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1 Introduction

This material includes some arguments which supplement our paper ‘Consulting Collusive

Experts’. Some proofs, which are omitted in the paper, are also provided in this note. The

notation and terms used here are the same as the paper.

2 Attainability of Second-Best Payoff as a PBE of (C3)

Proposition 1 P can attain any second best allocation as a PBE outcome of the collusion

game (C3) following a suitable choice of grand contract.

Proof of Proposition 1: For a second best allocation (uSBA , uSBM , qSB), construct the grand

contract

(XA(mA,mM ), XM (mA,mM ), q(mA,mM );MA,MM )

as follows (where MM = N ∪ {eM} and MA = Θ ∪ {eA}):

(i) XM (mA,mM ) = 0 for any (mA,mM ).

(ii) q(θ, η) = qSB(θ, η) and XA(θ, η) = θqSB(θ, η) + uSBA (θ, η), if (mA,mM ) = (θ, η) ∈ K,

otherwise both are set equal to zero.

(iii) XA(eA,mM ) = q(eA,mM ) = 0 for any mM .

(iv) (XA(θ, eM ), q(θ, eM )) = (X̂A(θ), q̂(θ)), which satisfies the following properties: (a)

X̂A(θ) − θq̂(θ) ≥ X̂A(θ
′
) − θq̂(θ′) for any θ, θ

′ ∈ Θ, (b) X̂A(θ) − θq̂(θ) ≥ 0 for any

θ ∈ Θ and (c) there exists θ
′ ∈ Θ such that q̂(θ

′
) = q(θ, η) and X̂A(θ

′
) > XA(θ, η) for

any (θ, η) ∈ Θ×N .2

For this grand contract, we will check that the second best allocation is achieved in a

PBE of the collusion game. In the Bayesian game induced by this grand contract, both

(mA(θ, η),mM (η)) = (θ, η) and (mA(θ, η),mM (η)) = (θ, eM ) are non-cooperative equilibria,

regardless of M’s beliefs about θ. We claim there exist PBE with the following property: if

2For instance, we can choose (X̂A(θ), q̂(θ)) such that (i) q̂(θ) is continuous and strictly decreasing in θ

with q̂(θ) = max(θ,η)∈Θ×N q(θ, η) and q̂(θ̄) = min(θ,η)∈Θ×N q(θ, η), and (ii) X̂A(θ) = θq̂(θ) +
∫ θ̄
θ
q̂(y)dy + R

for sufficiently large R > 0
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a side-contract (SC) is not offered by M then (mA(θ, η),mM (η)) = (θ, η), while if a non-null

SC is offered by M it is rejected by A, resulting in (mA(θ, η),mM (η)) = (θ, eM ). In the

latter case, A earns X̂A(θ)−θq̂(θ). It suffices to check that M does not benefit from offering

a non-null side-contract. So consider the following problem:

maxE[XA(m̃(θ, η)) +XM (m̃(θ, η))− θq(m̃(θ, η))− ũA(θ, η) | η]

subject to m̃(θ, η) ∈ ∆(MA ×MM ),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q(m̃(θ
′
, η))

for any θ, θ
′ ∈ Θ(η) and

ũA(θ, η) ≥ X̂A(θ)− θq̂(θ)

for any (θ, η). By construction of (X̂A(θ), q̂(θ)) in (iv), m̃(θ, η) = (θ, eM ) (meaning the

degenerate probability measure concentrated on (θ, eM )) and ũA(θ, η) = X̂A(θ) − θq̂(θ)

solve this problem. Then the maximum value of the above problem is equal to zero. Since

A receives at least X̂A(θ)−θq̂(θ) in the continuation game following a non-null side-contract

offer, this maximum value provides an upper bound on M’s payoff from offering a non-null

side-contract. Hence M never benefits from offering a non-null side-contract. Consequently,

there is a PBE of this game in which M never offers any non-null side contract. This implies

that M and A play (mA(θ, η),mM (η)) = (θ, η) and the second-best allocation is achieved,

concluding the proof.

3 Proof of Results Used in Proving Propositions 4 and 5

We first prove the following result invoked in the proof of Proposition 4 in the Appendix

of the paper.

Result 1 There exists z(· | η∗∗) ∈ Z(η∗∗) which satisfies the following conditions.

(B-i) z(θ | η∗∗) = θ for any θ /∈ ΘH ∪ΘL

(B-ii) For θ ∈ ΘL, z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≤ θ with strict inequality for some

subinterval of ΘL of positive measure, and (b) H(z)− (1− λ)z − λh(θ | η∗∗) > 0 for

any z ∈ [z(θ | η∗∗), θ].
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(B-iii) For θ ∈ ΘH , z(θ | η∗∗) satisfies (a) z(θ | η∗∗) ≥ θ with strict inequality for some

some subinterval of ΘH of positive measure, (b) z(θ | η∗∗) < h(θ | η∗∗) and (c)

H(z)− (1− λ)z − λh(θ | η∗∗) < 0 for any z ∈ [θ, z(θ | η∗∗)].

(B-iv) E[(z(θ | η∗∗)− h(θ | η∗∗))Q∗(z(θ | η∗∗)) +
∫ θ̄(η∗∗)
z(θ|η∗∗)Q

∗(z)dz | η∗∗] = 0.

Proof:

Step A: For any η ∈ N and any closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), there exists δ > 0 such that z(·) ∈ Z(η) for any z(·) satisfying the

following properties:

(i) z(θ) is increasing and differentiable with |z(θ)− θ| < δ and |z′(θ)− 1| < δ for any

θ ∈ Θ(η)

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ
′′
].

Proof of Step A

For arbitrary η ∈ N and arbitrary closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that θ(η) < θ

′
<

θ
′′
< θ̄(η), we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)

and

ε2 ≡ max
θ∈[θ′ ,θ′′ ]

|f ′(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive on Θ(η),

ε1 > 0, and ε2 is positive and bounded above. We choose δ > 0 such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, it is obvious that there exists z(θ) which satisfies conditions (i) and (ii) of the

statement. Define

Λ(θ | η) ≡ (θ − z(θ))f(θ | η) + F (θ | η).

Since z(θ) is differentiable on Θ(η), Λ(θ | η) is also so. It is equal to Λ(θ | η) = F (θ | η) on

θ /∈ [θ
′
, θ
′′
]. For θ ∈ [θ

′
, θ
′′
],

∂Λ(θ | η)

∂θ
= (2− z′(θ))f(θ | η) + (θ − z(θ))f ′(θ | η) > (1− δ)f(θ | η)− δ|f ′(θ | η)|

≥ (1− δ)ε1 − δε2.
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This is positive by the definition of (ε1, ε2, δ). Then Λ(θ | η) is increasing in θ on Θ(η) with

Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1. Since z(θ) is increasing in θ by the definition, it is

preserved even by ironing rule. Therefore z(·) ∈ Z(η).

Step B

For η∗∗ and the closed interval I = [θ
′
, θ
′′
] ⊂ Θ(η∗∗) which are selected in Step 1 of the

paper’s Appendix, we select δ > 0 according to the procedure in Step A. By the continuity

of F (θ)
f(θ) and F (θ|η∗∗)

f(θ|η∗∗) , the closedness of ΘL and ΘH and θ̄L < θH , we can select ε > 0 such

that

λ < [
F (θ)

f(θ)
− ε]/F (θ | η∗∗)

f(θ | η∗∗)
for θ ∈ ΘL ≡ [θL, θ̄L]

λ > [
F (θ)

f(θ)
+ ε]/

F (θ | η∗∗)
f(θ | η∗∗)

for θ ∈ ΘH ≡ [θH , θ̄H ].

These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗∗) > ε for θ ∈ ΘL

and

H(θ)− (1− λ)θ − λh(θ | η∗∗) < −ε for θ ∈ ΘH .

By the continuity of H(θ)− (1−λ)θ for θ and closedness of ΘL and ΘH , there exists εL > 0

and εH > 0 such that

H(θ)− (1− λ)θ − ε ≤ H(z)− (1− λ)z

for any z ∈ [θ − εL, θ] and any θ ∈ ΘL, and

H(θ)− (1− λ)θ + ε ≥ H(z)− (1− λ)z

for any z ∈ [θ, θ + εH ] and any θ ∈ ΘH . Equivalently, there exists εL > 0 and εH > 0 such

that

H(z)− (1− λ)z − λh(θ | η∗∗) > 0 for any θ ∈ ΘL and any z ∈ [θ − εL, θ]

and

H(z)− (1− λ)z − λh(θ | η∗∗) < 0 for any θ ∈ ΘH and any z ∈ [θ, θ + εH ].

Step C
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We select z(· | η∗∗) such that

(i) z(θ | η∗∗) is increasing and differentiable with |z(θ | η∗∗) − θ| < min{δ, εL, εH} and

|zθ(θ | η∗∗)− 1| < δ for any θ ∈ Θ(η∗∗)

(ii) z(θ | η∗∗) = θ for any θ /∈ ΘH ∪ΘL

(iii) For θ ∈ ΘL, z(θ | η∗∗) ≤ θ with strict inequality for some subinterval of ΘL of positive

measure.

(iv) For θ ∈ ΘH , θ ≤ z(θ | η∗∗) with strict inequality for some some subinterval of ΘH of

positive measure, and z(θ | η∗∗) < h(θ | η∗∗).

It is evident that such a z(· | η∗∗) exits. The argument in Step A and B ensures that

z(· | η∗∗) is in Z(η∗∗), and satisfies (B-(ii)) (c) and (B-(iii)) (c). By the construction, it is

evident that this satisfies all other conditions in (B(i)-(iii)).

Step D

Suppose z(· | η∗∗) ∈ Z(η∗∗) which satisfies (B(i)-(iii)). Since

(z − h(θ | η∗∗))Q∗(z) +

∫ θ̄(η∗∗)

z
Q∗(y)dy

is increasing in z for z < h(θ | η∗∗), and

E[(θ − h(θ | η∗∗))Q∗(θ) +

∫ θ̄(η∗∗)

θ
Q∗(y)dy | η∗∗] = 0,

the choice of z(θ | η∗∗) ≤ θ on ΘL (or z(θ | η∗∗) ≥ θ on ΘH) reduces (or raises)

E[(z(θ | η∗∗)− h(θ | η∗∗))Q∗(z(θ | η∗∗)) +

∫ θ̄(η∗∗)

z(θ|η∗∗)
Q∗(z)dz | η∗∗]

away from zero. For any pair of parameters αH , αL lying in [0, 1], define a function

zαL,αH (θ|η∗∗) which equals (1 − αL)z(θ|η∗∗) + αLθ on ΘL, equals (1 − αH)z(θ|η∗∗) + αHθ

on ΘH and equals θ elsewhere. It is easily checked that any such function also is in Z(η∗∗)

and satisfies conditions (B(i)-(iii)). Define

W (αL, αH) ≡ E[(zαL,αH (θ | η∗∗)− h(θ | η∗∗))Q∗(zαL,αH (θ | η∗∗))

+

∫ θ̄(η∗∗)

zαL,αH (θ|η∗∗)
Q∗(z)dz | η∗∗].
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Then W is continuously differentiable, strictly increasing in αL and strictly decreasing in

αH with W (1, 1) = 0. The Implicit Function Theorem ensures existence of α∗L, α
∗
H both

smaller than 1 such that W (α∗L, α
∗
H) = 0. Hence the function zα∗L,α

∗
H

(θ|η∗∗) is in Z(η∗∗)

and satisfies (B(i)-(iv)).

