/x). It is easy to verify that

(23) lim
x→0

h(x)

x
> 1,

from our assumptions on fr.12 Moreover,

(24) lim
x→∞

h(x)

x
= lim

x→∞
λrcr

(
1

x
, 1

)
= lim

ρ→0
λrcr (ρ, 1) .

12As x → 0, there are two possibilities. Either capital input stays bounded away from zero for cost-minimizing
production of one unit of r, or it converges to zero (perhaps along a subsequence of x → 0). In the former case,
obviously infx>0 h(x) > 0, so we have (23). In the latter case, the cost-minimizing labor input `(1, x) must go to
infinity, otherwise we cannot stay on the unit isoquant. (That is because fr(0, `) = 0 and fr is continuous.) But it
is well known that the slope of h(x) is given by λr`r(1, x). Therefore, the concave function h(x) has h′(0) = ∞,
which proves (23) in this second case.
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Now, if condition (16) holds, it follows from (24) that limx→∞[h(x)/x] < 1, and combining this
observation with (23) and the fact that h(x)/x is strictly decreasing, we must conclude that there
exists a unique value x∗ ∈ (0,∞) such that (21). Otherwise, if (16) fails, then (24) implies that
limx→∞[h(x)/x] ≥ 1, and once again combining this with (23) and h(x)/x strictly decreasing,
we have (22).

LEMMA 2. Under Condition (16), there exists p∗r < ∞, which depends only on λr and fr, such
that in any equilibrium pr ≤ p∗r , with equality holding if the robot sector is automated.

Proof. In any equilibrium, pr = c(1, νr) ≤ c(1, λrpr), so that λrpr ≤ λrc(1, λrpr), with
equality if the robot sector is automated. Using (21) of Lemma 1 applied to x ≡ λrpr, we must
conclude that λrpr ≤ x∗ in any equilibrium; again, with equality if the robot sector is automated.
Define p∗r ≡ x∗/λr to complete the proof.

LEMMA 3. Under Condition (16), the class of all equilibrium price functions (as K̄ varies) is
equicontinuous, and also uniformly bounded below by a strictly positive number.

Proof. Under (16), Lemma 2 establishes an upper bound p∗r for pr. For any other sector j,

pj = cj(1, νj) ≤ cj(1, λjpr) ≤ cj(1, λjp∗r) <∞,
where p∗r is given by Lemma (2). That establishes a uniform upper bound P on all price func-
tions.

To obtain equicontinuity, we must show that for every ε > 0 there exists δ > 0 such that for any
equilibrium price function and any pair of sectors i and j, whenever |i − j| < δ, pi − pj < ε.
Because pj = cj(1, νj) for every sector j and because cj is continuous on the compact set
[0, 1] ∪ e ∪ r (and therefore uniformly continuous), it suffices to show the claimed property for
the family of equilibrium labor price functions {νj}.

Fix ε > 0; we define δ. First, because λi is continuous on [0, 1], it is uniformly continuous.
Therefore there exists δ1 > 0 such that

(25) P |λi − λj | < ε whenever |i− j| < δ1,

where P is the upper bound on all prices.

Next, recall the education function eii′ . Define a function

φ(i, j) ≡ max
m∈[0,1]

|Pemi − Pemj |.

Because eii′ is continuous, φ(i, j) is also continuous on (i, j) ∈ [0, 1]2 and therefore uniformly
continuous on that domain. Therefore, for each ε > 0, noting that φ(i, i) = 0 for all i, there
exists δ2 > 0 such that

(26) φ(i, j) < ε whenever |i− j| < δ2.

To complete the proof, define δ ≡ min{δ1, δ2}. Suppose that i and j are two final goods sectors
with |i− j| < δ. Without loss of generality assume that νi ≥ νj .

If there are humans employed in sector j, then invoking condition (6),

(27) ωi − ωj ≤ peemi − peemj ≤ φ(i, j).
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But φ(i, j) < ε by (26) and δ ≤ δ2, so, using (27):

|νi − νj | = νi − νj ≤ ωi − ωj ≤ φ(i, j) < ε,

where the first weak inequality above invokes the fact that ωj = νj (by virtue of the fact that
there are humans employed in sector j) and νi ≤ ωi. Otherwise, there are no humans in sector
j, which implies that νj = λjpr. In this case, use (25) and δ ≤ δ1 to see that

|νi − νj | = νi − νj ≤ pr(λi − λj) ≤ P |λi − λj | < ε,

where the first weak inequality above uses ωi ≤ λipr. The proof of equicontinuity is now
complete.

