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In models of aspiration-based reinforcement learning, agents adapt by comparing pay-
offs achieved from actions chosen in the past with an aspiration level. Though such
models are well-established in behavioural psychology, only recently have they begun to
receive attention in game theory and its applications to economics and politics. This
paper provides an informal overview of a range of such theories applied to repeated
interaction games. We describe different models of aspiration formation: where (1) aspi-
rations are fixed but required to be consistent with longrun average payoffs; (2) aspira-
tions evolve based on past personal experience or of previous generations of players; and
(3) aspirations are based on the experience of peers. Convergence to non-Nash outcomes
may result in either of these formulations. Indeed, cooperative behaviour can emerge
and survive in the long run, even though it may be a strictly dominated strategy in
the stage game, and despite the myopic adaptation of stage game strategies. Differences
between reinforcement learning and evolutionary game theory are also discussed.

1. Introduction

Traditional game theory is based on strong assumptions concerning rationality and

common knowledge [Aumann and Brandenburger (1995) and Tan and Werlang

(1988)] that appear implausible as descriptions of the behaviour of real world

players. Many experimental settings produce substantive departures from the

predictions of the theory [Roth (1995)]. Accordingly, recent developments of the
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theory have explored boundedly rational behaviour of various kinds, such as mod-

els of learning and experimentation, and evolutionary processes; surveys of this

literature appear in Fudenberg and Levine (1998), Marimon (1997), Samuelson

(1997), Young (1998) and Vega-Redondo (1996).

However, relatively little theoretical attention has been directed towards one

particular form of boundedly rational behaviour supported by a number of ex-

perimental studies — reinforcement learning, according to which players satisfice

rather than maximise payoffs. Specifically, players select current actions based on

past experience with playing the same game. Actions judged to have resulted in

satisfactory payoffs are more likely to be selected, while those resulting in unsatis-

factory payoffs tend to be dropped. The standard by which experiences are judged

to be satisfactory is defined by an aspiration level, against which achieved payoffs

are evaluated. Aspirations are socially inherited, or evolve slowly as a player gains

experience. Such behaviour rules are informationally and cognitively less demanding

than those entailing maximisation of some utility function. They appear particularly

plausible when players are unable to form a coherent “model” of their environment.

For instance, they might lack information concerning the strategic structure of the

game or the actions selected by others in the past. Alternatively, they may not

process such information even when it is available.

To illustrate the contrast beween the different approaches, consider the con-

text of a repeated oligopoly, where a given number of firms set prices or quantities

of their respective products at successive dates. Traditional game theory assumes

that firms know demand and cost functions (or have Bayesian priors over these),

and thereafter select supergame strategies which condition their actions on the

past history of actions taken by all firms. These strategies, information and ra-

tionality of all firms is common knowledge among them, and each firm selects a

best response to the strategies of others. Models based on an intermediate level

of rationality, such as “belief learning”,a drops the assumption that strategies are

common knowledge. It is postulated instead that each firm predicts the future ac-

tions of other firms based on observation of past plays, and then selects a myopic

best response to these beliefs by maximising their expected payoff function. In

contrast, reinforcement learning models allow firms to be ignorant of demand and

cost functions, and adapt their actions over time in line with their profit expe-

rience with different actions in the past. In particular, firms do not attempt to

maximise some measure of expected profit, owing to the difficulty of articulating

probabilistic beliefs concerning demand patterns or competitors’ actions, and the

complexity of the associated optimisation problem. Instead, actions that gener-

ated high (respectively low) profits in the past are apt to be repeated (dropped).

Actions thus get “selected” on the basis of their past “fitness”, suggesting some

similarity with evolutionary game theory. As explained in further detail below,

aSee Selten (1991) for an exposition of the distinction between belief learning and reinforcement
learning.
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however, the results of this theory are markedly distinct from those of evolutionary

game theory, partly owing to the different interaction patterns underlying the two

theories.b

Reinforcement learning models first appeared in the mathematical psychol-

ogy literature: see Estes (1954), Bush, et al. (1954), Bush and Mosteller (1955),

and Suppes and Atkinson (1960). Similar models were studied for their norma-

tive properties as representing modes of automata learning in the computer sci-

ence and electrical engineering literature: see Lakshmivarahann (1981), Narendra

and Mars (1983), Narendra and Thathachar (1989), and Papavassilapoulos (1989).

Amongst economists, early pioneers of these models include Simon (1955, 1957,

1959), Cross (1973) and Nelson and Winter (1982). More recently, Gilboa and

Schmeidler (1995) have developed an axiomatic basis for such an approach. Exper-

imental support of the reinforcement learning hypothesis vis-á-vis the traditional

rational play hypothesis and belief learning is discussed in Selten and Stoecker

(1986), Selten (1991), Mookherjee and Sopher (1994, 1997), Roth and Erev (1995),

Kim (1995a, b), Erev and Roth (1998) and Camerer and Ho (1999).