Result 2 For z(· | η) constructed in Step 2 (in the proof of Proposition 4 in the Appendix

of the paper), consider the following allocation (uA, uM , q):

q(θ, η) = Q∗(z(θ | η))

uA(θ, η) =

∫ θ̄(η)

θ
Q∗(z(y | η))dy +

∫ θ̄

θ̄(η)
Q∗(y)dy

uM (θ, η) = X∗(z(θ | η))− θQ∗(z(θ | η))−
∫ θ̄(η)

θ
Q∗(z(y | η))dy −

∫ θ̄

θ̄(η)
Q∗(y)dy.

where

X∗(z(θ | η)) ≡ z(θ | η)Q∗(z(θ | η)) +

∫ θ̄

z(θ|η)
Q∗(z)dz.

Then (uA, uM , q) is a EAC feasible allocation.

Proof: The construction of z(θ | η) implies that z(θ̄(η) | η) ≤ θ̄ for any η ∈ N . Hence

X∗(z(θ | η))− z(θ | η)Q∗(z(θ | η)) ≥ 0

for any (θ, η) ∈ K. It is evident that the construction of z(θ | η) implies E[uM (θ, η) | η] = 0.

Since z(θ | η∗∗) is increasing in θ, there is no pooling region with Θ(π(· | η∗∗), η∗∗) = φ.

The coalition incentive constraint is satisfied, since

X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

= X∗(z(θ
′ | η′))− z(θ | η)Q∗(z(θ

′ | η′))

=

∫ θ̄

z(θ′ |η′ )
Q∗(z)dz + (z(θ

′ | η′)− z(θ | η))Q∗(z(θ
′ | η′))

≤
∫ θ̄

z(θ|η)
Q∗(z)dz = X(θ, η)− z(θ | η)q(θ, η).

The A’s incentive constraint is satisfied, since

uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

=

∫ θ̄

θ′
Q∗(z(y | η))dy + (θ

′ − θ)Q∗(z(θ′ | η))

≤
∫ θ̄

θ
Q∗(z(y | η))dy = uA(θ, η).
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The last inequality follows from the fact that Q∗(z(θ | η)) is non-increasing in θ. These

arguments guarantee that (uA, uM , q) is a EAC feasible allocation.

Now we prove the following result invoked in the proof of Proposition 5 in the Appendix.

(i) ĥ(θ | η∗) > ĥ(θ | η) for θ ∈ (θ, θ̄] and ĥ(θ | η∗) = ĥ(θ | η) = θ for any η 6= η∗

(ii) Define G(h | η) ≡
∫
{θ|ĥ(θ|η)≤h} f(θ | η)dθ. Then G(h | η∗) is a mean-preserving spread

of G(h | η) for any η 6= η∗

Proof of (i): Since f(θ|η∗)
f(θ|η) is strictly decreasing in θ for any η 6= η∗, f(θ

′ |η∗)
f(θ|η∗) > f(θ

′ |η)
f(θ|η) for

θ > θ
′
. Θ(η) = Θ(η∗) = Θ then implies

F (θ | η∗)
f(θ | η∗)

=

∫ θ

θ

f(θ
′ | η∗)

f(θ | η∗)
dθ
′
>

∫ θ

θ

f(θ
′ | η)

f(θ | η)
dθ
′

=
F (θ | η)

f(θ | η)
.

Hence h(θ | η∗) > h(θ | η) for θ ∈ (θ, θ̄] and h(θ | η∗) = h(θ | η) = θ. The property of

the ironing procedure (explained in later section) ensures that ĥ(θ | η∗) > ĥ(θ | η) for any

θ > θ and ĥ(θ | η∗) = ĥ(θ | η) = θ for any η 6= η∗.

Proof of (ii): Since∫ h̄

h
hdG(h | η) =

∫ θ̄

θ
ĥ(θ | η)dF (θ | η) =

∫ θ̄

θ
h(θ | η)dF (θ | η) = θ̄

for each η, the two distributions for η∗, η have the same mean. For every convex function

u(h), ∫ h̄

h
u(h)dG(h | η∗) =

∫ θ̄

θ
u(h(θ | η∗))f(θ | η∗)dθ

≥
∫ θ̄

θ
[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− h(θ | η∗))]f(θ | η∗)dθ

=

∫ θ̄

θ
[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ
u
′
(ĥ(y | η))dy]f(θ | η∗)dθ

≥
∫ θ̄

θ
[u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ
u
′
(ĥ(y | η))dy]f(θ | η)dθ

=

∫ θ̄

θ
u(ĥ(θ | η))f(θ | η)dθ =

∫ h̄

h
u(h)dG(h | η)
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The first inequality follows from the convexity of u(h): u(h) ≥ u(h
′
) − u′(h′)(h′ − h) for

any h, h
′ ∈ H. The second inequality is the result that

u(ĥ(θ | η))− u′(ĥ(θ | η))(ĥ(θ | η)− θ) +

∫ θ̄

θ
u
′
(ĥ(y | η))dy

is non-increasing in θ, and F (θ | η) first order stochastically dominates F (θ | η∗) (because

of the MLRP assumption). These hold with strict inequality if u(h) is strictly convex.

According to the definition, G(h | η∗) is a mean-preserving spread of G(h | η) for any

η 6= η∗.

4 Justification for EACP Allocations When Contracts are

Offered by Third Party

To overcome the problem highlighted by Celik and Peters (2011) in the context where the

side-contract is designed by a third party, we model side-contracts as a two stage game

played by M and A. The first stage is a ‘participation’ stage where they communicate

their participation decisions in the side contract, in addition to some auxiliary messages

in the event of agreeing to participate. The role of these messages is to allow A to signal

information about his type while agreeing to participate, which can help replicate whatever

information is communicated by side-contract rejection in a setting where communication

concerning participation decisions is dichotomous. A and M observe the messages sent by

each other at the end of the first stage. At the second stage, A and M submit type reports,

conditional on having agreed to participate at the first stage.

Let (Dp
A, D

p
M ) denote the message sets of A and M at the participation stage (or p-

stage). eA ∈ Dp
A and eM ∈ Dp

M are the exit options of A and M respectively. The message

sets at this stage may include other auxiliary messages as well.

What occurs at the second stage (‘execution’ or e-stage) depends on dp = (dpA, d
p
M )

chosen at the first stage.

• If dpA 6= eA and dpM 6= eM , A and M select (deA, d
e
M ) ∈ De

A(dp)×De
M (dp) respectively,

where the conditional message sets De
A(dp), De

M (dp) are specified by the side contract.

The report to P is selected according to m̃(dp, de) ∈ ∆(MA × MM ), associated

with the transfers to A and M, tA(dp, de) and tM (dp, de) respectively. These satisfy

tA(dp, de) + tM (dp, de) ≤ 0.
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• If either dpA = eA or dpM = eM , A and M play GC non-cooperatively.

Given GC and η, the third party decides whether to offer a side-contract SC(η) or not

(i.e., offer a null side-contract NSC). If a non-null side-contract is offered, A and M play

a game denoted by GC ◦ SC(η) with two stages as described above. On the other hand,

if the third party offers a null side-contract NSC at the first stage, A and M play GC

non-cooperatively based on prior beliefs (denoted by bφ(η)). The third-party’s objective is

to maximize E[αuA(θ, η) + (1− α)uM (θ, η) | η] in state η.

The refinement PBE(c) introduced in the paper for the case where the side contract is

offered by M, can now be extended as follows.

Definition 1 Following the selection of a grand contract by P, a PBE(c) is a Perfect

Bayesian Equilibrium (PBE) of the subsequent game in which side-contracts are designed

by a third party, which has the following property. There does not exist some η for which

there is a Perfect Bayesian Equilibrium (PBE) of subgame C3 in which (conditional on η)

the third-party’s payoff is strictly higher, without lowering the payoff of M and any type of

A.

Definition 2 An allocation (uA, uM , q) is EAC feasible if the following is true. When

side contracts are designed by a third party assigning welfare weight α to A, there exists a

grand contract and a PBE(c) of the subsequent side contract subgame which results in this

allocation.

Proposition 2 An allocation (uA, uM , q) is EAC feasible when side contracts are designed

by a third party assigning welfare weight α to A, if and only if it is an EACP(α) allocation

satisfying the interim participation constraints uA(θ, η) ≥ 0 for all (θ, η) and E[uM (θ, η) |

η] ≥ 0 for all η.

Proof of Proposition 2

Proof of Necessity

For some GC, suppose that allocation (uA, uM , q) is achieved in the game with collusion.

Suppose the allocation is achieved as the outcome of a PBE(c) of subgame C3 in which a

non-null side contract SC∗(η) is offered on the equilibrium path in some state η, which is
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rejected either by some types of A, or by M. We show it can also be achieved as the outcome

of a PBE(c) in which a non-null side contract is offered in state η and always accepted by

A and M. Let dpA(θ, η) and dpM (η) denote A and M’s participation decisions respectively

(whether or not they chose the exit option at the first stage). Following rejection by either

A or M, they play the grand contract GC based on updated beliefs b(· | dpA(θ, η), dpM (η), η).

Let dp∗A (θ, η) denote A’s decision, and dp∗M (η) M’s participation decisions on the equilibrium

path.