The uniform lower bound on prices follows from the fact that for every sector j,

pj = cj(1, νj) ≥ cj(1, ω) > 0

and the assumed continuity of j, which implies that infj cj(1, ω) > 0. Observe that pr is bounded
away from zero, since either the robot sector is automated in which case pr = p∗r , or else it is
not whence pr = cr(1, ωr) ≥ cr(1, ω) > 0. Hence irrespective of whether or not sector j is
automated, its price is bounded away from zero.

LEMMA 4. Under Condition (16), the quantity demanded and produced of each final good must
go to infinity with K̄.

Proof. We first claim that for each i, inf βi(p) > 0, where the infimum is taken over every
positive value of the capital stock, and every equilibrium price function corresponding to each
capital stock. By Lemma 3, every equilibrium price function p is bounded and continuous, so
by our assumption on preferences, βi(p) > 0. To complete the proof, let pn be any sequence
of equilibrium functions. By Lemma 3, the sequence pn is equicontinuous, so by the Arzela-
Ascoli theorem (see, for example, Dunford and Schwartz 1958, p. 382), there exists a bounded,
continuous price function p∗ and a subsequence nk of n such that pnk → p∗ in the sup norm.
By Lemma 3 again, this function must be bounded below. By the assumed continuity of βi in the
sup norm, βi(pn)→ βi(p

∗), but the latter is strictly positive by our assumption on preferences.

Furthermore, we know from (7) that piyi = βi(p)[Y − peye], so that for every final good i,

yi ≥
βi(p)[Y − peye]

pi
≥ di[Y − peye]

a
,

where di is the infimum of βi(p) over all capital stocks and equilibrium prices. Now, national
income Y is given by (8), which implies that (in units of capital), Y ≥ K̄. Observe that pe
is bounded (above by ce(1, λep∗r)) and so is ye (since education costs are bounded). Therefore
yi →∞ as K̄ →∞.

LEMMA 5. Suppose Condition (16) holds. Consider the problem of unit cost minimization for
any sector j:

min k̂ + νj ˆ̀, subject to fj(k̂, ˆ̀) ≥ 1.

Then for every ν > 0, there exists εj > 0 such that if νj ≤ ν, then ˆ̀≥ εj .
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Proof. Suppose not. Then there is a sequence of cost minimizing problems parameterized by νnj
such that the optimal unit labor use ˆ̀n → 0. Because both inputs are needed in production, it
must be the case that k̂n → ∞. But then k̂n + νnj

ˆ̀n → ∞, which is a contradiction, because
given Condition (16), a unit output can always be produced at bounded cost.

Proof of Proposition 1. Assume (16). Then by Lemma 2, pr ≤ p∗r , so that for every sector
i ∈ [0, 1], νj ≤ λjpr ≤ λjp

∗
r < ∞. By Lemma 5, there exists εj > 0 such that unit labor use

ˆ̀
j ≥ εj . By Lemma 4, the output of every final good must go to∞. It follows that aggregate

labor use in that sector must grow unboundedly large: `i → ∞ as K̄ → ∞. Because the
aggregate human labor endowment of the economy is bounded, this implies that almost every
final goods sector must be automated as K̄ →∞.

By Lemma 4 and the results just established, the demand for robots must grow without bound.
Therefore the robot sector must eventually get automated. The proof uses exactly the same
argument applies as the one made for final goods sectors.

Suppose now that (16) fails. Then, by (22) of Lemma 1, we know that λrcr(1, x) > x for all
x > 0. Setting x = λrpr, we must conclude that

pr < cr(1, λrpr)

in any equilibrium. But we know that pr = cr(1, νr). It follows that

(28) λrpr > νr,

so that in any equilibrium, the robot sector is protected. Finally, if there is free movement of
labor, then for every sector j, ωj = ωr. Using (28), we must conclude that whenever λj ≥ λr,

λjpr ≥ λrpr > νr = ωr = ωj ,

so that such sectors must be protected as well, irrespective of the value of K̄.

