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Abstract

We consider mechanism design where message sets are restricted owing to commu-
nication costs, preventing full revelation of information. A Principal contracts with
multiple agents each supplying a one-dimensional good at a privately known cost. We
characterize optimal mechanisms subject to incentive and communication constraints,
without imposing arbitrary restrictions on the number of communication rounds. We
show mechanisms which centralize production decisions are strictly dominated by those
which decentralize decision-making authority to agents, and optimal communication
mechanisms maximize information exchanged directly among agents. Conditions are
provided for these to involve gradual release of information over multiple rounds either
simultaneously or sequentially.
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I. Introduction

Real world economic organizations differ markedly from the predictions of mechanism de-

sign theory. The Revelation Principle (e.g., Myerson (1982)) which plays a central role in

existing theory, implies attention can be restricted to one-shot revelation mechanisms in

which agents communicate everything they know to a central planner, principal or owner,

who subsequently makes all relevant production and allocation decisions. Incentive systems

are designed to encourage agents to be truthful and obedient. Most real mechanisms do

not involve such extreme centralization of authority and communication. Instead, decision-

making authority is typically dispersed among agents, who decide their own production or

consumption and are incentivized by suitable prices or transfers. Agents communicate di-

rectly with one another by participating in dynamic, time-consuming protocols involving

discussions, reports or negotiations.

In the debate on the economics of socialism, Hayek (1945) argued the infeasibility of

communication of dispersed private information by agents in an economy to a central planner

was a key reason for the superiority of a decentralized market economy over a socialist

economy with centralized decision making:

“If we can agree that the economic problem of society is mainly one of rapid

adaptation to changes in the particular circumstances of time and place, it would

seem to follow that the ultimate decisions must be left to the people who are

familiar with these circumstances, who know directly of the relevant changes

and of the resources immediately available to meet them. We cannot expect that

this problem will be solved by first communicating all this knowledge to a central

board which, after integrating all knowledge, issues its orders. We must solve it

by some form of decentralization.” (Hayek (1945, p. 524))
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It is not clear whether Hayek was aware of possible incentive problems associated with

decentralization — wherein privately informed agents may use their discretion to pursue their

own goals at the expense of the rest of society — and how this may affect the desirability of

decentralization.1

These issues continue to be relevant to the design of internal organization of firms and

design of regulatory policies. For example:

• When should firm owners delegate decisions regarding production and sourcing to

managers? Should managers in turn delegate resolution of workplace problems to

workers? Or should the firm be organized as a vertical hierarchy, where agents at any

layer make reports to their bosses and await instructions on what to do?2

• Should environmental regulations take the form of quantitative restrictions on pollution

emitted by firms? Or should they take the form of tax-based incentives where firms

are authorized to make their own pollution decisions?3

• Should communication be vertical (from agents to principal, as in revelation mech-

anisms) or horizontal (between agents)? Should communication be structured as a

static simultaneous process, or should it be dynamic and interactive?

• More generally, do incentive considerations justify restrictions on communication be-

tween agents, or on the extent of discretion they ought to be granted?

In settings where the Revelation Principle applies, these questions cannot be addressed

since the Principle states that a centralized revelation mechanism weakly dominates any

1See Caldwell (1997) for a detailed discussion of this issue.
2Aoki (1990) discusses key differences between American and Japanese firms in terms of these features.
3See discussions in Weitzman (1974, 1978) or Dasgupta, Hammond and Maskin (1980).
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mechanism with decentralized decision-making or direct exchange of information among

agents via dynamic communication processes.

In this paper we explore the role of communication costs in generating a theory which

addresses these questions. Following the debates on economic socialism in the 1930s4, a

large literature subsequently emerged on resource allocation mechanisms that economize on

communication costs. Examples are the message space literature (Hurwicz (1960, 1972),

Mount and Reiter (1974)) and the theory of teams (Marschak and Radner (1972)).5 This

early literature on mechanism design ignored incentive problems.6 Most of the more recent

literature on mechanism design on the other hand focuses only on incentive problems, while

ignoring communication costs.

There are a few papers that study mechanism design when incentive and communication

costs co-exist, but they impose strong ad hoc restrictions on the class of communication

protocols.7 Most authors restrict attention to mechanisms with a single round of communi-

cation, in which each agent simultaneously selects a message from an exogenously restricted

message space. From the standpoint of informational efficiency, it is well-known that dy-

4Caldwell (1997) provides an excellent introduction to this debate.
5Segal (2006) surveys recent studies of informationally efficient allocation mechanisms.
6A notable exception is Reichelstein and Reiter (1988), who examined implications of strategic behavior

for communicational requirements of mechanisms implementing efficient allocations.
7See Green and Laffont (1986, 1987), Melumad, Mookherjee and Reichelstein (1992, 1997), Laffont and

Martimort (1998), Blumrosen, Nisan and Segal (2007), Kos (2011, 2012) and Blumrosen and Feldman (2013).

Van Zandt (2007) and Fadel and Segal (2009) do not seek to derive optimal mechanisms given incentive and

communication constraints, but ask a related question: does the communicational complexity needed to

implement a given decision rule increase in the presence of incentive problems? Battigali and Maggi (2002)

study a model of symmetric but nonverifiable information where there are costs of writing contingencies

into contracts. This is in contrast to the papers cited above which involve asymmetric information with

constraints on message spaces.
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namic communication is valuable in the presence of communication costs: they enable agents

to condition their later messages on messages received at earlier stages from others, which

allows more information to be exchanged. Examples have been provided in the literature

where the same is true when incentive problems also exist.8 Hence there is no basis for

restricting attention to a single round of communication, apart from problems of analytical

tractability.

The key analytical problem in incorporating dynamic communication protocols into mod-

els with strategic agents is finding a suitable characterization of incentive constraints. Dy-

namic mechanisms enlarge the range of possible deviations available to participants, over

and above those typically characterized by incentive compatibility constraints in a static

revelation mechanism. Van Zandt (2007) observes this is not a problem when the solution

concept is ex post incentive compatibility (EPIC), where agents do not regret their strategies

even after observing all messages sent by other agents. When we use the less demanding

concept of a (perfect) Bayesian equilibrium, dynamic communication protocols impose ad-

ditional incentive constraints. This gives rise to a potential trade-off between informational

efficiency and incentive problems.

The problem in studying this trade-off is that a precise characterization of incentive con-

straints for dynamic protocols is not available in existing literature. In a very general setting

Fadel and Segal (2009) provide different sets of sufficient conditions that are substantially

stronger than necessary conditions. In this paper we restrict attention to contexts with

8Melumad, Mookherjee and Reichelstein (1992, 1997), Blumrosen, Nisan and Segal (2007) and Van Zandt

(2007, Section 4) show the superiority of sequential over simultaneous communication protocols with limited

message spaces and each agent sends a message only once. Kos (2011) studies optimal auctions with two

potential buyers, a binary message set for each buyer at each round, and multiple communication rounds,

where increasing the number of rounds raises the seller’s welfare. We will provide some general results

concerning this in Section VI.
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single dimensional outputs and single-crossing preferences for each agent.

Our first main result presents a set of conditions that are both necessary and sufficient for

Bayesian implementation in arbitrary dynamic communication protocols (Proposition 1).9

This enables us to address the broad questions listed at the outset, without imposing ad

hoc restrictions on the number of communication rounds. Our characterization of feasible

mechanisms is shown to imply that the mechanism design problem reduces to selecting

an output allocation rule which maximizes a payoff function of the Principal (modified to

include the cost of incentive rents paid to agents in a standard way with ‘virtual’ types

replacing actual types) subject to communication feasibility restrictions alone (Proposition

2). This extends the standard approach to solving for optimal mechanisms with unlimited

communication (following Myerson (1981)), and provides a convenient representation of

the respective costs imposed by incentive problems and communication constraints. In

particular, Proposition 2 implies that there is no trade-off between informational efficiency

and incentive compatibility, under the assumptions of our model.10

A number of implications of this result are then derived. The first concerns the value of

9Celik (2013), Kos and Messner (2013), Rahman (2011) and Skreta (2006) have recently studied related

problems of characterizing implementable mechanisms with restricted type spaces. The last three papers

examine this question for a mechanism with a single round of communication, where type spaces are exoge-

nous and need not be connected. In our context, the type space is connected, but types are endogenously

pooled into sets of possibly non-connected types. Moreover, we incorporate multiple communication rounds.

Celik’s paper deals with a problem similar to ours; the relationship is explained in more detail at the end of

Section III.
10The one-dimensional nature of production decisions and of cost types satisfying the single-crossing

condition plays a key role. See Green and Laffont (1987) and Fadel and Segal (2009) for examples of other

settings where it is desirable to restrict the discretion of agents or their access to information in order to

overcome incentive problems.
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delegating production decisions to agents.11 This involves trading off benefits of delegation

from enhanced informational efficiency with possible costs owing to opportunistic behavior

given the presence of incentive problems.12 Proposition 3 shows that the benefits of delega-

tion in our model dominate: production decisions should be made by those most informed

about attendant cost implications. It implies that quantitative targets for managers or work-

ers, or pollution caps imposed by regulators, are dominated by delegation of corresponding

decisions to workers, managers and firms. These agents need to be incentivized by suitable

bonus or tax formulae conditioned on reports communicated by them to the corresponding

Principal.