Now construct a new side-contract S̃C(η) which differs from SC∗(η) by replacing the

message space Dp
A for A at the first stage by Dp

A × Dp
A. Similarly M’s message space

is now Dp
M ×D

p
M . The interpretation is that the first component of this message dpA is a

participation decision, while the second component d̃pA is a ‘signal’. This allows a decoupling

of the participation decision from sending a signal to the other player which changes beliefs

with which they play the grand contract noncooperatively in the event that the side contract

is rejected by someone. For example, if A selected dpA = eA in the previous side-contract

in order to send a signal about his type θ to M, the same signal can be sent now through

the second component of the message, while opting to participate in the choice of the first

component (by selecting dpA 6= eA, d̃
p
A = eA). The first component of the message dpA now

matters only insofar as it is an exit decision or not; conditional on it not being an exit

decision the precise message does not matter. If both decide to participate (i.e., not exit),

they move on to the second stage of the game, where the mechanism replicates the allocation

resulting on the equilibrium path of the original PBE associated with SC∗(η) (i.e., agrees

with the second stage mechanism in SC∗(η) whenever both agreed to participate in SC∗(η),

and otherwise assigns the allocation resulting from noncooperative play of GC in the original

PBE). If one or both decides not to participate in S̃C(η), they play GC noncooperatively

with beliefs based on first stage messages according to b(· | d̃pA(θ, η), d̃pM (η), η). Note that

these beliefs do not depend on dpA or dpM .

It is easily verified that there exists a PBE where the third party offers S̃C(η) in state

η, in which A and M always accept the side-contract (i.e., in state (θ, η) they respectively

select dpA(θ, η) 6= eA, d
p
M (η) 6= eM while choosing d̃pA(θ, η) equal to dpA(θ, η) in the original

PBE, and d̃pM (η) equal to dpM (η) in the original PBE). The underlying idea is that since

A’s first stage report d̃pA now affects beliefs at the second stage in exactly the same way

that dpA did in the original PBE, it is optimal for A to choose d̃pA(θ, η) equal to dpA(θ, η)
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in the original PBE. Moreover, the first stage dpA report now affects only A’s participation

decision at the second stage, and by construction has no effect on second stage allocations

(conditional on participation). So it is optimal for A to decide to participate. The same

logic applies to M. Hence the newly constructed strategies and beliefs constitute a PBE.

It can also be verified that since the original equilibrium was a PBE(c), so is the newly

constructed equilibrium.

Next we show that if allocation (uA, uM , q) is realized in a PBE (c) in which the offered

side contract is not rejected on the equilibrium path, it must be a EACP(α) allocation.

Suppose not: the allocation resulting from some non-null side contract (ũ∗A(θ, η), m̃∗(θ, η)) 6=

(uA(θ, η), (θ, η)) solves problem TP (η;α) for some η. Define ũ∗M (θ, η) ≡ X(m̃∗(θ | η)) −

θQ(m̃∗(θ | η))− ũ∗A(θ, η). It is evident that

E[αũ∗A(θ, η) + (1− α)ũ∗M (θ, η) | η] > E[αuA(θ, η) + (1− α)uM (θ, η) | η],

ũ∗A(θ, η) ≥ uA(θ, η)

and

E[ũ∗M (θ, η) | η] ≥ E[uM (θ, η) | η].

There exists mc(θ, η) ∈ ∆(MA ×MM ) in GC such that

(XA(mc(θ, η)) +XM (mc(θ, η)), q(mc(θ, η))) = (X(m̃∗(θ | η)), Q(m̃∗(θ | η))).

Now construct a new side-contract SC(η) which realizes

(ũ∗A(θ, η), ũ∗M (θ, η), Q(m̃∗(θ | η)))

as a PBE outcome, contradicting the hypothesis that (uA, uM , q) is realized in a PBE (c).

SC(η) is specified as follows:

• Dp ≡ Dp∗ where Dp∗ = (Dp∗
A , D

p∗
M ) are A and M’s message sets at the participation

stage of the original side-contract SC∗(η).

• De
A = Θ(η) and De

M = φ

• A’s choice of deA = θ ∈ Θ(η) generates the report mc(θ, η) to P, and side transfers to

A and M respectively as follows:

tA(θ, η) = ũ∗A(θ, η)− [XA(mc(θ, η))− θq(mc(θ, η))]
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and

tM (θ, η) = ũ∗M (θ, η)−XM (mc(θ, η)).

Given any (dpA, d
p
M ) with dpA 6= eA and dpM 6= eM at the participation stage, it is optimal

for A to always select deA = θ, since θ
′

= θ maximizes

XA(mc(θ
′
, η))− θq(mc(θ

′
, η)) + tA(θ

′
, η) = ũ∗A(θ

′
, η) + (θ

′ − θ)Q(m̃∗(θ
′ | η)).

At the participation stage, A is indifferent among any dpA ∈ D
p
A\{eA} as the optimal re-

sponse to dpM 6= eM , since the outcome in the continuation game does not depend on this

choice. Select beliefs consequent on non-participation by either A or M in the same way as

in the original equilibrium; then participation continues to be optimal for both. In state

η, responses to all other side contract offers are unchanged. In all other states η′ 6= η,

strategies and beliefs are unchanged. Hence this is a PBE resulting in (ũ∗A(θ, η), ũ∗M (θ, η)),

contradicting the PBE(c) property of the equilibrium resulting in (uA, uM , q). This com-

pletes the proof of necessity.

Proof of Sufficiency

Take an allocation which is EACP(α) and satisfies interim participation constraints. We

show it is achievable as a PBE(c) outcome following choice of the following grand contract

GC:

GC = (XA(mA,mM ), XM (mA,mM ), q(mA,mM ) :MA,MM )

where

MA = K ∪ {eA}

MM = N ∪ {eM}

XA(mA,mM ) = XM (mA,mM ) = q(mA,mM ) = 0

for (mA,mM ) such that either mA = eA or mM = eM .

• (XA((θA, ηA), ηM ), q((θA, ηA), ηM )) = (uA(θA, ηM )+θAq(θA, ηM ), q(θA, ηM )) for ηA =

ηM and (XA((θA, ηA), ηM ), q((θA, ηA), ηM )) = (−T, 0) for ηA 6= ηM

• XM ((θA, ηA), ηM ) = uM (θA, ηA) for ηM = ηA and XM ((θA, ηA), ηM ) = −T for ηM 6=

ηA
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where T > 0 is sufficiently large. The EACP(α) property implies that uA(θ, η) ≥ uA(θ
′
, η)+

(θ
′ − θ)q(θ′ , η) for any θ, θ

′ ∈ Θ(η). The interim participation constraints imply that this

grand contract has a non-cooperative pure strategy equilibrium

(m∗A(θ, η),m∗M (η)) = ((θ, η), η)

based on prior beliefs.

For this grand contract, we claim there exists a PBE(c) resulting in (m∗A(θ, η),m∗M (η)) =

((θ, η), η). Let the third party offer a null side contract, following which A and M play

truthfully in the GC noncooperatively with prior beliefs. If the third party offers any non-

null side contract, all types of A and M reject it and subsequently play truthfully in the

noncooperative game with prior beliefs. This is clearly a PBE. That it is a PBE(c) follows

from the property that the allocation is EACP(α).

5 Procuring an Indivisible Good

Here we provide the details of the case where the good to be procured is indivisible. P

procures an indivisible good with quantity q either 0 or 1 from A who produces it at cost

θ. P obtains a zero gross benefit if q = 0, and a benefit of V > 0 if q = 1. A is privately

informed about the realization of θ. The expert M and A jointly observe the realization of

signal i ∈ {L,H} of A’s cost. Both A and M have outside option payoffs of 0. Fi(θ) denotes

the distribution of θ conditional on i defined on [θ, θ̄], which has a density fi(θ) which is

differentiable and positive on [θ, θ̄]. Hence the support of θ does not vary with the signal,

and hazard rates are well-defined and finite-valued throughout the support. κi ∈ (0, 1)

denotes the probability of signal i, with κL + κH = 1. P does not observe the signal i, and

has a prior F (θ) ≡ κLFL(θ) + κHFH(θ) with density f(θ) ≡ κLfL(θ) + κHfH(θ).

Assumption 1 (i) fL(θ)
fH(θ) is decreasing

(ii) H(θ) ≡ θ + F (θ)
f(θ) , hi(θ) ≡ θ + Fi(θ)

fi(θ)
and li(θ) ≡ θ − 1−Fi(θ)

fi(θ)
(i = L,H) are increasing

(iii) hL(θ̄) > V > θ

Part (i) represents a monotone likelihood ratio property wherein i = L (resp. i = H)

is a signal of low (resp. high) cost. (ii) is a standard assumption ensuring monotonicity
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of (conditional) virtual costs and valuations. These imply FH(θ) < F (θ) < FL(θ) and

hH(θ) < H(θ) < hL(θ) for any θ ∈ (θ, θ̄). The second inequality of (iii) ensures gains from

trade between P and A; the first one ensures that costless access to M’s signal is valuable for

P in the absence of collusion. These conditions are satisfied in the following example with a

uniform prior F (θ) = θ on [0, 1] and linear conditional densities: FL(θ) = 2dθ− (2d− 1)θ2,

FH(θ) = 2(1− d)θ+ (2d− 1)θ2 on [0, 1], κL = κH = 1/2, d ∈ (1/2, 1) and V between 0 and

1 + 1
2(1−d) . d is interpreted as a parameter of information precision. We shall illustrate our

analysis with numerical computations for this example.

The situation where P has no access to M’s signal is referred to as the No Monitor

(NM) case. Here P offers a non-contingent price pNM to maximize F (p)[V − p], which

satisfies V = H(pNM ) if V < H(θ̄), and equals θ̄ otherwise. Let ΠNM ≡ F (pNM )[V −pNM ]

denote the resulting expected payoff of P. The second-best allocation results when there is

no collusion whence P can costlessly access M’s signal; here P offers A a price pSBi which

maximizes (V − pi)Fi(pi). The ordering of virtual cost functions implied by Assumption 1

ensures a lower price elasticity of supply and thus a lower second-best price in the low cost

signal state. However, the supply curve is shifted to the right in the low signal state, so the

ordering of resulting supply likelihoods between the two states is ambiguous, which turns

out to depend on V :

Lemma 1 (i) pSBH > pNM > pSBL if V < H(θ̄), and pSBH = pNM = θ̄ > pSBL otherwise

(ii) There exist V ∗ and V ∗∗ such that θ < V ∗ ≤ V ∗∗ < hH(θ̄), where FL(pSBL ) > FH(pSBH )

for V ∈ (θ, V ∗) and FL(pSBL ) < FH(pSBH ) for V ∈ (V ∗∗, hL(θ̄)).

Proof of Lemma 1: (i) is straightforward. To establish (ii), for any q ∈ [0, 1], define

Pi(q) ∈ [θ, θ̄] such that Fi(Pi(q)) = q and Ci(q) ≡ qPi(q). So we may interpret Ci(q) as

the ‘cost’ function in state i. Since C
′
i(Fi(θ)) = hi(θ), Assumption 1 (ii) implies C

′
i(q) is

increasing in q on [0, 1]. Then qSBi ≡ Fi(p
SB
i ) satisfies V = C

′
i(q

SB
i ) for V ∈ (θ, hi(θ̄)).