Despite the interest in this hypothesis in experimental settings, relatively little

theoretical effort has been devoted to the study of its long run implications. This

paper provides an informal overview of our recent work on this topic, as well as

some related literature. The models differ chiefly in their treatment of the process by

which aspirations get formed. Applications to games of cooperation, coordination,

competition and bargaining are subsequently discussed. We focus particularly on

repeated games, and emphasise some distinctive features of reinforcement learning

processes that emerge from this literature:

(i) Dominated strategies can be frequently played (a phenomenon frequently ob-

served in experimental settings) and can survive in the long run, a result dif-

ficult to reconcile with rational choice, belief learning or evolutionary models.

(ii) Players learn to cooperate in the Prisoners Dilemma (as well as games of

common interest, where one outcome Pareto dominates all others); under

particular circumstances, this is the unique long run outcome. In others, the set

of possible long run outcomes can be narrowed down to the mutual defection

and mutual cooperation outcomes.

bBorgers and Sarin (1997a) explore the connection between reinforcement learning and the repli-
cator dynamic that underlies most evolutionary models within a special class of games, and show
that they are equivalent only under special circumstances. Apart from the differences between
discrete time and continuous time formulations in which these two hypotheses are respectively
embedded, the replicator dynamic applies to the relative frequency of different strategies in a
large population that “plays itself”. Reinforcement learning is applied instead to strategy choices
of a single player. Hence, individual players that are reinforcement learners may fail to converge to
expected payoff maximising strategies, as they tend to shift away from them following occasional
unsuccessful payoff experiences. In a large population, the strategy plays other strategies a large
number of times, and so obtains a higher average score than others, causing it to grow relative to
other strategies.
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(iii) Players learn to coordinate on Pareto-efficient (rather than risk-dominant)

outcomes in coordination games.

(iv) In competitive zero-sum games players learn to play maxmin pure strategies

(if these happen to exist).

(v) Norms of fairness may emerge in “population” bargaining games.

The concluding section assesses the state of this literature and possible directions

for future research.

2. Modeling Reinforcement Learning

Consider a game played repeatedly by two players denoted A and B. The stage

game has finite sets of pure strategies A and B and payoff functions f(a, b), g(a, b)

for the two players, respectively. The game is played at successive dates t = 1, 2, . . . .

The state of a player at any date includes the player’s psychological inclination to

select different actions at that date, based on past experience, and is represented

either by a pure strategy or a mixed strategy. Borgers, et al. (1998) analyse the class

of learning rules that enable agents to learn to play expected payoff maximising

actions in the long run in a decision environment, and show that this typically

requires mixed strategy states. For both this normative reason, as well as descriptive

plausibility, the mixed strategy formulation is more natural. The only justification

for the pure strategy formulation is its analytic tractability.

The state is updated from one date to another on the basis of the player’s

payoff experience, which is judged relative to the player’s aspiration. Aspirations

themselves may be updated over time based on past experience, in which case

the state space includes players’ aspiration levels in addition to their strategies.

Different models vary regarding their formulation of the state space, players’

experience and the updating rules. But they all tend to embody the psychological

principle that actions experiencing successful (respectively unsuccessful) payoffs

(relative to aspirations) tend to be reinforced (respectively discouraged), i.e. the

probability weight on those actions are revised upwards (respectively downwards).

Most formulations also postulate that strategy revisions additionally incorporate

some degree of inertia, i.e. a bias in favour of actions recently selected, and experi-

mentation, i.e. some small probability weight is placed on every action, regardless

of past payoff experience.

These updating rules define a Markov process over the state space, and the focus

is on long run properties of this process. Below, we describe the principal results

of alternative formulations of this model in our research, and then discuss related

literature.

3. Constant Consistent Aspirations

Bendor, Mookherjee and Ray (hereafter denoted as BMR) (1992, 1995) adopted a

mixed strategy formulation in which each player has a constant aspiration level,
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which does not evolve in the course of play. Hence the players’ mixed strategies

constitute the state variable.c With small degrees of experimentation, the induced

Markov process over players’ strategies is ergodic. The constant aspiration level is

required to be consistent with the induced long run average payoffs. This notion

represents a steady state of an unmodelled dynamic process of aspiration revision,

in which players inherit aspirations from payoff experiences of past generations of

players. In any steady state of such a process, aspiration levels must be mirrored

by the payoff experience of any given generation in order for succeeding genera-

tions to inherit the same aspirations. For any given degree of experimentation, such

consistent aspiration-strategy distribution pairs were shown to generally exist, as-

suming that the strategy updating rule is continuous with respect to the (fixed)

aspiration level. They defined an Equilibrium with Consistent Aspirations (ECA)

to be the limit of consistent aspirations-strategy distribution pairs, as the degree of

experimentation converges to zero.