Proof of Proposition 2. Assume that (16) holds. Begin by recalling the market clearing condition
(15) for physical capital:

K̄ =

∫ 1

0
[1− αi(νi)]piyidi+ [1− αr(νr)]pryr + [1− αe(νe)]peye.

Divide by national income Y on both sides and use equation (8) to obtain

(29)
K̄

Y
=
Y − peye

Y

∫ 1

0
[1− αi(νi)]βi(p)di+ [1− αr(νr)]

pryr
Y

+ [1− αe(νe)]
peye
Y

.

By Proposition 1, the robot sector will be eventually automated (for large enough values of K̄).
If that has happened for some K̄ and A(K̄) is the set of automated final goods sectors under K̄,
then

(30)
pryr
Y
≥ Y − peye

Y

∫
i∈A(K̄)

αi(νi)βi(p)di+ αr(νr)
pryr
Y

,
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where the inequality occurs because we cannot be sure that the education sector is automated.
Combine equations (29) and (30) to get

(31)
K̄

Y
= 1− Y − peye

Y

∫
i∈A(K̄)c

αi(νi)βi(p)di− αe(νe)
peye
Y

.

Now pass to the limit as K̄ (and Y ) goes to infinity. Notice that peye is bounded, because pe is
bounded (an implication of Lemma 3) while ye ≤ maxj,j′ ej,j′ <∞ by the continuity of ejj′ in j
and j′. Moreover, because almost every final goods sector is automated in the limit (Proposition
1), the measure of A(K̄)c converges to zero. It follows from these observations and (31) that

lim
K̄→∞

K̄

Y
= 1.

which completes the proof.

Proof of Proposition 3. It is easy to verify (I) by recalling (16) in the CES case; see (17). In the
Cobb-Douglas case, σ = 1 and the condition is automatically satisfied. Because the education
sector is inactive, Proposition 1 implies the automation of every sector in the limit.

To prove (II), note that the capital market clearing condition (15) implies that

K̄ =

∫ 1

0
(1− αi)piyidi+ (1− αr)pryr = Y

[∫ 1

0
(1− αi)βidi

]
+ (1− αr)pryr

= (K̄ + ω)

[∫ 1

0
(1− αi)βidi

]
+ (1− αr)pryr,(32)

where the third equality uses (7) and free mobility to obtain Y = K̄ + ω. At the same time,

(33) pryr = Y

∫ ι

0
αiβidi+ γαrpryr,

where γ is the fraction of the value of labor demand in the robot sector filled by robots. If
λι < λr, this fraction is 0 and the robot sector is not automated. If λι > λr, the robot sector is
fully automated and γ = 1, while if λι = λr, γ ∈ [0, 1]. Combining (32) and (33), we see that

(34)
K̄

K̄ + ω
=

∫ 1

0
(1− αi)βidi+

1− αr
1− γαr

∫ ι

0
αiβidi.

Let λι 6= λr. Suppose on the contrary that K̄ increases while ι declines or stays the same. It
follows from (20) that ω/pr cannot rise. Now pr = cr(1, ω), which means that

pr
ω

= cr

(
1

ω
, 1

)
.

Because pr/ω cannot fall, this equation implies that ω cannot rise as K̄ goes up. Using this
information in (34), we must conclude that the left-hand side goes up (strictly). The right-hand
side weakly falls on account of ι. Moreover, because ι has declined, γ can at best fall or stay
constant. Combining these two effects, we see that the right-hand side weakly declines. This
mean that (34) cannot hold after the rise in K̄, a contradiction.

If λι = λr, then the same argument can be used to show that neither ι nor ω can strictly decline
after an increase in K̄.
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To prove (III), suppose that λι 6= λr. Then we have shown that ι strictly increases with K̄, and
for this reason it is impossible for γ to decline. Therefore, by (34), the share of capital in national
income must rise. On the other hand if λι = λr, then the resulting monotonicity of ι is weak. If ι
strictly increases nevertheless, the previous argument applies, but if not, then ω must be constant
as well. In this case, K̄/(K̄ + ω) trivially increases in K̄, and the proof is complete.
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