From Assumption 1 (i) and fi(θ) > 0 on [θ, θ̄] for i ∈ {L,H}, CL(q) < CH(q) on q ∈ (0, 1)

with CL(0) = CH(0) = 0 and CL(1) = CH(1) = θ̄. Hence there are intervals of small q such

that C
′
L(q) < C

′
H(q) and large q such that C

′
L(q) > C

′
H(q). This guarantees the existence

of V ∗ and V ∗∗ with the stated properties.
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5.1 Delegation to Expert with Ex Ante Collusion

Consider P’s option to contract solely with M and delegate the authority to contract with

A. With ex ante collusion, M does not commit to responding to P’s offer before contracting

with A. So after P offers M a contract, the latter offers A a contract. Following A’s

response, M then responds to P. On the other hand, with interim collusion argued in the

later subsection, M makes the participation decision to P’s contract before contracting with

A.

Given this timing, standard arguments imply that (following any given contract offer)

M can confine attention to offering A a take-it-or-leave-it price pi in state i for delivering the

good to P. And similarly P can confine attention to offering M a two part contract X0, X1

where Xq is the payment for delivery of output q. There is no added value to P asking M

to submit a report of her signal or the outcome of contracting with A, as conditional on

the q delivered M would select whichever message would maximize her payment received.

In order to induce M to deliver the good with positive probability, P must offer X1 > θ.

Upon observing signal i, M will then decide what price pi ∈ [θ,X1] to offer A, along with

participation decision in P’s contract in either of the two events where A does or does not

accept M’s offer. If A accepts, it is optimal for M to agree to participate in P’s contract since

the optimal price will satisfy pi < X1. Let I ∈ {0, 1} denote M’s participation decision

in the event that A does not accept M’s offer. Then M selects pi and I to maximize

Fi(pi)(X1 − pi) + I[1 − Fi(pi)]X0. It follows that I = 1 only if X0 ≥ 0. If X0 < 0, M will

not accept P’s offer in the event that A does not accept M’s offer. The same outcome is

realized if P sets X0 = 0. Hence without loss of generality, X0 ≥ 0, and M always accepts

P’s offer.

The constraint X0 ≥ 0 plays a key role in the subsequent analysis. It arises owing to

ex ante collusion, whereby M contracts and communicates with A prior to responding to

P’s offer. In an interim collusion setting this constraint does not arise, and is replaced by

interim participation constraints for M, whence X0 can be negative and yet P’s contract

could be accepted by M.

Let b denote the delivery bonus X1−X0. The choice of pi will be made by M to maximize

Fi(pi)(b−pi). If b ≤ θ, it is optimal for M to offer A a price below θ, whence the good is never

delivered to P. Otherwise there is a unique optimal price pi(b) which satisfies θ < pi(b) < b.

Eventually P earns expected payoff [κLFL(pL(b)) + κHFH(pH(b))](V − b) − X0, which is
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sought to be maximized by choosing b > θ,X0 ≥ 0. Now note that any such payoff would

be strictly dominated by the option of not consulting M at all where P directly offers A

a price of b. This follows since b < V is necessary for P to earn a positive payoff; hence

[κLFL(pL(b)) + κHFH(pH(b))](V − b)−X0 < F (b)(V − b) ≤ ΠNM . We thus obtain:

Proposition 3 With an indivisible good and ex ante collusion, delegation to the expert is

worse for the principal compared to not consulting the expert at all.

As we shall later see, delegation could dominate the no-monitor outcome under interim

collusion. This represents a stark contrast between the two forms of collusion. In delegation

with ex ante collusion, M earns rents which cannot be taxed away upfront by P at the time

of contracting with M, thereby generating a double marginalization of rents (DMR). Under

interim collusion, P may be able to extract some of M’s interim rents (in the absence of

knowledge of A’s type) via an upfront fee, thereby limiting the DMR problem.

5.2 Centralized Contracting with Ex Ante Collusion

Under ex ante collusion, therefore, if at all P obtains an advantage from consulting M,

she needs to contract simultaneously with both M and A. M and A can negotiate a side-

contract (SC, for short) prior to responding to P’s offer. Following private communication

of a cost message by A to M, the SC coordinates their respective messages (which include

participation decisions and cost reports) sent to P, besides a side payment between A and

M. As shown in Section 5.1 of the paper, without loss of generality M has all the bargaining

power within the coalition and makes a take-it-or-leave-it SC offer to A. If A refuses it,

they play P’s mechanism non-cooperatively. As Proposition 1 of the paper shows, P can

confine attention to allocation that is ex ante collusion proof (EACP) satisfying interim

participation constraints, i.e., for which it is optimal for M to not offer any non-null SC

to A, and both M and A agree to participate. We now explain the implied individual and

coalition incentive compatibility constraints in the context of an indivisible good.

First, a contract offer to A reduces to a single take-it-or-leave-it price offer pi when the

cost signal is i. Second, in order to deter collusion, P must offer an aggregate payment

to M and A which depends only on whether or not the good is produced. Let X0 + b,X0

denote the aggregate payments when the good is and is not produced respectively. The

two prices pL, pH combined with X0, b characterize an allocation entirely. This is associated
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with a mechanism where M and A are asked to submit reports of the signal i to P. If the two

reports happen to match, A is offered the option to produce and deliver the good directly to

P in exchange for price pi, while M is paid X0 if the good is not delivered, and b+X0 − pi
if it is delivered. If the two reports do not match, there is no production and both M

and A are required to pay a high penalty to P. The key feature distinguishing centralized

contracting from delegation is that in the former P makes a contract offer directly to A

which is conditioned on reported signals. This provides an outside option to A which M is

constrained to match while offering an SC to A. This is an important strategic tool which

enables P to manipulate the outcome of collusion between M and A, and reduce the severity

of the DMR problem.

Along the equilibrium path where A and M decide to participate, report i truthfully to

P, and do not enter into a deviating SC, A produces the good in state i and receives the

payment pi if and only if θ is smaller than pi. Without loss of generality, A receives no

payment in the event of non-production (since any mechanism paying a positive amount

to A in the event of non-production is dominated by one that does not). This generates

utility to A of uA(θ, i) = max{pi − θ, 0}. M ends up with X0 + b − pi in the event that

production takes place, and X0 otherwise.

The allocation pL, pH , X0, b has to satisfy the following constraints. First, in order to

ensure that ex post the coalition does not prefer to reject it, the aggregate payment to M

and A must be nonnegative in the event that the good is not delivered:

X0 ≥ 0. (1)

The reason is that if the good is not delivered, A earns no rent; hence rejection of P’s

contract by the coalition does not entail any payoff consequence for A. If X0 < 0, M would

then benefit from rejecting P’s contract; hence it is Pareto improving for the coalition to

do so.3 This constraint is distinctive to the ex ante collusion setting, where participation

decisions in P’s contract are made after M and A have negotiated a side contract.

3No analogous non-negativity constraint on aggregate payments X0 + b corresponding to delivery of the

good is imposed here, because the decision to reject P’s contract could result in a loss of rents for A. M

would then have to compensate A for this loss, and the required compensation may be large enough that it

may be optimal for M to instead accept P’s contract despite X0 + b being negative. The issue of coalition

incentive compatibility is addressed in more detail below.
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Second, in order to induce M to participate ex ante:

FH(pH)(b− pH) +X0 ≥ 0 (2)

FL(pL)(b− pL) +X0 ≥ 0 (3)

Individual participation constraints for A are already incorporated into the supply decision

represented by a supply likelihood of Fi(pi) in state i.

Third, M and A should not be tempted to enter a deviating SC. A deviating SC would

involve a different set of prices p̃i offered to A (in state i) for delivering the good, combined

with a lump-sum payment ũi. A would then produce if θ is smaller than p̃i, and M would

earn an expected payoff Fi(p̃i)(b− p̃i) +X0 − ũi. Type θ of A would accept the deviating

SC provided

max{p̃i − θ, 0}+ ũi ≥ max{pi − θ, 0} (4)

Proposition 1 of the paper shows that without loss of generality, attention can be restricted

to ex ante collusion-proof (EACP) allocations. Hence collusion-proofness requires (p̃i, ũi) =

(pi, 0) to maximize Fi(p̃i)(b− p̃i) +X0 − ũi subject to (4) for all types θ ∈ [θ, θ̄].

This condition can be broken down as follows. First, if pi > θ, M should not benefit

by deviating to a price p̃i < pi. This would necessitate offering a lump-sum payment of

ũi = pi − p̃i to ensure that all types of A accept the SC, which would then generate M an

interim expected payoff of Fi(p̃i)(b− p̃i)+X0−pi+ p̃i. A necessary and sufficient condition

for such a deviation to not be worthwhile is that

b ≥ pi −
1− Fi(pi)
fi(pi)

≡ li(pi) (5)

since li(p) is increasing in p as per the monotone hazard rate assumption (Assumption

1(ii)). Intuitively, offering a lower price than pi is similar to M selling the good back to A.

Condition (5) which states that the value (b) of the good to M exceeds its virtual value to

A, ensures that such a sale is not worthwhile.

Similarly, if pi < θ̄, M should not want to offer A a higher price p̃i. Unlike the case of a

lower offer price, such a variation cannot be accompanied by a negative lump sum payment

ũi to A, owing to the need for A’s ex post participation constraint to be satisfied in non-

delivery states. Offering p̃i > pi will then generate an interim payoff of Fi(p̃i)(b− p̃i) +X0.

For M to not want to deviate to a higher price, it must be the case that

b ≤ pi +
Fi(pi)

fi(pi)
= hi(pi) (6)
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This condition can be interpreted simply as the value of delivery (b) to M being lower than

the virtual cost of A delivering it.

(5, 6) can be combined into the single collusion-proofness condition

max{l̂L(pL), l̂H(pH)} ≤ b ≤ min{ĥL(pL), ĥH(pH)}. (7)

where l̂i(pi) denotes li(pi) if pi > θ and −∞ otherwise, and ĥi(pi) denotes hi(pi) if pi < θ̄ and

∞ otherwise (since the corresponding state i constraint is relevant only when pi differs from

θ, θ̄ respectively). This condition is referred to as coalition incentive constraint henceforth.

Proposition 1 in the paper implies that these conditions are necessary and sufficient for

the allocation (pL, pH , b,X0) to be the outcome of a Perfect Bayesian Equilibrium (PBE)

of the ex ante collusion contracting game, which is interim-Pareto-undominated for the

coalition by any other PBE. Hence, an optimal allocation must maximize

[κHFH(pH) + κLFL(pL)](V − b)−X0 (8)

subject to (1, 2, 3, 7). We refer to these constraints as characterizing ex ante collusion

(EAC) feasibility.