A second set of implications concern the design of optimal communication protocols. We

show that if communication costs either involve material costs which are linear in the length

of messages sent and in the size of the communication channel (defined by the maximum

length of messages sent), or delay which is linear in the size of the communication channel,

then communication should take place over multiple rounds in which agents disclose their

information as slowly as possible.13 Such dynamic protocols enable agents to exchange max-

imal information subject to the communication constraints. If communication costs consist

only of delay, agents must report simultaneously in each round (as in dynamic auctions or

budgeting systems where agents at any given layer of a hierarchy submit forecasts, compet-

ing bids or resource requests to their manager). But if they consist only of material costs, it

11Earlier literature such as Melumad, Mookherjee and Reichelstein (1992, 1997) and Laffont and Mar-

timort (1998) have focused on a related but different question: the value of decentralized contracting (or

subcontracting) relative to centralized contracting. Here we assume that contracting is centralized, and

examine the value of decentralizing production decisions instead.
12The papers cited in the previous footnote show for this reason how certain variants of delegated con-

tracting can perform worse than centralized contracting.
13That is, in each round agents are assigned a small message set (consisting of the shortest possible

messages).
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is optimal for different agents to alternate in sending messages across successive rounds (as

in price negotiations with alternating offers, or meetings with interactive dialogue).

The paper is organized as follows. Section II introduces the model. Section III is devoted

to characterizing feasible allocations. Section IV uses this to represent the design problem

as maximizing the Principal’s incentive-rent-modified welfare function subject to commu-

nicational constraints alone. Section V uses this to compare centralized and decentralized

allocations, while Section VI describes implications for design of optimal communication

protocols. Section VII concludes.

II. Model

There is a Principal who contracts with two agents 1 and 2. Agent i = 1, 2 produces a

one-dimensional nonnegative real valued input qi at cost θiqi, where θi is a real-valued pa-

rameter distributed over an interval Θi ≡ [θi, θ̄i] according to a positive-valued, continuously

differentiable density function fi and associated c.d.f. Fi.
14 The distribution satisfies the

standard monotone hazard condition that Fi(θi)/fi(θi) is nondecreasing, implying that the

‘virtual cost’ vi(θi) ≡ θi + Fi(θi)/fi(θi) is strictly increasing.15 θ1 and θ2 are independently

distributed, and these distributions F1, F2 are common knowledge among the three players.

The inputs of the two agents combine to produce a gross return according to a production

function V (q1, q2) for the Principal. We assume it is feasible for the two agents to select their

outputs independently: (q1, q2) ∈ ℜ+ × ℜ+. Note that a context of team production where

both agents produce a common output q is a special case of the model where V takes the form

14We restrict attention to linear costs for the sake of expositional simplicity. The results extend to more

general cost functions of the form Ki + Ai(θi)Ci(qi) where Ki is a known fixed cost and variable costs are

multiplicatively separable in θi and qi.
15Our results can be extended in the absence of this assumption, employing the ‘ironing’ technique devel-

oped by Myerson (1981) and Baron and Myerson (1982).
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W (min{q1, q2}). A procurement auction where the Principal seeks to procure a fixed amount

q̄ of a good from two competing suppliers is also a special case, with V = min{q1+q2, q̄}. For

the time being we impose no additional assumptions on the production function V . Sections

V and VI will impose additional assumptions in order to derive specific implications for

optimal mechanisms.

The Principal makes transfer payments ti to i. The payoff of i is ti − θiqi. Both agents

are risk-neutral and have autarkic payoffs of 0. The Principal’s objective takes the form

V (q1, q2)− λ1(t1 + t2)− λ2(θ1q1 + θ2q2) (1)

where λ1 ≥ 0, λ2 ≥ 0 and (λ1, λ2) ̸= 0 respectively represent welfare weights on the cost of

transfers incurred by the Principal and cost of production incurred by the agents.

One application is to a context of internal organization or procurement, where the Prin-

cipal owns a firm composed of two divisions whose respective outputs combine to form

revenues V = V (q1, q2). The principal seeks to maximize profit, hence λ1 = 1 and λ2 = 0.

The same applies when the two agents correspond to external input suppliers.

An alternate application is to environmental regulation. The Principal is a regulator

seeking to control outputs or abatements qi of two firms i = 1, 2. V (q1 + q2) is the gross

social benefit, and θi is the firm i’s unit cost. Consumer welfare equals V − (1 + λ)R where

R is the total tax revenue collected from consumers and λ is the deadweight loss involved

in raising these taxes. The revenue is used to reimburse transfers t1, t2 to the firms. Social

welfare equals the sum of consumer welfare and firm payoffs, which reduces to (1) with

λ1 = λ, λ2 = 1. If λ = 0, this reduces to the efficiency objective V − θ1q1 − θ2q2.

III. Communication and Contracting

A. Timing
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The mechanism is designed by the principal at an ex-ante stage (t = −1). It consists of

a communication protocol (explained further below) and a set of contracts to each agent.

There is enough time between t = −1 and t = 0 for all agents to read and understand the

offered contracts.

At t = 0, each agent i privately observes the realization of θi, and independently decides

whether to participate or opt out of the mechanism. If either agent opts out the game ends;

otherwise they enter the planning or communication phase which lasts until t = T .

Communication takes place in a number of successive rounds t = 1, . . . , T . We abstract

from mechanisms in which the Principal seeks to limit the flow of information across agents,

either by appointing mediators, regulators or scrambling devices. Later we argue that the

optimal allocation is implemented with this communication structure, i.e., it is not profitable

to restrict or garble the flow of information across agents. Hence this restriction will turn

out to entail no loss of generality. This simplifies the exposition considerably.

The Principal is assumed to be able to verify all messages exchanged between agents.

Equivalently, an exact copy of every message sent by one agent to another is also sent to the

Principal. This rules out collusion between the agents, and allows the Principal to condition

transfers ex post on messages exchanged. Given that agents exchange messages directly with

one another and the absence of any private information possessed by the Principal, there is

no rationale for the Principal to send any messages to the agents. In what follows we will

not make the Principal’s role explicit in the description of the communication protocol, and

will focus on the exchange of communication between the agents.16

16As mentioned above, any mechanism in which agents send some messages to the Principal but not to

each other, will end up being weakly dominated by a mechanism in which these messages are also sent to

other agents. Hence there is no need to consider mechanisms where agents communicate privately with the

Principal.
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At the end of round T , each agent i = 1, 2 or the Principal selects production level

qi, depending on whether the mechanism is decentralized or centralized (an issue discussed

further below).

Finally, after production decisions have been made, payments are made according to the

contracts signed at the ex ante stage, and verification by the Principal of messages exchanged

by agents and outputs produced by them.

B. Communication Protocol

A communication protocol is a rule defining T the number of rounds of communication, and

the message set Mi of each agent i in any given round, which may depend on the history of

messages exchanged in previous rounds. If some agents are not supposed to communicate

anything in any round, their message sets are null in those rounds. This allows us to include

protocols where agents take turns in sending messages in different rounds. Other protocols

may involve simultaneous reporting by all agents in each round.

The vocabulary of any agent i ∈ {1, 2} is a message set Mi, which contains all messages

mi that i can feasibly send in a single round. This incorporates restrictions on the language

that agents use to communicate with one another. Specific assumptions concerning such

restrictions are introduced below.

The message set Mi assigned to agent i in any round is a subset of the vocabulary of

that agent. Message histories and message sets are defined recursively as follows. Let mit

denote a message sent by i in round t. Given a history ht−1 of messages exchanged (sent and

received) by i until round t− 1, it is updated at round t to include the messages exchanged

at round t: ht = (ht−1, {mit}i∈{1,2}). And h0 = ∅. The message set for i at round t is then a

subset of Mi which depends on ht−1, unless it is null.
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Formally, the communication protocol specifies the number of rounds T , and for every

round t ∈ {1, . . . , T} and every agent i, a message set Mi(ht−1) ⊆ Mi or Mi(ht−1) = ∅ for

every possible history ht−1 until the end of the previous round.17

C. Communication Costs

We now describe communication costs. These depend on the length of messages sent, which

we now explain.

We allow agents the option of not sending any message at all in any given round: hence

the null message ϕ ∈ Mi. Let l(mi) denote the length of message mi ∈ Mi, which is an

integer. It is natural to assume l(ϕ) = 0, and positive-valued for any other message. For

example if messages are binary-encoded, l(mi) could denote the total number of 0’s and 1

bits included in mi. Or if there is a finite alphabet consisting of a set of letters, and messages

are sent in words which are finite sequences of letters interspersed with blank spaces (i.e.,

null messages), the length of a message could be identified with the total number of letters.

Communication costs could involve either material costs (e.g., telephone calls, e-mail,

faxes, videoconferences) or time delays (which hold up production and thereby involve de-

layed shipment of goods to customers and attendant loss of revenues). These costs will

typically depend on actual length of messages sent and/or on the maximum length of mes-

sages that could be sent across all contingencies, i.e., the capacity of the communication

channels involved. Specific models of communication costs will be provided in Section VI.

For now, we avoid any such specific cost function.

We consider communication protocols whose costs amount to at most a fixed budget B

which we take as given. The communication budget will be subtracted from the primary

17We depart from Fadel and Segal (2009) and Van Zandt (2007) insofar as their definition of a protocol

combines the extensive form game of communication as well as the communication strategy of each agent.

13



revenues and costs of the Principal to yield the net returns to the latter. The Principal could

decide on B at the first stage, and for given B select an optimal mechanism at the second

stage. We focus on the problem confronted at the second stage, corresponding to some finite

level of B which is given. The results will not depend on the specific choice of B.

For any given finite B, there will exist a set of feasible communication protocols whose

cost will not exceed B. Let this set of feasible protocols given the communication constraints

be denoted by P . Under reasonable assumptions on the structure of agent vocabularies, it

can be shown that any protocol in this set will involve a finite number of communication

rounds and a finite message set for every agent in each round.18

D. Communication Plans and Strategies

Given a protocol p ∈ P , a communication plan for agent i specifies for every round t a

message mit(ht−1) ∈ Mi(ht−1) for every possible history ht−1 that could arise for i in protocol

p until round t − 1. The set of communication plans for i in protocol p is denoted Ci(p).