It is convenient to restate P’s profit as

U(pL, pH)−R(b,X0; pL, pH) (9)

where U(pL, pH) ≡ κHFH(pH)(V − pH) + κLFL(pL)(V − pL) is the expression for expected

profit in the second-best setting, from which M’s rent R(b,X0; pL, pH) ≡ κHFH(pH)(b −

pH) + κLFL(pL)(b− pL) +X0 has to be subtracted in the presence of collusion. Note also

that given b, pL, pH it is optimal to set X0 = max{0,maxi{Fi(pi)(pi − b)}}. With this

convention we can henceforth represent an EAC allocation by the triple (pL, pH , b).

We start the analysis by making some simple but key observations regarding properties

of any EAC-feasible allocation in which M is valuable (i.e, where the resulting profit exceeds

the maximum profit attainable in NM).

Lemma 2 In any EAC-feasible allocation in which M is valuable:

(i) b < pi for some i and X0 > 0

(ii) pL < pH
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(iii) FL(pL) > FH(pH).

Proof of Lemma 2: (i) If b ≥ pi, i = L,H, the optimal X0 = 0. P’s profit (8) then

equals [κHFH(pH) + κLFL(pL)](V − b), which is non-negative only if V − b ≥ 0. This

implies that P’s profit is (weakly) dominated by the allocation p̃H = p̃L = b, which in

turn is weakly dominated by what P could earn in NM. (ii) The interim participation

constraints imply that M will attain a nonnegative rent. Hence P’s profit is bounded above

by U(pL, pH). If pL ≥ pH , the value of U(pL, pH) is smaller than the maximum value of

U(p̃L, p̃H) subject to the constraint that p̃L ≥ p̃H . The constraint must bind, since the

unconstrained solution is represented by second-best prices which violate the constraint.

Hence the maximum value of the constrained problem is realized at p̃H = p̃L = pNM . The

expected profit of P would then be dominated by the NM allocation where P offers pNM

to A in both states. (iii) Parts (i) and (ii) imply that in order to dominate the best NM

allocation, an EAC feasible allocation must satisfy pH − b > max{0, pL − b}. So if (iii) did

not hold, FH(pH)(pH − b) ≥ FL(pL)(pL − b), and optimal X0 = FH(pH)(pH − b). Then as

FH(pH) ≥ FL(pL) implies κHFL(pL) + κHFH(pH) ≤ FH(pH), and V ≥ b to ensure that

P earns non-negative profit, it follows that P’s profit equals [κLFL(pL) + κHFH(pH)](V −

b)− FH(pH)(pH − b) ≤ FH(pH)(V − pH) ≤ F (pH)(V − pH) ≤ ΠNM , a contradiction.

Part (i) states that relevant EAC allocations must involve low-powered incentives for

M in at least one state i, in the sense that ex post M is worse off in state i if the good

is delivered than when it is not. This is the very opposite of delegation, where M earns a

nonnegative margin on any transaction in every state. In ex ante collusion, the base pay

X0 must be positive in order to compensate for the ‘loss’ incurred by M when the good

is delivered in state i (so as to ensure that M wants to participate at the interim stage

corresponding to state i). Conversely, (i) may be viewed as stating that A is offered higher

powered incentives than M in some state; this is a ‘countervailing incentive’ designed to

raise A’s outside option in bargaining with M over a side contract, so as to counter the

DMR problem.

Part (ii) states that the low cost signal results in a lower price offered to A, just as in the

second-best setting. The reason is that when the prices offered to A can vary with the cost

signal, P’s profit rises only if they result in a lower price being offered following a low cost

signal. A variation in the opposite direction would directly result in lower profit, besides

possibly entailing some rents paid to M. Part (iii) restricts the extent to which the prices
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can vary across the two states: the price in the low cost state should not be so low that the

resulting supply likelihood becomes smaller in that state. Intuitively, larger variations in

prices are not worthwhile because they generate high collusion stakes which raise M’s rent

excessively.

Lemma 2 indicates the problem of finding an optimal EAC allocation can be broken

down into two successive stages. At the first stage, for any given pair of prices pL, pH

satisfying (ii) and (iii), we find an optimal contract b for M to minimize M’s rent subject

to the coalition incentive constraint (7), and the requirements that b < pH and X0 =

maxi{Fi(pi)(pi − b)}. Then at the second stage, prices pL, pH are selected to maximize

U(pL, pH) − R∗(pL, pH) subject to pL < pH , FL(pL) > FH(pH), where R∗(pL, pH) denotes

the minimized rent of M at the first stage.

The next result describes the solution to the first stage problem, i.e., the optimal bonus

for any set of prices satisfying (ii) and (iii). Upon substituting for the optimal base pay

X0, the expression for M’s expected rent reduces to

R̃(b; pL, pH) ≡ κLFL(pL)(b−pL)+κHFH(pH)(b−pH)−min{FL(pL)(b−pL), FH(pH)(b−pH)}.

(10)

Clearly R̃ is non-negative and attains a global minimum of zero at b = pLFL(pL)−pHFH(pH)
FL(pL)−FH(pH) ≡

B(pL, pH) < pL < pH . This turns out to be feasible (and hence B(pL, pH) is optimal) if

B(pL, pH) ≥ max{lL(pL), lH(pH)}, otherwise it is optimal to select the lowest bonus that

is feasible, which is max{lL(pL), lH(pH)}.

Lemma 3 Given pL, pH satisfying pL < pH and FL(pL) > FH(pH), the optimal bonus

b(pL, pH) = max{B(pL, pH), lL(pL), lH(pH)} where B(pL, pH) ≡ pLFL(pL)−pHFH(pH)
FL(pL)−FH(pH) .

Proof of Lemma 3: To start with, note that the restrictions pL < pH and FL(pL) >

FH(pH) imply that the prices are interior: θ < pi < θ̄, i = H,L. Hence the coalition

incentive constraint (7) simplifies to maxi{li(pi)} ≤ b ≤ mini{hi(pi)}. Next, note that upon

substituting for the optimal base pay X0, the expression for M’s expected rent reduces to

R̃(b; pL, pH) ≡ κLFL(pL)(b−pL)+κHFH(pH)(b−pH)−min{FL(pL)(b−pL), FH(pH)(b−pH)}.

(11)

Clearly R̃ is non-negative and attains a global minimum of zero at b = B(pL, pH) < pL <

pH . If B(pL, pH) ≥ max{lL(pL), lH(pH)}, it is feasible to select b = B(pL, pH) as the
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coalition incentive constraint (7) is satisfied (given that pi ≤ hi(pi), i = H,L), as well

as the constraint that b < pH . Hence in this case the optimal bonus equals B(pL, pH).

If B(pL, pH) < max{lL(pL), lH(pH)}, then observe that over the range b ≥ B(pL, pH),

(b− pL)FL(pL) ≥ (b− pH)FH(pH), implying that X0 = FH(pH)(b− pH), or

R̃ = κL[{FL(pL)− FH(pH)}b− pLFL(pL) + pHFH(pH)]. (12)

Hence R̃ is strictly increasing in b over the range b ≥ B(pL, pH), and the optimal bonus in

this case equals max{lL(pL), lH(pH)}.

Next, we characterize properties of optimal EAC allocations (with pEi denoting the

corresponding optimal price in state i).

Proposition 4 With an indivisible good and ex ante collusion:

(a) There exists V̂1 ∈ (θ, hH(θ̄)) such that if V ∈ (θ, V̂1) the second-best profit can be

achieved.

(b) M is valuable if V < H(θ̄), but not if V > V̂2 for some V̂2 ∈ (H(θ̄), hL(θ̄)).

(c) pEH ≤ pSBH .

(d) pEL ≥ pSBL if lL(.) is convex.

Proof of Proposition 4: (a) By Lemma 1, FL(pSBL ) > FH(pSBH ) for V close to θ. As

V approaches θ, pSBi approaches θ for both i = H,L, and B(pSBL , pSBH ) approaches θ >

maxi{li(θ)}, implying b(pSBL , pSBH ) = B(pSBL , pSBH ) for V sufficiently close to θ. So (pL, pH , b) =

(pSBL , pSBH , B(pSBL , pSBH )) is EAC feasible, implying the second-best profit can be achieved for

V close to θ. By Lemma 1 (ii), there exists V ∗∗ ∈ (θ, hH(θ̄)) such that FL(pSBL ) ≤ FH(pSBH )

for V ≥ V ∗∗. Lemma 2 (iii) implies that FL(pSBL ) > FH(pSBH ) must hold if the second-best

profit can be achieved in EAC-feasible allocation. Hence V̂1 < hH(θ̄).

(b) V < H(θ̄) implies pNM < θ̄. For any such V , we can find pL, pH sufficiently close

to pNM satisfying pSBL ≤ pL < pNM < pH ≤ pSBH , FL(pL) > FH(pH) and maxi{li(pi)} <

B(pL, pH) (sinceB(p, p) = p > li(p), i = L,H for any p < θ̄). The allocation (pL, pH , B(pL, pH))

is then EAC feasible, in which M earns zero rent, and P earns a profit of U(pL, pH) >

U(pNM , pNM ) = ΠNM .
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Next we show that M is not valuable at V = V̂ ≡ κLhL(θ̄)+κHhH(θ̄) < hL(θ̄). Suppose

otherwise, whence FL(pEL ) > FH(pEH) by Lemma 2. Note that V̂ = θ̄+[κL
1

fL(θ̄)
+κH

1
fH(θ̄)

] >

θ̄+ 1
κLfL(θ̄)+κHfH(θ̄)

= H(θ̄). Hence ΠNM (V̂ ) = V̂ −θ̄ = κL(hL(θ̄)−θ̄)+κH(hH(θ̄)−θ̄). Now

θ̄ is the second-best price when V equals hi(θ̄) in state i, implying hi(θ̄)−θ̄ ≥ Fi(pEi )(hi(θ̄)−

pEi ). Hence ΠNM (V̂ ) ≥ κLFL(pEL )(hL(θ̄)− pEL ) +κHFH(pEH)(hH(θ̄)− pEH) ≥ κLFL(pEL )(V̂ −

pEL ) + κHFH(pEH)(V̂ − pEH) = U(pEL , p
E
H), where the second inequality follows from the

definition of V̂ and FL(pEL ) > FH(pEH). Since P’s expected profit in EAC is bounded above

by U(pEL , p
E
H), we obtain a contradiction. Hence it is optimal to offer pi = θ̄ for both i at

V̂ . By a standard revealed preference argument, these prices are also optimal at any higher

V . Hence M is not valuable at any V > V̂ .