As explained above, for any finite communication budget, this set is finite for any feasible

protocol. For the rest of the paper, it will be assumed that communication protocols have

this property.

For communication plan c = (c1, c2) ∈ C(p) ≡ C1(p)×C2(p), let ht(c) denote the history

of messages generated thereby until the end of round t. Let Ht(p) ≡ {ht(c) | c ∈ C(p)}

denote the set of possible message histories in this protocol until round t. For a given

protocol, let H ≡ HT (p) denote the set of possible histories at the end of round T .

Given a protocol p ∈ P , a communication strategy for agent i is a mapping ci(θi) ∈ Ci(p)

from the set Θi ≡ [θi, θ̄i] of types of i to the set Ci(p) of possible communication plans for i.

18A detailed statement of assumptions and proofs is available in the working paper version of this paper

(Mookherjee and Tsumagari (2012)).
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In other words, a communication strategy describes a dynamic plan for sending messages,

for every possible type of the agent. The finiteness of the set of communication plans implies

that it is not possible for others in the organization to infer the exact type of any agent from

the messages exchanged. Non-negligible sets of types will be forced to pool into the same

communication plan.

E. Production Decisions and Contracts

Many authors in previous literature (Blumrosen, Nisan and Segal (2007), Kos (2011, 2012)

and Blumrosen and Feldman (2013)) have limited attention to mechanisms where output

assignments and transfers are specified as a function of the information communicated by

the agents. Decision-making authority is effectively retained by the Principal in this case.

We shall refer to such mechanisms as centralized. A contract in this setting specifies a

quantity allocation q(h) ≡ (q1(h), q2(h)) : H → ℜ2
+, with corresponding transfers t(h) ≡

(t1(h), t2(h)) : H → ℜ × ℜ. A centralized mechanism is then a communication protocol

p ∈ P and an associated contract (q(h), t(h)) : H → ℜ2
+ ×ℜ2.

Some authors (Melumad, Mookherjee and Reichelstein (1992, 1997)) have explored mech-

anisms where the Principal delegates decision-making to one of the two agents, and compared

their performance with centralized mechanisms. This is a pertinent question in procurement,

internal organization or regulation contexts. They consider mechanisms where both contract-

ing with the second agent as well as production decisions are decentralized (while restricting

attention to communication protocols involving a single round of communication). Here we

focus attention on mechanisms where the Principal retains control over the design of con-

tracts with both agents, while decentralizing decision-making authority to agents concerning

their own productions. We refer to such mechanisms as decentralized. The potential advan-

tage of decentralizing production decisions to agents is that these decisions can be based on
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information possessed by the agents which is richer than what they can communicate to the

Principal. Transfers can then be based on output decisions as well as messages exchanged.

Formally, a decentralized mechanism is a communication protocol p and a pair of contracts

for the two agents, where the contract for agent i is a transfer rule ti(qi, h) : ℜ+ ×H → ℜ.

Such a mechanism induces a quantity allocation qi(θi, h) : Θi ×H → ℜ+ which maximizes

ti(qi, h) − θiqi with respect to choice of qi ∈ ℜ+.
19 To simplify exposition we specify the

quantity allocation as part of the decentralized mechanism itself.

A centralized mechanism can be viewed as a special case of a decentralized mechanism

in which qi(θi, h) is measurable with respect to h, i.e., does not depend on θi conditional

on h. It corresponds to a mechanism in which the Principal sets an output target for each

agent (based on the messages communicated) and then effectively forces them to meet these

targets with a corresponding incentive scheme. We can therefore treat every mechanism as

decentralized, in a formal sense. Hence the distinction between centralized and decentralized

mechanisms is unclear.

The distinction between centralization and decentralization can be made more clearly and

simply for allocations resulting from mechanisms, rather than for mechanisms themselves.

Even if agents are given discretionary authority, they may not actually utilize their authority

to base production decisions on private information that has not been communicated to the

Principal. Hence whether decision-making is effectively decentralized depends not only on

the mechanism (whether it is centralized or not), but also on the behavior of agents in

that mechanism. It is more meaningful, therefore, to distinguish between centralization and

19Since i infers the other’s output qj (j ̸= i) only through h, we can restrict attention to contracts where

the payments to any agent depend only on his own output without loss of generality. Specifically, if ti were

to depend on qj , the expected value of the transfer to i can be expressed as a function of qi and h, since

agent i’s information about qj has to be conditioned on h.
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decentralization in terms of allocations rather than mechanisms. To this end, we need to

define allocations first.

F. Feasible Production Allocations

A production allocation is a mapping q(θ) ≡ (q1(θ1, θ2), q2(θ1, θ2)) : Θ1 ×Θ2 → ℜ2
+.

The standard way of analysing the mechanism design problem with unlimited commu-

nication is to first characterize production allocations that are feasible in combination with

some set of transfers, and then use the Revenue Equivalence Theorem to represent the

Principal’s objective in terms of the production allocation alone, while incorporating the

cost of the supporting transfers. To extend this method we need to characterize feasible

production allocations. Restrictions are imposed on production allocations owing both to

communication and incentive problems.

Consider first communication restrictions. A production allocation q(θ) is said to be

communication-feasible if: (a) the mechanism involves a communication protocol p satisfying

the specified constraints on communication, and (b) there exist communication strategies

c(θ) = (c1(θ1), c2(θ2)) ∈ C(p) and output decisions of agents qi(θi, h) : Θi ×H → ℜ+, such

that q(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))) for all θ ∈ Θ ≡ Θ1 × Θ2. Here h(c) denotes the

message histories generated by the communication strategies c in this protocol.

The other set of constraints pertains to incentives. A communication-feasible produc-

tion allocation q(θ) is said to be incentive-feasible in a mechanism if there exists a Perfect

Bayesian Equilibrium (PBE) of the game induced by the mechanism which implements the

production allocation.20 In other words, there must exist a set of communication strate-

gies and output decision strategies satisfying condition (b) above in the requirement of

20This requires both incentive and participation constraints be satisfied. For the definition of PBE, see

Fudenberg and Tirole (1991, Section 8.2).
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communication-feasibility, which constitutes a PBE.

G. Centralized and Decentralized Allocations

We are now in a position to define centralized and decentralized allocations respectively. In

a centralized mechanism, output decisions are made by the Principal, following receipt of

messages from agents. Hence output choices can depend on the true state only through the

dependence of messages sent by the agent on their private information. This is the hallmark

of production allocations resulting from a centralized mechanism.

Formally, a communication-feasible production allocation q(θ) is said to be centralized

if it is measurable with respect to the histories induced by the communication strategies of

the agents, i.e., q(θ) = (q1(h(c(θ))), q2(h(c(θ)))) for all θ ∈ Θ. The allocation is said to be

decentralized if it is not centralized.

In a decentralized allocation, knowledge of actual message histories is not sufficient to

predict the actual outputs chosen. Such an allocation cannot result from any centralized

mechanism: agents must be given at least some discretionary authority over their respective

production decisions. Moreover, agents must actually utilize this authority.

H. Characterization of Incentive Feasibility

We now proceed to characterize incentive-feasible production allocations. Using the single-

dimensional output of each agent and the single crossing property of agent preferences, we

can obtain as a necessary condition a monotonicity property of expected outputs with respect

to types at each decision node. To describe this condition, we need the following notation.

It is easily checked (see Lemma 1 in the Appendix) that given any strategy configuration

c(θ) ≡ (c1(θ1), c2(θ2)) and any history ht until the end of round t in a communication
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protocol, the set of types (θ1, θ2) that could have generated the history ht can be expressed

as the Cartesian product of subsets Θ1(ht),Θ2(ht) such that

{(θ1, θ2) | ht(c(θ1, θ2)) = ht} = Θ1(ht)×Θ2(ht). (2)

A necessary condition for incentive-feasibility of a production allocation q(θ) which is

communication-feasible in a protocol p and supported by communication strategies c(θ) is

that for any t = 0, . . . , T , any ht ∈ Ht and any i = 1, 2:

E[qi(θi, θj) | θj ∈ Θj(ht)] is non-increasing in θi on Θi(ht), (3)

whereHt denotes the set of possible histories until round t generated with positive probability

in the protocol when c(θ) is played, and Θi(ht) denotes the set of types of i who arrive at ht

with positive probability under the communication strategies c(θ).

The necessity of this condition follows straightforwardly from the dynamic incentive con-

straints which must be satisfied for any history ht on the equilibrium path. Upon observing

ht, i’s beliefs about θj are updated by conditioning on the event that θj ∈ Θj(ht). All types

of agent i in Θi(ht) will have chosen the same messages up to round t. Hence any type

θi ∈ Θi(ht) has the opportunity to pretend to be any other type in Θi(ht) from round t+ 1

onward, without this deviation being discovered by anyone. A PBE requires that such a

deviation cannot be profitable. The single-crossing property then implies condition (3).

As noted earlier, the existing literature has provided sufficient conditions for incentive-

feasibility that are stronger than (3). Fadel and Segal (2009) in a more general framework

(with abstract decision spaces and no restrictions on preferences) provide two sets of suf-

ficient conditions. One set (provided in their Proposition 6) of conditions is based on the

observation that the stronger solution concept of ex post incentive compatibility implies

Bayesian incentive compatibility. In our current context ex post incentive compatibility
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requires for each i = 1, 2:

qi(θi, θj) is globally non-increasing in θi for every θj ∈ Θj. (4)

Another set of sufficient conditions (Proposition 3 in Fadel and Segal (2009)) imposes a

no-regret property with respect to possible deviations to communication strategies chosen

by other types following every possible message history arising with positive probability

under the recommended communication strategies. This is applied to every pair of types

for each agent at nodes where it is this agent’s turn to send a message. In the context of

centralized mechanisms (which Fadel and Segal restrict attention to), this reduces to the

condition that for any i = 1, 2 and any ht ∈ Ht, t = 0, . . . , T − 1 where it is i’s turn to move

(i.e., Mi(ht) ̸= ∅):21

E[qi(θi, θj)|θj ∈ Θj(ht)] is globally non-increasing in θi. (5)

Our first main result is that the necessary condition (3) is also sufficient for incentive

feasibility, provided the communication protocol prunes unused messages. Suppose that p

is a communication protocol in which communication strategies used are c(θ). Then p is

parsimonious relative to communication strategies c(θ) if every possible history h ∈ H in

this protocol is reached with positive probability under c(θ).

Proposition 1. Consider any production allocation q(θ) which is communication-

feasible in a protocol p and is supported by communication strategies c(θ), where the protocol

is parsimonious with respect to c(θ). Then condition (3) is necessary and sufficient for

incentive-feasibility of q(θ).

21As Fadel and Segal point out, it suffices to check the following condition at the last node of the commu-

nication game at which it is agent i’s turn to move. Note also that this condition is imposed on nodes of the

communication game, and not at nodes where agents make output decisions in the case of a decentralized

mechanism.
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Parsimonious protocols have the convenient feature that Bayes rule can be used to update

beliefs at every node, and off-equilibrium-path deviations do not have to be considered

while checking incentive feasibility. Restricting attention to such protocols entail no loss of

generality since any protocol can be pruned by deleting unused messages under any given

set of communication strategies, to yield a protocol which is parsimonious with respect to

these strategies. Hence it follows that condition (3) is both necessary and sufficient for

incentive-feasibility.

The proof of Proposition 1 is provided in the Appendix. The main complication arises for

the following reason. In a dynamic protocol with more than one round of communication, no

argument is available for showing that attention can be confined to communication strategies

with a threshold property. Hence the set of types Θi(ht) pooling into message history ht

need not constitute an interval. The monotonicity property for output decisions in (3) holds

only ‘within’ Θi(ht), which may span two distinct intervals. The monotonicity property

may therefore not hold for type ranges lying between the two intervals. This complicates

the conventional argument for construction of transfers that incentivize a given production

allocation.

The proof is constructive.22 Given a production allocation satisfying (3) with respect to

set of communication strategies in a protocol, we first prune the protocol to eliminate unused

messages. Then incentivizing transfers are constructed as follows. We start by defining a

set of functions representing expected outputs of each agent following any given history ht

at any stage t, expressed as a function of the type of that agent. Condition (3) ensures the

expected output of any agent i is monotone over the set Θi(ht). These are the types of i that

actually arrive at ht with positive probability on the equilibrium path. The proof shows it is

22For a geometric illustration of the argument, see the working paper version of this paper (Mookherjee

and Tsumagari (2012)).
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possible to extend this function over all types of this agent (not just those that arrive at ht

on the equilibrium path) which is globally monotone, in a way that agrees with the actual

expected outputs on the set Θi(ht), and which maintains consistency across histories reached

at successive dates. This amounts to assigning outputs for types that do not reach ht on the

equilibrium path, which can be thought of as outputs they would be assigned if they were

to deviate somewhere in the game and arrive at ht. Since this extended function is globally

monotone, transfers can be constructed in the usual way to incentivize this allocation of

expected output. The construction also has the feature that the messages sent by the agent

after arriving at ht do not affect the expected outputs that would thereafter be assigned

to the agent, which assures that the agent does not have an incentive to deviate from the

recommended communication strategy.23

IV. Characterizing Optimal Mechanisms

Having characterized feasible allocations, we can now restate the mechanism design problem

as follows.

Note that the interim participation constraints imply that every type of each agent must

earn a non-negative expected payoff from participating. Agents that do not participate do

not produce anything or receive any transfers. Hence by the usual logic it is without loss of

generality that all types participate in the mechanism. The single crossing property ensures

that expected payoffs are nonincreasing in θi for each agent i. Since λ1 ≥ 0 it is optimal

23The constructed mechanism has the property that agents are indifferent across all message options at

every information set of the game. It may not be the only way of implementing the desired allocation. See,

for instance, Celik (2013) for a different construction in which this property need not hold. Celik considers

a more general context where the evolution of beliefs are required to follow an arbitrary martingale process,

agents choose mixed strategies, the decision space need not be single-dimensional, and aggregate side transfers

to agents are required to balance at each stage.
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to set transfers that incentivize any given production allocation rule q(θ) satisfying (3) such

that the expected payoff of the highest cost type θ̄i equals zero for each i. The expected

transfers to the agents then equal (using the arguments in Myerson (1981) to establish the

Revenue Equivalence Theorem):

Σ2
i=1E[vi(θi)qi(θi, θj)]

where vi(θi) ≡ θi + Fi(θi)/fi(θi). Consequently the expected payoff of the Principal is

E[V (qi(θi, θj), qj(θi, θj))− wi(θi)qi(θi, θj)− wj(θj)qj(θi, θj)] (6)

where wi(θi) ≡ (λ1 + λ2)θi + λ1Fi(θi)/fi(θi).

This enables us to state the problem in terms of selecting a production allocation in

combination with communication protocol and communication strategies. Given the set P

of feasible communication protocols defined by the communication constraints, the problem

is to select a protocol p ∈ P , communication strategies c(θ) in p and production allocation

q(θ) to maximize (6), subject to the constraint that (i) there exists a set of output decision

strategies qi(θi, h), i = 1, 2 such that q(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))) for all θ ∈ Θ,

and (ii) the production allocation satisfies condition (3).

Condition (i) is a communication-feasibility constraint, which applies even in the absence

of incentive problems. Condition (ii) is the additional constraint represented by incentive

problems. Note that the above statement of the problem applies since attention can be

confined without loss of generality to protocols that are parsimonious with respect to the

assigned communication strategies. To elaborate, note that conditions (i) and (ii) are both

necessary for implementation. Conversely, given a production allocation, a communication

protocol, and communication strategies in the protocol that satisfy conditions (i) and (ii),

we can prune that protocol by deleting unused messages to obtain a protocol that is par-

simonious with respect to the given communication strategies. Then Proposition 1 ensures
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that the production allocation can be implemented as a PBE in the pruned protocol with

suitably constructed transfers, which generate an expected payoff (6) for the Principal while

ensuring all types of both agents have an incentive to participate.

Now observe that the incentive feasibility constraint (ii) is redundant in this statement

of the problem. If we consider the relaxed version of the problem stated above where (ii) is

dropped, the solution to that problem must automatically satisfy (ii), since the monotone

hazard rate property on the type distributions Fi ensure that wi(θi) is an increasing function

for each i. This generates the following result.

Proposition 2. The mechanism design problem can be reduced to the following.

Given any set P of feasible communication protocols defined by the communication con-

straints, select a protocol p ∈ P , communication strategies c(θ) in p and production alloca-

tion q(θ) to maximize (6), subject to the constraint of communication feasibility alone, i.e.,

there exists a set of production strategies qi(θi, h), i = 1, 2 such that

q(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))), ∀θ ∈ Θ. (7)

In the case of unlimited communication, this reduces to the familiar property that an

optimal production allocation can be computed on the basis of unconstrained maximization

of expected payoffs (6) of the Principal which incorporate incentive rents earned by the

agents. With limited communication additional constraints pertaining to communication

feasibility have to be incorporated. In the absence of incentive problems, the same constraint

would apply: the only difference would be that the agents would not earn incentive rents

and the objective function of the Principal would be different (wi would be replaced by

w̃i = (λ1 + λ2)θi).

Proposition 2 thus shows how costs imposed by incentive considerations are handled

differently from those imposed by communicational constraints. The former is represented
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by the replacement of production costs of the agents by their incentive-rent-inclusive virtual

costs in the objective function of the Principal, in exactly the same way as in a world with

costless, unlimited communication. The costs imposed by communicational constraints are

represented by the restriction of the feasible set of production allocations, which must now

vary more coarsely with the type realizations of the agents. This can be viewed as the natural

extension of the Marschak-Radner (1972) characterization of optimal team decision problems

to a setting with incentive problems. In particular, the same computational techniques can

be used to solve these problems both with and without incentive problems: only the form

of the objective function needs to be modified to replace actual production costs by virtual

costs. The ‘desired’ communicational strategies can be rendered incentive compatible at zero

additional cost.

This result does not extend when the definition of incentive-feasibility replaces the solu-

tion concept of PBE by ex post incentive compatibility (EPIC). EPIC requires the allocation

to be globally monotone (condition (4)). The following example shows that the optimal PBE

allocation for a specific communication protocol does not satisfy this property.

Example. Suppose V (q1, q2) = 2(min{q1, q2})1/2. θ1 is distributed uniformly on [0, α]

where α ∈ (0, 2/3), and θ2 is uniformly distributed on [0, 1]. The Principal’s objective is

V (q1, q2)− t1 − t2 where ti is a transfer to agent i. There is a single feasible communication

protocol with two rounds, with a binary message space for each agent, and agent 1 sends

a message at the first round, followed by agent 2 in the second round. The mechanism is

centralized. In this context we know from Blumrosen, Nisan and Segal (2007) that optimal

communication strategies take the following form: agent 1 sends m1 = 0 for θ1 ∈ [0, x) and

m1 = 1 for θ1 ∈ [x, α] for some x ∈ [0, α]. Agent 2 then sends m2 = 0 for θ2 ∈ [0, ym1) and 1

for θ2 ∈ [ym1 , 1], for some ym1 ∈ [0, 1],m1 = 0, 1.
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Defining q(c) ≡ 1/c2 = argmaxq[2q
1/2 − cq] and Π(c) ≡ 2q(c)1/2 − cq(c) = 1/c, the

optimal output choice made by the Principal conditional on the information that (θ1, θ2) ∈

[θ
′
1, θ

′′
1 ] × [θ

′
2, θ

′′
2 ] is q1 = q2 = q(θ

′
1 + θ

′′
1 + θ

′
2 + θ

′′
2 ). The maximized payoff of the Principal

conditional on this information is then Π(θ
′
1 + θ

′′
1 + θ

′
2 + θ

′′
2 ). Hence the Principal’s problem

reduces to selecting (x, y0, y1) to maximize

x

α

x+ 2y0
(x+ y0)(x+ y0 + 1)

+
(α− x)

α

x+ 2y1 + α

(x+ y1 + α)(x+ y1 + 1 + α)
.