(c) We first show that M’s rent is locally non-decreasing in pH at (pEL , p
E
H). IfB(pEL , p

E
H) >

maxi{li(pEi )}, M earns zero rent which is unaffected by small variations in pH . So sup-

pose B(pEL , p
E
H) ≤ maxi{li(pEi )} in which case bE = maxi{li(pEi )} and R∗(pEL , p

E
H) =

κL[{FL(pEL )−FH(pEH)}maxi{li(pEi )}+FH(pEH)pEH−FL(pEL )pEL ] = κL maxi ρi(p
E
H , p

E
L ) where

ρi(pH , pL) ≡ {FL(pL)− FH(pH)}li(pi) + FH(pH)pH − FL(pL)pL. Now ρL is locally nonde-

creasing in pH at (pEL , p
E
H) because FH(pH)[pH − lL(pL)] is increasing in pH at (pEL , p

E
H)

(the latter in turn follows from Lemma 2 and (7) which together imply pEH > bE =

maxi{li(pEi )} ≥ lL(pEL )). And ρH is nondecreasing in pH over the range of pH which satisfies

FL(pL) > FH(pH) since l′H(pH)[FL(pL)− FH(pH)] + fH(pH)[hH(pH)− lH(pH)] ≥ 0.

It now follows that if pEH > pSBH , a slight lowering of pH will have a positive first order

effect on U(pL, pH), without raising M’s rent. Hence pEH ≤ pSBH .

(d) We show that M’s rent is locally non-increasing in pL at (pEL , p
E
H) if lL(pL) is convex.

When B(pEL , p
E
H) > maxi{li(pEi )}, M’s rent is zero which does not vary locally with pL. So

suppose B(pEL , p
E
H) ≤ maxi{li(pEi )} implying that R∗(pEL , p

E
H) = κL maxi ρi(p

E
H , p

E
L ). Now

FL(pL)[lH(pEH)− pL] is locally non-increasing in pL at pEL , since its partial derivative with

respect to pL at pEL equals fL(pEL )[lH(pEH) − hL(pEL )], which is non-positive as (7) implies

lH(pEH) ≤ bE ≤ hL(pEL ). Hence ρH is locally nonincreasing in pL at (pEL , p
E
H). The result

therefore holds when ρL(pEL , p
E
H) < ρH(pEL , p

E
H).

Next consider the case where ρH(pEL , p
E
H) ≤ ρL(pEL , p

E
H) =

R∗(pEL ,p
E
H)

κL
. Since ∂ρL

∂pL
=

l′L(pL)[FL(pL) − FH(pH)] − 1, the convexity of lL(pL) implies the conxevity of ρL in pL

over the range of pL which satisfies FL(pL) > FH(pH) for any fixed value of pH . Now

as pL approaches pEH , ρL(pL, p
E
H) approaches [FL(pEH) − FH(pEH)][lL(pEH) − pEH ] < 0. Since
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ρL(pEL , p
E
H) ≥ 0, there must exist p̃L ∈ [pEL , p

E
H) where ρL(p̃L, p

E
H) = 0 and ρL is locally

decreasing in pL. The convexity of ρL(pL, p
E
H) in pL then implies that ρL(pL, p

E
H) is also

locally decreasing in pL at every pL which satisfies pL ≤ p̃L and FL(pL) > FH(pEH). Since

pEL ≤ p̃L, it follows that ρL is locally decreasing in pL at (pEL , p
E
H).

It now follows that if pEL < pSBL , a slight increase in pL will have a positive first-order

effect on U(pL, pH), without raising M’s rent. Hence pEL ≥ pSBL .

Part (a) states that the second-best profit can be achieved by P when V is low enough,

while (b) says that consulting M is valuable for low values of V but not for sufficiently high

values. Parts (c) and (d) describe how prices offered to A deviate from second-best prices.

Provided lL is convex, a condition satisfied in our example with linear conditional density

functions and uniform prior, the dispersion between prices in the two states is narrower than

in the second-best. The heuristic reason underlying these results is that collusion costs tend

to rise with dispersion in prices pi across the two states. For sufficiently low values of V ,

the second-best can be implemented, essentially because the dispersion between second-best

prices corresponding to the different cost signals is small enough. The value of consulting

M tends to decline as V rises, because this raises price dispersion and hence the rents paid

to M.
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Figure 1: Second-Best, No Monitor and EAC Optimal Prices in Example with d = 0.99

This intuitive argument also helps explain why M is valuable for values of V smaller

than H(θ̄). Starting with the optimal NM allocation where an interior price pNM < θ̄ is

offered, consulting M enables P to vary the price pi with the cost signal in the direction of

the second-best prices (pSBL < pL < pNM < pH < pSBH ). When the variation is slight, the
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induced stakes of collusion are small enough that M can earn no rents, thereby generating

a profit improvement for P. Parts (c) and (d) reinforce this intuition, by showing that

the distortion in prices compared with the second-best involves lower dispersion (given

convexity of lL).

These results are illustrated in our numerical example with d = 0.99. Figure 1 plots

optimal prices offered to A in the second-best (SB), no monitor (NM) and ex ante collusion

(E) settings, corresponding to different values of V . It also plots the corresponding EAC-

optimal bonus values bE . For low values of V , the second-best is implemented. Over this

range price dispersion rises, as in the second-best. For intermediate values of V , M is

valuable; over this range price dispersion narrows in contrast to rising dispersion in second-

best prices. Eventually the gap between pEL and pEH is eliminated as V grows further, from

which point onwards M ceases to be valuable.

5.3 Contrasting Optimal Solutions in Ex Ante and Interim Collusion

Contexts

We now describe how (and when) the solution to EAC differs from interim collusion (INC).

The formulation of the INC problem differs from the EAC problem in only one respect:

the collusive participation constraint X0 ≥ 0 does not apply. An INC allocation can

also be represented by the triple (b, pL, pH), where base pay X0 is optimally set equal to

maxi{Fi(pi)(pi − b)} and is permitted to be negative. Part (i) of Lemma 1 then no longer

applies, opening up the possibility of providing high powered incentives with a bonus b

larger than maxi{pi} (as in a delegation setting), and then extracting M’s rent upfront

with a negative base pay. In particular, delegation to M can no longer be ruled out.

It is easy to check that in INC, part (ii) of Lemma 2 continues to apply (for the same

reason), so pL < pH is still necessary. However part (iii) need not apply: the likelihood of

supply could be higher in the high cost state. The reason is that under interim collusion

part (i) of Lemma 2 no longer holds — incentives could be high-powered (b > pH). Part

(iii) is then modified as follows (upon using a similar argument as in Lemma 2): an INC

allocation where M is valuable must either (i) be low-powered (in the sense that b < pH)

and satisfy FL(pL) > FH(pH), X0 > 0, or (ii) high-powered (b > pH) and satisfy FH(pH) >

FL(pL), X0 < 0. It is evident that (i) is EAC feasible, while (ii) is not. We therefore obtain:
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Lemma 4 The optimal INC allocation differs from the optimal EAC allocation only if the

former involves high powered incentives (b > pH > pL) and FH(pH) > FL(pL).

So we now focus on allocations with high-powered incentives where b > pH > pL and

FH(pH) > FL(pL). The optimal bonus in ex ante collusion now differs from Lemma 3 as

follows.

Lemma 5 Given pL, pH satisfying pL < pH and FH(pH) > FL(pL), the optimal bonus in

interim collusion is b(pL, pH) = min{B(pL, pH), ĥL(pL), ĥH(pH)}. M is valuable only if

b > V .

Proof of Lemma 5: Given any pair of prices satisfying pL < pH and FH(pH) > FL(pL),

the optimal bonus must minimize M’s rent subject to b > pH and the coalition incentive

constraint (7). M earns zero rent at the bonus B(pL, pH) = pHFH(pH)−pLFL(pL)
FH(pH)−FL(pL) which

is now larger than pH . Since the choice of b is restricted to the range b > pH where

b > maxi{l̂i(pi)} is automatically satisfied, the bonus B(pL, pH) is optimal if B(pL, pH) ≤

mini{ĥi(pi)}. Otherwise, B(pL, pH) > mini{ĥi(pi)} and the choice of b is restricted to the

range (pH ,mini{ĥi(pi)}]. Over this range b < B(pL, pH) which implies FH(pH)(b− pH) <

FL(pL)(b− pL) and therefore X0 = −FH(pH)(b− pH). The expression for M’s rent is then

modified to R̃(b; pL, pH) = κLFL(pL)(b − pL) + κHFH(pH)(b − pH) − FH(pH)(b − pH) =

κL[{FL(pL)− FH(pH)}b+ FH(pH)pH − FL(pL)pL], which is now decreasing in b.

To see that b > V is necessary for M to be valuable, note that since the function

R̃(b; pL, pH) is decreasing in b, if b ≤ V then pH < V , implying that P’s profit is bounded

above by U(pL, pH) − κL[{FL(pL) − FH(pH)}V + FH(pH)pH − FL(pL)pL] = FH(pH)(V −

pH) ≤ F (pH)(V − pH), the profit attained in NM upon choosing the price of pH in both

states.

The relevant range of bonuses and their effect on M’s rent are thus reversed in interim

collusion, compared to the EAC setting: the relevant range of b is (pH ,mini{ĥi(pi)}], over

which M’s rent is decreasing in b. Whenever M earns positive rents in INC, it is optimal

for P to make incentives as high-powered as possible, and set the bonus to the maximum

level mini{ĥi(pi)} consistent with the coalition incentive constraint. Moreover, the bonus

needs to exceed V in order for M to be valuable.

We are now in a position to characterize some features of INC optimal allocations.
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Lemma 6 (i) An INC optimal allocation which is not EAC feasible can be implemented

via delegation to M.4

(ii) Second-best profits cannot be achieved by an INC optimal allocation which is not EAC

feasible.

(iii) M is valuable in the INC optimal allocation for all V ∈ [H(θ̄), hL(θ̄)).

Proof of Lemma 6: (i) As explained above, an INC optimal allocation which is infeasible

in EAC must involve pL < pH , FH(pH) > FL(pL) and in which M is valuable (since any

allocation in NM is feasible in EAC). P attains profit Π = [κHFH(pH) + κLFL(pL)](V −

b) + FH(pH)(b − pH) = κLFL(pL)(V − b) + FH(pH)[κHV + κLb − pH ]. By Lemma 5, it is

necessary that b > V . To show that this can be attained via INC with delegation, we need

to show that if pi < θ̄ then b = hi(pi), while if pi = θ̄ then b ≥ hi(θ̄).

Suppose first that pi < θ̄ for either i. Then ĥi(pi) = hi(pi) ≥ b. If i = L and

hL(pL) > b, note that Π is strictly decreasing in pL, so profit can be raised by lowering

pL slightly. Similarly, if i = H and b < hH(pH), we have κHV + κLb < hH(pH), implying

FH(pH)[κHV + κLb − pH ] is locally strictly decreasing in pH , and profit can be raised by

lowering pH slightly.

Next, suppose pi = θ̄. If b < hi(θ̄), the same argument as above applies: profit can be

raised by lowering pi slightly. Hence it must be the case that b ≥ hi(θ̄).

(ii) From (i), an INC optimal allocation which is EAC infeasible satisfies pi = pi(b)

which maximizes Fi(p)(b − p) with respect to choice of p ∈ [θ, θ̄]. Since FL(p) > FH(p)

for all p ∈ (θ, θ̄), it must be true that FL(pL)(b − pL) ≥ FH(pH)(b − pH), with strict

inequality if b < hL(θ̄). Hence b < hL(θ̄) implies M earns positive rent in state L (as

X0 = −FH(pH)(b − pH)), and second-best profits cannot be achieved. And if b ≥ hL(θ̄),

it must be the case that pL = pH = θ̄, in which case the INC optimal allocation can be

attained in NM and therefore also in EAC.

(iii) Consider any V ≥ H(θ̄), whence ΠNM = V − θ̄. The optimal INC profit is bounded

below by what can be achieved via delegation in the interim collusion setting. If the

bonus is b, the resulting prices will be pi(b), base pay will be set equal to −FH(pH(b))(b−
4It is evident that the INC optimal allocation which is EAC feasible is not achievable via delegation,

since Lemma 2 implies b ≤ pH in EAC feasible allocation, but the delegation to M induces pH(< b) which

maximizes FH(pH)(b− pH).
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pH(b)) (using the argument in (ii) above), so the resulting profit will be ΠIND(b;V ) ≡

[κLFL(pL(b)) + κHFH(pH(b))][V − b] + FH(pH(b))[b − pH(b)]. ΠIND(b;V ) equals the P’s

payoff under bonus b in the delegation to M (in the interim collusion setting). The derivative

of ΠIND with respect to b evaluated at b = V then equals κL[FH(pH(V )) − FL(pL(V ))].

Now observe that by definition of the pi(b) function, pi(V ) = pSBi . So V ≥ H(θ̄) implies

pSBH = pNM = θ̄, so pH(V ) = θ̄. On the other hand, pL(V ) = pSBL < θ̄ since V < hL(θ̄),

so FL(pL(V )) < 1 = FH(pH(V )). It follows that ΠIND is strictly increasing in b when

evaluated at b = V . Since ΠIND(V ;V ) = V − θ̄ = ΠNM , it follows that M adds value in

the INC optimal allocation.

Result (i) follows from observing that P’s profits are decreasing in each price pi in INC.

Raising prices paid to A raises the likelihood of the good being delivered, which lowers

P’s profit largely as a consequence of paying a bonus exceeding what the good is worth to

P (as shown in the previous Lemma). Hence if hi(pi) exceeds b, it is profitable to lower

pi slightly while leaving the bonus b unchanged, as this would preserve feasibility of the

allocation. This implies that the price offered to A is exactly what would have been chosen

in each state by M under delegation. And under delegation M would earn a higher profit

in the low cost state compared with the high cost state, owing to A’s ‘supply curve’ being

shifted to the right in the former relative to the latter. It is then impossible for P to fully

extract M’s rents in the low cost state, as M has to be willing to accept the contract in

both states. Hence second-best profits cannot be achieved. Part (iii) shows that unlike the

ex ante collusion setting, M remains valuable in interim collusion for all large V between

H(θ̄) and hL(θ̄). Intuitively this is because in the absence of collusion in participation and

the associated DMR problem, delegation helps P control the stakes of collusion better.

Combining the various results above, we obtain the following Proposition which con-

trasts optimal solutions in the ex ante and interim collusion settings The solution to ex

ante collusion involves low powered incentives, and in particular can never be achieved by

delegation. Interim collusion involves a different allocation for large values of V , which is

implemented via high-powered incentives (a delivery bonus that exceeds the value of the

good to P, combined with delegation). Recall that we consider the range of possible values

of V between θ and hL(θ̄).

Proposition 5 (i) For sufficiently small values of V , EAC and INC optimal allocations
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Figure 2: When Interim and Ex Ante Collusion Solutions Differ

coincide. For sufficiently large V , they are different.5

(ii) M is valuable in INC for all V > H(θ̄), whereas M is not valuable in EAC for suffi-

ciently large V .

(iii) Whenever the INC optimal allocation differs from the EAC optimal allocation, it can

be implemented via delegation to M, with prices pIi ≥ pSBi for i = L,H and a bonus

bI > V (with (pIi , b
I) corresponding to the INC optimal allocation).6

In the context of our numerical example, Figure 2 shows different regions of the two

dimensional parameter space (V, d) where the INC optimal and EAC optimal solutions do

and do not coincide. The unshaded subregion on the extreme right is excluded by our

restriction that V < hL(θ̄). In the subregion on the left (marked “EA=IN”) involving

relatively low values of V , the EAC and INC solutions coincide. In the middle subregion

(marked “EA 6= IN”) they diverge.

Figure 3 plots the pattern of optimal prices in the INC optimal solution, corresponding

5By Proposition 4(a), it is evident that EAC and INC optimal allocations coincide for small V such that

the second best allocation is EAC feasible. Even when the second best profit is not achievable, they can

coincide, since the second best payoff is approximated by the EAC optimal one with sufficiently small V ,

while the proof of Lemma 6(ii) implies that it is never approximated with the delegation to M in the interim

collusion setting.
6The result comparing INC optimal prices with second-best prices obtains from observing that prices

corresponding to delegation with a bonus of V equal second-best prices, and the optimal bonus must exceed

V .
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Figure 3: Optimal Prices with Interim

Collusion
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Figure 4: Optimal Bonus in Ex Ante and

Interim Collusion

to different values of V (with d set equal to 0.99). For intermediate values of V where the

second-best is not attained and the two solutions coincide, the price offered in the high cost

signal state is smaller than the corresponding second-best price. As V rises further, the

INC solution diverges from the EAC, causing a discontinuous switch in the pricing pattern:

the price offered in the high cost signal state jumps up to the second-best price, resulting

in locally increasing price dispersion.

Figure 4 plots the optimal bonus against alternative values of V (with d set equal to

0.99). Over the range where the EAC and INC solutions coincide, incentives are low-

powered (the bonus is smaller than V ). At the threshold where they just begin to diverge,

the INC optimal bonus jumps discontinuously upwards while the EAC bonus continues

to remain below V . Lemma 3 and 5 imply that when the second best allocation is not

achievable, the INC optimal b has a corner solution property that it equals either the left

hand side or the right hand side of the coalitional incentive constraints (7), depending on

V . As V crosses the threshold, b switches from one to the other, generating a discontinuous

change in (pL, pH).

Interim collusion is thus characterized by a discontinuous change in contracting strat-

egy as V crosses the threshold, from a ‘bureaucracy’ (low-powered incentives, centralized

contracting and low sensitivity of supplier price to cost information of the expert), to a

‘market-like’ contract resembling a franchise arrangement (high powered incentives, delega-

tion, revenues earned primarily through franchise fees, and higher sensitivity of price to cost

information). The market-based strategy is infeasible in the presence of ex ante collusion,
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since franchisees can then collude with their suppliers to avoid paying the upfront franchise

fee in states of the world where suppliers cannot deliver owing to high cost realizations.

6 Ironing Rule and Related Results

Here we summarize the ironing procedure and its related properties which are frequently

used throughout the paper. We specify an ironing rule to construct π̂(x) from two functions

π(x) and G(x), and explain some properties about π̂(x). According to Myerson (1981) and

Baron and Myerson (1982), the ironing rule is described as follows.

Definition 1 Suppose that π(x) and G(x) defined on [x, x̄] have the following properties:

(i) π(x−) ≥ π(x+) for any x ∈ [x, x̄].

(ii) G(x) is distribution function with G(x) = 0 and G(x̄) = 1. G(x) is strictly increasing

and continuously differentiable on [x, x̄].

Then π̂(x) ≡ π̂(x | π(·), G(·)) is constructed from π(x) and G(x) as follows.

(i) Π(φ) =
∫ φ

0 π(h(y))dy where h(φ) satisfies G(h(φ)) = φ for φ ∈ [0, 1].

(ii) Π(φ) is maximum convex function so that Π(φ) ≥ Π(φ).

(iii) π̂(x) satisfies (i) π̂(x) = Π
′
(G(x)) whenever the derivative Π

′
(G(x)) is defined,7 and

(ii) π̂(x) = Π
′
(G(x−)) for any x ∈ (x, x̄].

We provide two lemmata, which show some properties used in the paper.

Lemma 7 π̂(x) = π̂(x | π(·), G(·)) constructed from π(x) and G(x) satisfies:

(i) π̂(x) is continuous and non-decreasing in x. If π(x) is non-decreasing in x, π̂(x) =

π(x).

(ii)
∫ x̄
x q(x)π̂(x)dG(x) =

∫ x̄
x q(x)π(x)dG(x) if q(x) is constant for each interval of x such

that Π(G(x)) > Π(G(x)) (or π̂(x) takes constant value).

(iii) If π(x) > x on (x, x̄], π̂(x) > π̂α(x) on (x, x̄] for πα(x) ≡ (1 − α)π(x) + αx with

α ∈ (0, 1].

7Since Π(φ) is convex, it is almost everywhere differentiable.
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(iv) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄). If there exists an increasing v(x) so that v(x) < π(x)

for any x > x, v(x) < π̂(x) for any x > x and if there exists an increasing v(x) so

that v(x) > π(x) for any x > x, v(x) > π̂(x) for any x > x.

(v) Suppose that q∗(x) is the solution of the following problem:

max

∫ x̄

x
[V (q(x))− π(x)q(x)]dG(x)

subject to q(x) is non-increasing. Then q∗(x) solves

max

∫ x̄

x
[V (q(x))− π̂(x)q(x)]dG(x).

Then ∫ x̄

x
[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x
[V (q∗(x))− π̂(x)q∗(x)]dG(x).

Proof of Lemma 7

Proof of (i)

Since Π(φ) is convex and G(x) is increasing, π̂(x) is non-decreasing. In order to show

the continuity of π̂(x), we start with proving the statement: If Π(φ
′
) = Π(φ

′
) for some

φ
′ ∈ [0, 1], then

Π
′
(φ
′−) ≤ Π

′
(φ
′−) ≤ Π

′
(φ
′
+) ≤ Π

′
(φ
′
+).