Given x, the optimal y0 = (x2+2x)1/2/2−x/2 and y1 = ((x+α)2+2(x+α))1/2/2−(x+α)/2. It

is evident that y0 < y1 for any x ∈ [0, α]. Since α < 2/3, it is easy to check that y0+1 > y1+α

holds, implying that q(x + y0 + 1) < q(x + y1 + α). This shows that the optimal output

assignment is not globally monotone in θ1: if θ2 ∈ (y0, y1) then q is higher when θ1 ∈ [x, α]

compared with when θ1 ∈ [0, x). See Figure 1. Hence the optimal Bayesian allocation cannot

be EPIC under any set of transfer functions.

Where incentive feasibility is based on the EPIC solution concept, therefore, condition (4)

must additionally be imposed on the optimization problem, in addition to the requirement

of communication feasibility. Hence the optimal PBE and EPIC allocations must differ.

This observation does not apply in the case of unlimited communication: in that context

optimal Bayesian and EPIC mechanisms generally coincide (Mookherjee and Reichelstein

(1992), Gershkov et al. (2013)).

Van Zandt (2007) and Fadel and Segal (2009) discuss a related question of the ‘com-

munication cost of selfishness’: whether the communicational complexity of implementing

any given social choice function (production allocation in our notation) is increased by the

presence of incentive constraints. Van Zandt shows this is not true when using the EPIC

solution concept, while Fadel and Segal provide examples where this is the case when using

the Bayesian solution concept. In our context where we fix communication complexity and
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solve for optimal mechanisms, an analogous question could be phrased as follows: is the op-

timal mechanism in the presence of communication constraints alone, continue to be optimal

when incentive constraints are incorporated? Proposition 2 shows that the answer to this

question depends on λ1. If the Principal is solely concerned with efficiency and λ1 = 0, the

objective function is the same with and without incentive constraints.24 Then the optimal

mechanism in the absence of any incentive constraints is also optimal in the presence of

incentive constraints. On the other hand, if λ1 > 0 and the Principal seeks to limit transfers

to the agents, the objective function with and without incentive constraints differ. Then the

optimal allocation in the absence of incentive constraints will typically not be optimal when

incentive problems are present.

V. Implications for Decentralization versus Centralization of Pro-

duction Decisions

We now examine implications of Proposition 2 for the value of decentralized allocations

compared with centralized ones. If production decisions are made by the Principal, outputs

are measurable with respect to the history of exchanged messages. If decisions are delegated

to the agents, this is no longer true, since they can be decided by the agents on the basis

of information about their own true types, which is richer than what they managed to

communicate to the Principal. Unlike settings of unlimited communication, centralized

mechanisms cannot replicate the outcomes of decentralized ones. Contracts are endogenously

incomplete, owing to communication constraints. This gives rise to a meaningful question

of how to trade off the costs and benefits of delegation.

The typical tradeoff associated with delegation of decision rights to better informed

24Van Zandt and Fadel and Segal do not incorporate the costs of incentivizing transfers in posing the

implementation problem, so this is the appropriate case to consider when comparing with their result.
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agents compares the benefit of increased flexibility of decisions with respect to the true state

of the world, with the cost of possible use of discretion by the agent to increase his own

rents at the expense of the Principal. Proposition 2 however shows that once the incentive

rents that agents will inevitably earn have been factored into the Principal’s objective,

incentive considerations can be ignored. The added flexibility that decentralization allows

then ensures it is superior. The following Proposition shows this is true as long as V satisfies

some standard regularity conditions that ensure optimal production allocations are always

interior.25

Proposition 3. Suppose V is twice continuously differentiable, strictly increasing,

strictly concave and each agent’s marginal product ∂V/∂qi tends to ∞ as qi → 0. Then

given any centralized production allocation which is feasible in some centralized mechanism,

there exists a decentralized production allocation which is feasible in a decentralized mech-

anism using the same communication protocol, and generates a strictly higher payoff to the

Principal.

It follows that the solution to the mechanism design problem cannot involve a centralized

production allocation. The agents must be delegated authority over production decisions,

and they must effectively utilize this authority. The underlying argument as as follows.

Consider the restricted version of the problem described in Proposition 2 corresponding to

a given communication protocol, i.e., find optimal communication strategies and production

allocation subject to communication feasibility alone. The finiteness of the set of feasible

25These regularity conditions are not satisfied in the contexts of team production or a procurement auction.

For these contexts, the output allocation decision reduces to choice of q1 alone, with q2 = q1 in the case of

team production, and q2 = q̄− q1 in the case of a Principal trying to procure a fixed quantity q̄ from the two

sellers combined. We can analogously show that any centralized mechanism is inferior to some mechanism

which delegates to agent 1 the choice of q1.
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communication plans for every agent implies the existence of non-negligible type intervals

over which communication strategies and message histories are pooled. Consequently if pro-

duction decisions are centralized, the production decision for i must analogously be pooled.

Instead if production decisions were delegated to agent i, the production decision could be

based on agent i’s knowledge of its own true type. Under the regularity conditions assumed

in Proposition 3, optimal production allocations are always interior. Delegation will then

enhance ‘flexibility’ of the production allocation, which will allow a strict increase in the

Principal’s objective (6) while preserving communication feasibility.

This result can be contrasted to the demonstration that variants of delegated contracting

can be inferior to centralized mechanisms (see Melumad, Mookherjee and Reichelstein (1992,

1997)), owing to ‘control loss’ from incentive problems (which aggravate the problem of dou-

ble marginalization of rents) that can overwhelm improvements in flexibility. Such variants

of delegation allow the principal contractor to choose payments made to the subcontractor,

which are unobserved by the Principal. Once these payments can be observed and used by

the Principal to evaluate the performance of the principal contractor, delegation is shown

in the papers cited above to perform superior to centralized mechanisms. In the context of

our model, the principal contracts directly with and thus controls payments to both agents,

enabling problems of double marginalization to be avoided. This explains the relation to the

results in Melumad et al. Proposition 3 shows the superiority of decentralized allocations

obtains without imposing any restrictions on the communication protocol (apart from being

finite).

In the context of internal organization, this result implies the optimality of decentralizing

production decisions to workers when communication constraints prevent them from fully

describing shop-floor contingencies to upper management, as in the prototypical ‘Japanese’

firm (Aoki (1990)) where the central headquarters contracts directly with all workers. This
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is in contrast to subcontracting settings considered in Melumad et al. (1992, 1997) where

centralization can dominate delegation to prime contractors if the procuring firm does not

monitor payments or allocation of production between subcontractors and the prime con-

tractor.

In the environmental regulation context, Weitzman (1974) compared ‘price’ and ‘quan-

tity’ regulation of pollution by firms without allowing for any communication of private in-

formation held by firms concerning abatement costs to the regulator. The outcomes of ‘price’

regulation mode correspond to a decentralized allocation with a linear incentive mechanism,

while the ‘quantity’ regulation mode corresponds to a centralized mechanism where the reg-

ulator imposes a cap on emissions. In this context, Weitzman showed that either form of

regulation could be superior, depending on parameters. In later work, however, Weitzman

(1978) and Dasgupta, Hammond and Maskin (1980) characterized optimal nonlinear incen-

tive mechanisms which could be viewed as a combination of ‘price’ and ‘quantity’ regulation,

while continuing to assume that it is infeasible for firms to communicate any information

to regulators. This results in a decentralized allocation, as regulated firms select their own

emission levels. The demonstration that it dominates pure ‘quantity’ regulation can be

viewed as a version of our result that every centralized allocation is dominated by decentral-

ized ones if communication is limited. Proposition 3 generalizes this result to contexts where

firms communicate their information to regulators, but the extent of such communication is

restricted owing to costs associated with communication of excessively detailed information.

VI. Implications for Choice of Communication Protocol

Proposition 2 has useful implications for the ranking of different communication protocols.

Given any set of communication strategies in a given protocol, in state (θi, θj) agent i learns
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that θj lies in the set Θj(h(ci(θi), cj(θj))), which generates an information partition for agent

i over agent j’s type.

Say that a protocol p1 ∈ P is more informative than another p2 ∈ P if for any set of

communication strategies in the former, there exists a set of communication strategies in

the latter which yields (at round T ) an information partition to each agent over the type of

the other agent which is more informative in the Blackwell sense in (almost) all states of the

world.

It then follows that a more informative communication protocol permits a wider choice

of communication-feasible production allocations. Proposition 2 implies that the Principal

prefers more informative protocols, and would not benefit by restricting or scrambling the

flow of communication among agents.

This is the reason we assumed all messages are addressed to everyone else in the orga-

nization. If the transmission and processing of messages entail no resource or time costs,

this ensures maximal flow of information between agents. In contrast much of the literature

on informational efficiency of resource allocation mechanisms (in the tradition of Hurwicz

(1960, 1972) or Mount and Reiter (1974)) has focused on centralized communication proto-

cols where agents send messages to the Principal rather than one another. Such protocols

restrict the flow of information among agents. Marschak and Reichelstein (1998) have ex-

tended this to network mechanisms where agents communicate directly with one another,

and examine the consequences of such decentralized ‘network’ mechanisms for communica-

tion costs (in the absence of incentive problems). In our approach the Principal plays no

active role in the communication process.26

26If the only costs of communication involve writing or sending messages this is without loss of generality,

since the Principal has no private information to report to the agents, and any messages that an agent sends

to the Principal which are in turn sent to the other agent could be sent directly to the latter at no additional
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Within the class of such decentralized communication protocols, more can be said about

the nature of optimal protocols, depending on the precise nature of communication costs.

We turn to this now.

We limit attention to agent vocabularies consisting of letters or messages of unit length,

in which longer messages are words which are combinations of letters. Hence if there are Li

letters of unit length in agent i’s vocabulary, then there are at most Lk
i words or messages

of length not exceeding k, for any integer k. For instance, if the agents communicate using

binary code, there are two letters or unit bits 0 and 1. Any longer message consists of a

string of unit bits, with the length of the message identified by the number of bits. The

same is true for most languages which have an alphabet of letters, words are composed of

a string of letters and the length of a word is measured by the number of letters contained

in that word. In what follows, we use M∗
i to denote the set of letters in i’s vocabulary in

conjunction with the null message, i.e., M∗
i ≡ {mi ∈ Mi|l(mi) ≤ 1}.

Communication costs can involve either material costs or time-delays. Material costs

could include variable (e.g., depending on the length of messages sent) or fixed (depending

on communication capacity) costs. The communication capacity of each agent i is defined

as the longest message contained in Mi: l̄(Mi) ≡ maxmi∈Mi
l(mi).

We assume that material communication costs for any given round are linear in length

of messages and communication capacity:

Φm = ϕvl(mi) + ϕf l̄(Mi) (8)

for some constants ϕv ≥ 0, ϕf > 0, while delay costs per round takes the form

Φd = ϕd max{l̄(M1), l̄(M2)} (9)

cost.
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for some ϕd > 0. The constraint imposed by a given budget B for communication cost

pertains to the total cost incurred across different rounds in the protocol. The results

reported below extend as long as there are no increasing returns to scale with respect to

length of messages or communication capacity.

Our first result shows that under the above assumptions, information ought to be released

‘slowly’ by agents across multiple rounds of communication. If any agent has a ‘large’

message set in any given round, the agent can communicate more information at the same

cost by breaking this up a sequence of smaller messages in successive rounds. Suppose for

instance that communication is in binary code, and an agent has the following message set in

some round: {ϕ, 0, 1, 00, 01, 10, 11}. This round can be broken up into two successive rounds

in each of which the agent is given the message set {ϕ, 0, 1}. The agent can communicate

at least as much information across these two rounds as she could previously (e.g., a null

message in both rounds corresponds to a null message previously, a null message in one

round combined with a single-bit message 0 (or 1) in the other corresponds to a previous

message of 0 (or 1), and so on). Communication costs do not increase since capacity costs

are the same: the maximal length of a message was 2 previously with a single round, while

it is now 1 in each of the two rounds. The aggregate length of messages remains the same in

every state of the world. The agent now has a total of nine possible message combinations

across the two rounds, as against seven possible messages previously. Hence the agent can

now send strictly more information, e.g., she has the choice of the order in which a null

message is sent in one round and a single-bit message in the other. This allows a strict

improvement in the Principal’s payoff.

Proposition 4. Suppose that agent vocabularies and communication costs are as spec-

ified above. Also suppose that the production function satisfies the regularity conditions

specified in Proposition 3, and in addition V12(q1, q2) ̸= 0 for every (q1, q2) >> 0. Then any
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non-null message set assigned to any agent (in any round following any history arising with

positive probability in any optimal protocol) must consist of letters (messages of unit length)

alone, i.e., Mi(ht−1) = M∗
i if it is non-null.

Our final result concerns the contrast between material costs and time delay formulations

of communication cost for the nature of optimal protocols.

Proposition 5. Suppose the same conditions as in Proposition 4 hold. In addition

(i) Suppose that communication is constrained only by total material cost (i.e., ϕd = 0,

ϕf > 0). Then there exists an optimal protocol with the feature that only one agent

sends messages in any given communication round.

(ii) Suppose that communication is constrained only by the total time delay (i.e., ϕv = ϕf =

0 < ϕd), and the upper bound on total delay is denoted by D. Then every optimal

protocol involves a number of communication rounds equal to the largest integer not

exceeding D/ϕd, and both agents send messages simultaneously in each round.

The reasoning is the following. If communication entails only material costs, any round

with simultaneous communication by both agents (from the set of messages of unit length or

less) can be broken down into two successive rounds in which the agents alternate in sending

messages from this set. Each agent has the option of sending the same message in this round

when it is their turn to report. The agent now moving second has the additional option of

conditioning his message on the message just sent by the other agent moving first (while

restricted to sending a message of the same or shorter length as he did previously). The rest

of the protocol is left unchanged. Material costs of communication are unchanged, as the

communication capacity of each remains the same and the length of messages sent do not

increase. Hence the Principal’s payoff weakly increases. The total delay of the mechanism is
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increased owing to the sequencing of messages across the two agents, but this is not costly

by assumption.

In contrast when communication costs consist only of delay, both agents must send

messages in every round. Otherwise there would be a round in which one of the agents (i,

say) does not send any messages, while the other agent j does (if neither does then the entire

round can be dispensed with). Allowing i to select a message from M∗
i in this round allows

him to communicate more information than previously. As there are no material costs of

communication this does not cause any problem with the communication constraint, so a

strict improvement is now possible.

VII. Concluding Comments

An obvious limitation of our approach is that it restricted attention to contexts with one-

dimensional outputs and type spaces. However, the objective of the paper was to show that

the special structure of this context can be exploited to obtain strong results concerning

optimality of decentralized decision-making and absence of trade-offs between incentives

and informational efficiency. The extent to which these results can be extended to richer

settings remains to be examined in future work.

Our formulation of decentralized decision-making pertained only to production decisions.

We ignored the possibility of delegating responsibility of contracting with other agents to

some key agents. A broader concern is that we ignored the communicational requirements

involved in contracting itself, by focusing only on communication in the process of implemen-

tation of the contract, which takes place after parties have negotiated and accepted a con-

tract. Under the assumption that pre-contracting communication is costless, and messages

exchanged between agents are verifiable by the Principal, it can be shown that delegation of

contracting cannot dominate centralized contracting if both are equally constrained in terms
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of communicational requirements. Subcontracting may thus be potentially valuable in the

presence of costs of pre-contract communication, or if agents can directly communicate with

one another in a richer way than the way they can communicate with the Principal. Explor-

ing the value of delegation of contracting remains an important task for future research.
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Appendix

Lemma 1. Consider any communication protocol p ∈ P . For any ht ∈ Ht(p) and any

t ∈ {1, . . . , T}:

{c ∈ C(p) | ht(c) = ht}

is a rectangle set in the sense that if ht(ci, cj) = ht(c
′
i, c

′
j) = ht for (ci, cj) ̸= (c

′
i, c

′
j), then

ht(c
′

i, cj) = ht(ci, c
′

j) = ht.

Proof of Lemma 1:

The proof is by induction. Note that h0(c) = ϕ for any c, so it is true at t = 0. Suppose

the result is true for all dates up to t− 1, we shall show it is true at t.

Note that

ht(ci, cj) = ht(c
′

i, c
′

j) = ht (A1)

implies

hτ (ci, cj) = hτ (c
′

i, c
′

j) = hτ (A2)

for any τ ∈ {0, 1, .., t− 1}. Since the result is true until t− 1, we also have

hτ (c
′

i, cj) = hτ (ci, c
′

j) = hτ (A3)

for all τ ≤ t− 1. So under any of the configurations of communication plans (ci, cj), (c
′
i, c

′
j),

(c
′
i, cj) or (ci, c

′
j), agent i experiences the same message history ht−1 until t− 1. Then i has

the same message set at t, and (A1) implies that i sends the same messages to j at t, under

either ci or c
′
i.

(A2) and (A3) also imply that under either cj or c
′
j, j sends the same messages to i at

all dates until t− 1, following receipt on the (common) messages sent by i until t− 1 under
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these different configurations. The result now follows from the fact that messages sent by

j to i depend on the communication plan of i only via the messages j receives from i. So

i must also receive the same messages at t under any of these different configurations of

communication plans. QED

Proof of Proposition 1:

Let qi(θi, θj) be a production allocation satisfying (3), which is supported by a commu-

nication strategy vector c(θ) in a protocol p which is parsimonious with respect to these

strategies. In this protocol all histories are reached with positive probability on the equi-

librium path, hence beliefs of every agent with regard to the types of the other agent are

obtained by applying Bayes rule.

Define q̂i(θi, ht) by

q̂i(θi, ht) ≡ E[qi(θi, θj) | θj ∈ Θj(ht)].

for any ht ∈ Ht and any t ∈ {0, 1, .., T}. Condition (3) requires q̂i(θi, ht) to be non-increasing

in θi on Θi(ht). Note that

q̂i(θi, h(c(θi, θj))) = Eθ̃j
[qi(θi, θ̃j) | θ̃j ∈ Θj(h(c(θi, θj)))] = qi(θi, θj),

since qi(θi, θ̃j) = qi(θi, θj) for any θ̃j ∈ Θj(h(c(θi, θj))).

Step 1: The relationship between q̂i(θi, ht) and q̂i(θi, ht+1)

Suppose that i observes ht at the end of round t. Given selection of mi,t+1 ∈ Mi(ht)

where Mi(ht) is the message set for ht in protocol p, agent i’s history at round t + 1 is

subsequently determined by messages received by i in round t. Let the set of possible

histories ht+1 at the end of round t+ 1 be denoted by Ht+1(ht,mi,t+1). Evidently for j ̸= i,
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{Θj(ht+1)|ht+1 ∈ Ht+1(ht,mi,t+1)} constitutes a partition of Θj(ht):

∪ht+1∈Ht+1(ht,mi,t+1)Θj(ht+1) = Θj(ht)

and

Θj(ht+1) ∩Θj(h
′

t+1) ̸= ϕ

for ht+1, h
′
t+1 ∈ Ht+1(ht,mi,t+1) such that ht+1 ̸= h

′
t+1. The probability of ht+1 ∈ Ht+1(ht,mi,t+1)

conditional on (ht,mi,t+1) is represented by

Pr(ht+1 | ht,mi,t+1) = Pr(Θj(ht+1))/Pr(Θj(ht)).