By the definition of Π(φ) which is the maximum convex function such that Π(φ) ≥ Π(φ)

on [0, 1], if φ
′
> 0, for any ε ∈ [0, φ

′
],

Π(φ
′ − ε)−Π(φ

′ − ε) ≥ 0 = Π(φ
′
)−Π(φ

′
)

or equivalently
Π(φ

′
)−Π(φ

′ − ε)
ε

≥ Π(φ
′
)−Π(φ

′ − ε)
ε

.

This implies Π
′
(φ
′−) ≥ Π

′
(φ
′−). Similarly, if 1 > φ

′
, for any ε ∈ [0, 1− φ′ ],

Π(φ
′
+ ε)−Π(φ

′
+ ε) ≥ 0 = Π(φ

′
)−Π(φ

′
)

or equivalently
Π(φ

′
+ ε)−Π(φ

′
)

ε
≤ Π(φ

′
+ ε)−Π(φ

′
)

ε
.
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This implies Π
′
(φ
′
+) ≤ Π

′
(φ
′
+). The convexity of Π(φ) implies Π

′
(φ
′−) ≤ Π

′
(φ
′
+). It

completes the proof of the above statement.

By the definition, π̂(x) is left-continuous. To show the continuity of π̂(x), suppose

otherwise that there exists x so that π̂(x) < π̂(x+). It means that Π
′
(G(x−)) < Π

′
(G(x+)).

Then Π(G(x)) = Π(G(x)), since otherwise we can find a higher convex function than Π(φ).

By the definition of π(x), π(x−) = Π
′
(G(x−)) and π(x+) = Π

′
(G(x+)). Then using the

statement proven above,

π(x−) = Π
′
(G(x−)) ≤ Π

′
(G(x−)) < Π

′
(G(x+)) ≤ Π

′
(G(x+)) = π(x+)

This is contradiction since we assume that π(x−) ≥ π(x+). Therefore π̂(x) is continuous.

Suppose that π(x) is non-decreasing in x. With Π(φ) =
∫ φ

0 π(h(y))dy, Π
′
(φ) = π(h(φ)).

Then Π(φ) is convex and Π(φ) = Π(φ), implying π(x) = π̂(x).

Proof of (ii)

Define I by

I ≡ {x ∈ [x, x̄] | Π(G(x)) > Π(G(x))}.

For any x ∈ I, there exists d(x) and u(x) such as

Π(G(x
′
)) > Π(G(x

′
))

on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))). Then Π(φ

′
)

is a linear function of φ
′

on [G(d(x)), G(u(x))] and π̂(x
′
) is constant on x

′ ∈ [d(x), u(x)].

Then since q(x
′
) is constant on x

′ ∈ [d(x), u(x)],∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)) =

∫
[d(x),u(x)]

q(x
′
)dΠ(G(x

′
)).

Therefore it implies that∫ x̄

x
q(x)π(x)dG(x) =

∫ x̄

x
q(x)dΠ(G(x)) =

∫ x̄

x
q(x)dΠ(G(x)).

Since Π(φ) is convex, it is almost everywhere differentiable with Π
′
(G(x)) = π̂(x) almost

everywhere. This means that∫ x̄

x
q(x)dΠ(G(x)) =

∫ x̄

x
q(x)π̂(x)dG(x).

It is concluded that ∫ x̄

x
q(x)π̂(x)dG(x) =

∫ x̄

x
q(x)π(x)dG(x).
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Proof of (iii)

Since the linear combination of two convex functions is convex, (1− α)Π(φ) + α
∫ φ

0 h(y)dy

is convex function. Defining Πα(φ) by

Πα(φ) ≡
∫ φ

0
πα(h(y))dy = (1− α)Π(φ) + α

∫ φ

0
h(y)dy.

Since

Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0
h(y)dy,

Πα(φ), which is the maximum convex function such that Πα(φ) ≥ Πα(φ), satisfies

Πα(φ) ≥ Πα(φ) ≥ (1− α)Π(φ) + α

∫ φ

0
h(y)dy.

Here our proof is composed of the analysis of two cases: (a) the region of x such that

Π(G(x)) > Π(G(x)) and (b) the region of x such that Π(G(x)) = Π(G(x)).

(a) For arbitrary x such that Π(G(x)) > Π(G(x)), there exists d(x) and u(x) such as

Π(G(x
′
)) > Π(G(x

′
))

on x
′ ∈ (d(x), u(x)), Π(G(d(x))) = Π(G(d(x))) and Π(G(u(x))) = Π(G(u(x))). At φ =

G(d(x)) and φ = G(u(x)),

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0
h(y)dy.

It implies that

Πα(φ) = (1− α)Π(φ) + α

∫ φ

0
h(y)dy

at φ = G(d(x)) and φ = G(u(x)). Then since (i) of this lemma implies that Π
′
α(φ) and Π(φ)

are differentiable with respect to φ for any φ ∈ [0, 1], the derivatives of both sides of the

above equation with respect to φ, if evaluated at G(u(x)), have the following relationship:

Π
′
α(G(u(x))) ≤ (1− α)Π

′
(G(u(x))) + αu(x) = (1− α)π̂(u(x)) + αu(x).

Since π̂(u(x)) = π(u(x)) > u(x) (by u(x) > x) and π̂α(u(x)) = Π
′
α(G(u(x))),

π̂α(u(x)) < π̂(u(x))
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for any α ∈ (0, 1]. For any x
′ ∈ (d(x), u(x)), π̂(x

′
) = π̂(u(x)) and π̂α(x

′
) ≤ π̂α(u(x)) (since

π̂α(x) is non-decreasing in x). Therefore

π̂α(x
′
) < π̂(x

′
)

for any x
′ ∈ (d(x), u(x)).

(b) For any x > x such that Π(G(x)) = Π(G(x)),

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0
h(y)dy.

It implies

Πα(G(x)) = (1− α)Π(G(x)) + α

∫ G(x)

0
h(y)dy

and

π̂α(x) = Π
′
α(G(x)) = (1− α)π̂(x) + αx < π̂(x)

for any α ∈ (0, 1], since π̂(x) = π(x) > x for x > x such that Π(G(x)) = Π(G(x)).

The argument in (a) and (b) implies the statement of (iii).

Proof of (iv)

(a) π̂(x) ≤ π(x) and π̂(x̄) ≥ π(x̄) are obtained from Π
′
(φ = 0) ≥ Π

′
(φ = 0), Π

′
(φ = 1) ≤

Π
′
(φ = 1) and Π

′
(G(x)) = π(x).

(b) The case of v(x) < π(x): For x > x such that Π(G(x)) = Π(G(x)), π̂(x) = π(x) > v(x).

For x > x such that Π(G(x)) > Π(G(x)), and for u(x) that is defined in the proof of (iii),

π̂(x) = Π
′
(G(u(x))) = π(u(x)) > v(u(x)) ≥ v(x). It implies π̂(x) > v(x) for any x > x

such that Π(G(x)) = Π(G(x)). Therefore π̂(x) > v(x) for any x > x.

(c) The case of v(x) > π(x): For x > x such that Π(G(x)) = Π(G(x)), π̂(x) = π(x) < v(x).

For x > x such that Π(G(x)) > Π(G(x)), and for d(x) that is defined in the proof of (iii),

π̂(x) = Π
′
(G(d(x))) = π(d(x)) ≤ v(d(x)) < v(x). It implies π̂(x) < v(x) for any x > x such

that Π(G(x)) > Π(G(x)). Therefore π̂(x) < v(x) for any x > x.

Proof of (v)

Step 1:

For any non-increasing q(x),∫ x̄

x
π(x)q(x)dG(x) =

∫ x̄

x
q(x)dΠ(G(x)) ≥

∫ x̄

x
q(x)dΠ(G(x)) =

∫ x̄

x
π̂(x)q(x)dG(x)
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Proof of Step 1

Since Π(G(x)) and Π(G(x)) are continuous, applying the integration by parts,∫ x̄

x
q(x)dΠ(G(x)) +

∫ x̄

x
Π(G(x))dq(x) = Π(1)q(x̄)−Π(0)q(x)

and ∫ x̄

x
q(x)dΠ(G(x)) +

∫ x̄

x
Π(G(x))dq(x) = Π(1)q(x̄)−Π(0)q(x).

With Π(1) = Π(1) and Π(0) = Π(0),∫ x̄

x
q(x)dΠ(G(x))−

∫ x̄

x
q(x)dΠ(G(x))

=

∫ x̄

x
(Π(G(x))−Π(G(x)))dq(x) ≥ 0

Step 2: ∫
[x,x̄]

[V (q∗∗(x))− π(x)q∗∗(x)]dG(x) =

∫
[x,x̄]

[V (q∗∗(x))− π̂(x)q∗∗(x)]dG(x)

for q∗∗(x) ∈ arg maxq V (q)− π̂(x)q.

Proof of Step 2:

By the definition, q∗∗(x) is constant for each interval of x where π̂(x) is constant. Then by

(ii) of the lemma, ∫ x̄

x
π(x)q∗∗(x)dG(x) =

∫ x̄

x
π̂(x)q∗∗(x)dG(x).

This completes the proof of Step 2.

Step 3:

By Step 1, for any non-decreasing q(x),∫ x̄

x
[V (q(x))− π(x)q(x)]dG(x) ≤

∫ x̄

x
[V (q(x))− π̂(x)q(x)]dG(x).

By Step 2, if q∗(x) is the solution of

max

∫ x̄

x
[V (q(x))− π(x)q(x)]dG(x)
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subject to q(x) is non-increasing, then q∗(x) solves

max

∫ x̄

x
[V (q(x))− π̂(x)q(x)]dG(x).

Then ∫ x̄

x
[V (q∗(x))− π(x)q∗(x)]dG(x) =

∫ x̄

x
[V (q∗(x))− π̂(x)q∗(x)]dG(x).

It completes the proof of (v).

Lemma 8 ĥ(θ | η) is non-increasing and continuous in θ on Θ(η) with ĥ(θ(η) | η) = θ(η)

and ĥ(θ | η) > θ for θ > θ(η).

Proof of Lemma 8

Since h(θ | η) is continuous, Lemma 7(i) implies that ĥ(θ | η) is continuous and non-

decreasing in θ. Since θ < h(θ | η) for θ > θ(η), Lemma 7(iv) implies that θ < ĥ(θ | η)

for θ > θ(η). By the continuity of ĥ(θ | η), θ(η) ≤ ĥ(θ(η) | η). Lemma 7(iv) also implies

ĥ(θ(η) | η) ≤ h(θ(η) | η) = θ(η). Therefore ĥ(θ(η) | η) = θ(η).
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