From the definition of q̂i(θi, ht) and q̂i(θi, ht+1), for any mi,t+1 ∈ Mi(ht) and any θi ∈ Θi,

Σht+1∈Ht+1(ht,mi,t+1) Pr(ht+1 | ht,mi,t+1)q̂i(θi, ht+1) = q̂i(θi, ht).

Step 2: For any ht+1, h
′
t+1 ∈ Ht+1(ht,mit+1), Θi(ht+1) = Θi(h

′
t+1) ⊂ Θi(ht)

By definition

Θi(ht+1) = {θi | mi,t+1(θi, ht) = mi,t+1} ∩Θit(ht)

where mi,t+1(θi, ht) denotes i’s message choice corresponding to the strategy ci(θi). The

right hand side depends only on mi,t+1 and ht. It implies that the set Θi(ht+1) does not vary

across different ht+1 ∈ Ht+1(ht,mi,t+1). To simplify exposition, we denote this set henceforth

by Θi(ht,mi,t+1).

Step 3: Construction of q̃i(θi, ht)

We construct q̃i(θi, ht) for any ht ∈ Ht based on the following Claim 1.

Claim 1:
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For arbitrary qi(θi, θj) satisfying (3), there exists q̃i(θi, ht) for any ht ∈ Ht and any t ∈

{0, .., T} so that

(a) q̃i(θi, ht) = q̂i(θi, ht) for θi ∈ Θi(ht)

(b) q̃i(θi, ht) is non-increasing in θi on Θi

(c) Σht+1∈Ht+1(ht,mi,t+1) Pr(ht+1 | ht,mi,t+1)q̃i(θi, ht+1) = q̃i(θi, ht) for any θi ∈ Θi and any

mi,t+1 ∈ Mi(ht) where Mi(ht) is the message set for ht in protocol p.

Claim 1 states that there exists an ‘auxiliary’ output rule q̃i as a function of type θi and

message history which is globally non-increasing in type (property (b)) following any history

ht, and q̃i(θi, ht) equals the expected value of q̃i(θi, ht+1) conditional on (ht,mit+1) for any

mit+1 ∈ Mi(ht) (property (c)).

In order to establish Claim 1, the following Lemma is needed.

Lemma 2. For any B ⊂ ℜ+ which may not be connected, let A be an interval satisfying

B ⊂ A. Suppose that Fi(a) for i = 1, ..., N and G(a) are real-valued functions defined on A,

each of which has the following properties:

• Fi(a) is non-increasing in a on B for any i.

• ΣipiFi(a) = G(a) for any a ∈ B and for some pi so that pi > 0 and Σipi = 1.

• G(a) is non-increasing in a on A.

Then we can construct real-valued function F̄i(a) defined on A for any i so that

• F̄i(a) = Fi(a) on a ∈ B for any i.

• ΣipiF̄i(a) = G(a) for any a ∈ A and for the same pi

40



• F̄i(a) is non-increasing in a on A for any i.

This lemma says that we can construct functions F̄i(a) so that the properties of functions

Fi(a) on B are also maintained on the interval A which covers B.

Proof of Lemma 2:

If this statement is true for N = 2, we can easily show that this also holds for any N ≥ 2.

Suppose that this is true for N = 2.

ΣN
i=1piFi(a) = p1F1(a) + (p2 + ...+ pN)F

−1(a)

with

F−1(a) = Σi ̸=1
pi

p2 + ...+ pN
Fi(a).

Applying this statement for N = 2, we can construct F̄1(a) and F̄−1(a) which keeps the

same property on A as on B. Next using the constructed F̄−1(a) instead of G(a), we can

apply the statement for N = 2 again to construct desirable F̄2(a) and F̄−2(a) on A based

on F2(a) and F−2(a) which satisfy

p2
p2 + ...+ pN

F2(a) + [1− p2
p2 + ...+ pN

]F−2(a) = F−1(a).

on B. We can use this method recursively to construct F̄i(a) for all i.

Next let us show that the statement is true for N = 2. For a ∈ A\B, define a(a) and

ā(a), if they exist, so that

a(a) ≡ sup{a′ ∈ B | a′
< a}

and

ā(a) ≡ inf{a′ ∈ B | a′
> a}.

It is obvious that at least one of either a(a) or ā(a) exists for any a ∈ A\B.
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Let’s specify F̄1(a) and F̄2(a) so that F̄1(a) = F1(a) and F̄2(a) = F2(a) for a ∈ B, and

for a ∈ A\B as follows.

(i) For a ∈ A\B so that only a(a) exists,

F̄1(a) = F1(a(a))

F̄2(a) =
G(a)− p1F1(a(a))

p2

(ii)For a ∈ A\B so that both a(a) and ā(a) exist,

F̄1(a) = min{F1(a(a)),
G(a)− p2F2(ā(a))

p1
}

F̄2(a) = max{F2(ā(a)),
G(a)− p1F1(a(a))

p2
}

(iii)For a ∈ A\B so that only ā(a) exists,

F̄1(a) =
G(a)− p2F2(ā(a))

p1

F̄2(a) = F2(ā(a))

It is easy to check that F̄i(a) is non-increasing in a on A for i = 1, 2 and

p1F̄1(a) + p2F̄2(a) = G(a)

for a ∈ A. This completes the proof of the lemma. QED

Proof of Claim 1:

Choose arbitrary t ∈ {0, ..., T} and ht ∈ Ht. Suppose that q̃i(θi, ht) satisfies (a) and (b)

in Claim 1. Then for any mi,t+1 ∈ Mi(ht), we can construct a function q̃i(θi, ht+1) for any
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ht+1 ∈ Ht(ht,mit+1) so that (a), (b) and (c) are satisfied. This result is obtained upon

applying Lemma 2 with

B = Θi(ht,mi,t+1)

A = Θi

a = θi

G(θi) = q̂i(θi, ht)

Fht+1(θi) = q̂i(θi, ht+1)

pht+1 =
Pr(Θj(ht+1))

Pr(Θj(ht))

for any ht+1 ∈ Ht+1(ht,mi,t+1) where each element of the set Ht+1(ht,mi,t+1) corresponds to

an element of the set {1, ..., N} in Lemma 2. This means that for q̃i(θi, ht) which satisfies

(a) and (b) for any ht ∈ Ht, we can construct q̃i(θi, ht+1) which satisfies (a)-(c) for any

ht+1 ∈ Ht+1.

With h0 = ϕ, since q̃i(θi, h0) = q̂i(θi, h0) satisfies (a) and (b), q̃i(θi, h1) is constructed so

that (a)-(c) are satisfied for any h1 ∈ H1. Recursively q̃i(θi, ht) can be constructed for any

ht ∈ ∪T
τ=0Hτ so that (a)-(c) are satisfied. QED

Step 4

We are now in a position to complete the proof of sufficiency. We focus initially on the case

where the mechanism is decentralized so agents select their own outputs independently.

Given q̃i(θi, h) (with h = hT ) constructed in Claim 1, construct transfer functions ti(qi, h)

as follows:

ti(qi, h) = θ̂i(qi, h)qi +

∫ θ̄i

θ̂i(qi,h)

q̃i(x, h)dx.
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for qi ∈ Qi(h) ≡ {q̃i(θi, h) | θi ∈ Θi}, and ti(qi, h) = −∞ for qi /∈ Qi(h) where θ̂i(qi, h) is

defined as follows:

θ̂i(qi, h) ≡ sup{θi ∈ Θi | q̃i(θi, h) ≥ qi}.

We show that the specified communication strategies c(θ) and output choices (q̃i(θi, h), q̃j(θj, h))

constitute a PBE (combined with beliefs obtained by applying Bayes rule at every history).

By construction, q̃i(θi, h) maximizes ti(qi, h) − θiqi for any h ∈ H ≡ HT and any θi ∈ Θi,

where

ti(q̃i(θi, h), h)− θiq̃i(θi, h) =

∫ θ̄i

θi

q̃i(x, h)dx.

Now turn to the choice of messages. Start with round T . Choose arbitrary hT−1 ∈

HT−1 and arbitrary miT ∈ Mi(hT−1). The expected payoff conditional on θj ∈ Θj(hT−1)

(i.e., conditional on beliefs given by Pr(h | hT−1,miT ) = Pr(Θj(h))/Pr(Θj(hT−1)) for h ∈

HT (hT−1,miT )) is

Eh[ti(q̃i(θi, h), h)− θiq̃i(θi, h) | hT−1,miT ]

=

∫ θ̄i

θi

Eh[q̃i(x, h) | hT−1,miT ]dx

=

∫ θ̄i

θi

q̃i(x, hT−1)dx.

This does not depend on the choice of miT ∈ Mi(hT−1). Therefore agent i does not have an

incentive to deviate from miT = miT (θi, hT−1).

The same argument can recursively be applied for all previous rounds t, implying that

mi,t+1 = mi,t+1(θi, ht) is an optimal message choice for any ht ∈ Ht and any t. It is also

evident that at round 0, it is optimal for agent i to accept the contract. This establishes that

participation, followed by the communication strategies c(θ) combined with output choices

(q̃i(θi, h), q̃j(θj, h)) constitute a PBE.
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The same argument applies to a centralized mechanism, since this is a special case of

the previous mechanism where the assigned outputs q̂i(θi, h) = q̂i(h) are measurable with

respect to h, i.e., are independent of θi conditional on h. Then Q̃i(h) ≡ {q̃i(θi, h) | θi ∈

Θi(h)} = q̂i(h). Agent i can effectively be forced to choose output q̂i(h) following history h

at the end of the communication phase with a transfer ti(qi, h). QED

Proof of Proposition 2:

We show that the solution of the relaxed problem where the incentive feasibility restric-

tion (ii) is dropped, automatically satisfies this restriction. Suppose not. Let the solu-

tion of the relaxed problem be represented by a (parsimonious) communication protocol p,

communication strategies c(θ) and production allocation (q1(θ1, θ2), q2(θ1, θ2)). Ht, Θi(ht)

and Θj(ht) are well defined for (p, c(θ)). Then there exists t ∈ {0, . . . , T}, ht ∈ Ht and

θi, θ
′
i ∈ Θi(ht) with θi > θ

′
i so that

Eθj [qi(θi, θj) | θj ∈ Θj(ht)] > Eθj [qi(θ
′

i, θj) | θj ∈ Θj(ht)].

This implies that at least either one of

E[V (qi(θ
′

i, θj), qj(θ
′

i, θj))− wi(θi)qi(θ
′

i, θj)− wj(θj)qj(θ
′

i, θj) | θj ∈ Θj(ht)]

> E[V (qi(θi, θj), qj(θi, θj))− wi(θi)qi(θi, θj)− wj(θj)qj(θi, θj) | θj ∈ Θj(ht)]

or

E[V (qi(θi, θj), qj(θi, θj))− wi(θ
′

i)qi(θi, θj)− wj(θj)qj(θi, θj) | θj ∈ Θj(ht)]

> E[V (qi(θ
′

i, θj), qj(θ
′

i, θj))− wi(θ
′

i)qi(θ
′

i, θj)− wj(θj)qj(θ
′

i, θj) | θj ∈ Θj(ht)]

holds. This means that if at least one type of either θi or θ
′
i selects the communication plan

and output decision rule of the other type, the Principal’s payoff is improved. This is a

contradiction. QED
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Proof of Proposition 3:

Consider the restricted version of the problem described in Proposition 2, where the com-

munication protocol is fixed, i.e., communication strategies c(θ) and production allocation

(qi(θi, h(c(θ))), qj(θj, h(c(θ)))) are chosen to maximize the Principal’s expected payoff

E[V (qi(θi, h(c(θ))), qj(θj, h(c(θ))))− wi(θi)qi(θi, h(c(θ)))− wj(θj)qj(θj, h(c(θ)))].

We claim that the solution will have the property that for any history h such that

Θi(h) × Θj(h) is non-empty, qi(θi, h) will be strictly decreasing in θi. The reason is that it

must satisfy the following necessary condition: qi(θi, h) maximizes

E[V (qi, qj(θj, h))|θj ∈ Θj(h)]− wi(θi)qi

and wi(θi) is strictly increasing.

The optimal allocation is decentralized, and generates a strictly higher payoff for the

Principal compared to any centralized allocation which is communication feasible relative

to the given protocol (since in the latter allocation, production levels must be constant over

Θi(h) × Θj(h) for all h). By the same argument as in the proof of Proposition 2, this

allocation is incentive feasible, while by construction it is communication feasible. QED

Proof of Proposition 4:

Suppose there is a round t and history ht−1 with Mi(ht−1) ̸= ϕ and Mi(ht−1) ̸= M∗
i for

some agent i. Without loss of generality, let ni ≡ l̄(Mi(ht−1)) ≥ nj ≡ l̄(Mj(ht−1)), and

ni ≥ 1 (otherwise both agents have null message sets and the round can be deleted).

Following history ht−1, we replace round t with rounds t, t+1, . . . , t+ni−1 with message

set M∗
i for i in each of these rounds, and message set M∗

j for j in rounds t, t+1, . . . , t+nj−1.

Agent j is assigned a null message set in rounds t+ nj, . . . t+ ni − 1 if ni > nj. Then notice
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by construction that

l̄(Mk(ht−1)) = nk = nk l̄(M
∗
k )

for both agents k = i, j, implying that aggregate capacity cost or delay will remain un-

changed. Moreover for agent i we have

#Mi(ht−1) ≤ #{mi ∈ Mi|l(mi) ≤ ni}

≤ 1 + Li + . . .+ (Li)
ni

< (1 + Li)
ni = {#M∗

i }ni

if ni ≥ 2, while

#Mj(ht−1) ≤ 1 + Lj + . . .+ (Lj)
nj ≤ (1 + Lj)

nj = {#M∗
j }nj .

If ni = 1 then Mi(ht−1) is a proper subset of M∗
i and #Mi(ht−1) < #M∗

i . Hence the set

of messages available to each agent is now larger for both, and is strictly larger for agent

i. So for either agent k = i, j we can select M̂k which is a subset of (M∗
k )

nk such that

#M̂k = #Mk(ht−1) and for agent i it is a proper subset. In other words, there exists

m̃i ∈ (M∗
i )

ni\M̂i. For each k = i, j we can select a one-to-one mapping µk from Mk(ht−1) to

M̂k such that l(µk(mk)) = l(mk) for all mk ∈ Mk(ht−1). Also l(m̃i) ≤ ni = l̄(Mi(ht−1)), so

there exists m̄i ∈ Mi(ht−1) such that l(m̄i) = ni ≥ l(m̃i).

Given any choice of a subset Θ
′
i of Θi(ht−1, m̄i), we can construct communication plans

for different types of i in rounds t, . . . , t+ ni − 1 as follows:

(a) If θi ∈ Θ
′
i then type θi of i reports m̃i instead of m̄i

(b) If θi ∈ Θi(ht−1, m̄i)\{Θ
′
i}, type θi reports m̄i, as before

(c) If θi does not belong to Θi(ht−1, m̄i) and θi reported mi ∈ Mi(ht−1) previously, she now

selects the vector of reports µi(mi) ∈ M̂i across the new ni rounds.
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We shall describe later in the proof the method for selecting the subset Θ
′
i.

The communication strategy for j is adapted to the following. If type θj reported mj ∈

Mj(ht−1) in round t in the previous protocol, she now selects the vector of reports µj(mj) ∈

M̂j in rounds t, . . . , t+ nj − 1.

From round t+ ni onwards, the continuation of the protocol and communication strate-

gies exactly replicates the previous protocol and communication strategies from round t+1

onwards, with the continuation following µi(mi), µj(mj) in the new protocol exactly match-

ing the continuation following messages mi ∈ Mi(ht−1),mj ∈ Mj(ht−1) in the old protocol.

Moreover, the continuation following m̃i, µj(mj) in the new protocol matches the continua-

tion following messages m̄i,mj in the old protocol.

By construction, then, total cost of communication capacity and delay is maintained the

same. The variable material cost has not increased (since l(m̃i) ≤ l(m̄i) while the length of

all other messages has remained the same). On the other hand, the set of available messages

has expanded for each agent, and strictly for agent i.

It remains to describe how the set Θ
′
i is chosen. Consider any history hT till the end

of the communication phase which is a continuation of (ht−1, m̄i) which arises with positive

probability in the previous protocol. Following history hT , agent j’s information about θi is

that it is contained in Θi(hT ) which is a non-degenerate interval of Θi, and is a subset of

Θi(ht−1, m̄i). Now for any θ̂j in the interior of Θj(hT ), we can find a subset Θ
′
i of Θi(hT )

such that both Θ
′
i and Θi(hT )\{Θ

′
i} are non-degenerate, and

E[Vqj(qi(θi, θ̂j), qj(θi, θ̂j))|θi ∈ Θ
′

i] > E[Vqj(qi(θi, θ̂j), qj(θi, θ̂j))|θi ∈ Θi(hT )\{Θ
′

i}]

since V12 ̸= 0 and qi is strictly decreasing in θi over Θi(hT ). Since this inequality is strict,

and since the production decision functions are continuous under the postulated regularity

properties on V , it must also hold in a non-degenerate neighborhood of θ̂j. This implies that
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optimal production decisions must change with positive probability.

Agent i’s information about j’s type remains unchanged in the new protocol. And

agent j has strictly better information in the new protocol concerning i’s type following

history hT . This information is strictly valuable as the agents must change their production

decisions with positive probability. Hence the Principal can secure a strict improvement in

her expected payoff. QED

Proof of Proposition 5:

Given Proposition 4, we can restrict attention to the protocol where any non-null message

set assigned to agent i is M∗
i in every round. To show (i), suppose there exists round t and

ht−1 ∈ Ht−1 such that Mk(ht−1) = M∗
k for both agents k = i, j. Then consider a new

communication protocol p̃ where round t (following history ht−1) is split into two successive

rounds with sequential communication: in the first, i has a message setM∗
i while j is assigned

a null message set, and in the second j has a message setM∗
j while i is assigned a null message

set. Each agent can send the same message as they did in the previous protocol when it

is their turn to report. From the next round onwards the rest of the protocol continues

as before. This modification does not raise total material cost (although it evidently raises

total delay). In this protocol, j can send messages which can depend on mit, something that

is not possible in p. Hence it allows a weak improvement in the Principal’s payoff.

For (ii), suppose that there exists round t and ht−1 ∈ Ht−1 such that Mi(ht−1) = M∗
i and

Mj(ht−1) = {ϕ}. We can now construct a new communication protocol p̃ with Mj(ht−1) =

M∗
i instead of {ϕ} in round t (with history ht−1). All other components of the communication

protocol are preserved. This modification does not raise the total time delay (although it

raises the total material cost). Here agent j who was silent in round t following history ht−1

in p can now send some messages in this round, thus increasing the amount of information
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exchanged between the agents. Using the same argument as in the proof of Proposition 4,

the Principal’s payoff can be strictly improved. QED
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Fig. 1. Example
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