The key result of BMR (1992, 1995) was the existence of ECAs concentrated

entirely on cooperative strategies in symmetric games. Consider for instance the

following class of 2× 2 games:

C D

C (σ, σ) (0, θ)

D (θ, 0) (δ, δ)

where σ > δ > 0 and 0 ≤ θ 6= δ. This includes games of common interest (σ > θ),

coordination (θ = 0) and cooperation (it is a Prisoners Dilemma if θ > σ). In

this game there is an ECA concentrated entirely on (C, C), the pure strategy

pair involving cooperation. The outline of the argument in the case of a Prisoners

Dilemma is as follows. Suppose that both players have an aspiration slightly below

σ. Mutual cooperation is the only strategy pair where both attain their aspirations.

In the absence of any experimentation, this is the only absorbing state. In all

other states at least one player is dissatisfied with positive probability, causing a

revision of the state. In the presence of small degrees of experimentation, starting

from the mutually cooperative state, one player may occasionally deviate from the

cooperative strategy. While the deviator benefits from this change, the other player

obtains a payoff below her aspiration, and thereafter deviates as well. With neither

cooperating, both are dissatisfied and thus inclined to try the cooperative strategy

again. Sooner or later they switch simultaneously to cooperation, whence they are

both satisfied, and tend to get absorbed into this state again. The long run outcome

is thus concentrated on the mutually cooperative state, given that their aspirations

are throughout held fixed slightly below (σ, σ). And these aspirations are justified

cBMR (1992) restricted probabilities to lie on a finite grid, thus ensuring that the state space
is finite. BMR (1995) this restriction, so the state space for each player is the entire probability
simplex. Besides this aspect, the 1995 paper extended and generalised the results of the 1992
paper in a number of directions.
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in turn by the long run outcome of the process, i.e. cooperation most of the time,

with occasional forays of experimenting with deviations by either or both players.

This example illustrates how long run outcomes may be concentrated on non-

Nash outcomes of the stage game, which may even involve play of strictly dominated

pure strategies. The contrast with belief learning or the replicator dynamic is ap-

parent. In belief learning, players consciously maximise their payoff function, and

so can never play a strictly dominated strategy. Similarly, the replicator dynamic

cannot converge to any distribution assigning positive weight to a strictly domi-

nated strategy, as it would grow less quickly than the corresponding strategy that

dominates it, thus tending to become extinct in the long run. Only evolutionary

settings where players select automata or supergame strategies permit the evolution

of cooperative behaviour [Axelrod (1984), Bendor and Swistak (1997), Binmore and

Samuelson (1992)].

4. Evolving Aspirations Based on Personal Experience

The problem with the preceding theory is that it does not model the dynamics of

aspiration adjustment. Karandikar, Mookherjee, Ray and Vega-Redondo (hereafter

denoted KMRV) (1998) explored the consequences of aspirations that evolve in the

course of play.d Then players’ aspiration levels become part of the state. They as-

sume that if a player’s aspiration at date t is At, then it is updated according to

At+1 = λAt + (1 − λ)πt, where λ ∈ (0, 1) is a persistence parameter, and πt is

the payoff experienced at t.e Hence players’ aspirations are based on their personal

payoff experience in past plays. In addition, aspirations of either player are subject

to small idiosyncratic shocks: with probability 1 − η they evolve according to the

deterministic rule above. Otherwise, it is perturbed according to some positive den-

sity parametrised continuously by the previous aspiration level At with a compact

support contained within the range of feasible payoffs. These random aspiration

perturbations are independent across time and across players, and prevent players

from ever settling down at some pure strategy state (with aspirations equal to the

corresponding payoffs).

To keep the analysis tractable, KMRV focused on the class of 2 × 2 games

described in the previous section. Moreover they assumed that players behaviour

states are represented by pure strategies. The strategy updating rule was as follows:

if a player is satisfied (πt ≥ At) at date t, then she sticks to the same strategy at

the following date. Otherwise, she switches to the alternate strategy with a prob-

ability that depends continuously on the extent of dissatisfaction, but is bounded

away from 1. The latter assumption incorporates inertia, while experimentation is

induced by the aspiration perturbations. The main result of their paper is that the

dBorgers and Sarin (1997b) study a model of endogenous aspirations in a single person decision
context, where the behavioural state variable is represented by a mixed strategy.
eFor an early model of aspiration adjustment that used just these assumptions, see Cyert and
March (1963).
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long run outcome involves both players cooperating most of the time, if the speed

of updating aspirations is sufficiently slow (λ is sufficiently close to 1), and the

probability of aspiration trembles η is sufficiently low.f

Hence, the result concerning the play of dominated cooperative strategies is

upheld when aspirations evolve in the course of the game. In fact, the result is

even sharper: it is the only long run outcome of the game, regardless of initial

conditions. In BMR (1992, 1995) in contrast, it was one possible ECA, and other

possible ECAs of the game could not be ruled out, even with special assumptions

about the nature of the updating rules. In particular, aspirations in KMRV tend to

lie at or slightly below the cooperative payoffs most of the time. Aspirations tend

to drift downwards only following unfavourable payoff experiences resulting from

deviations by one or both players. But as players remain dissatisfied with such ex-

perience, they are inclined to switch back to cooperative strategies. Once they do,

they are both satisfied, so they tend to stick with these strategies, returning aspi-

rations slowly to their previous level (until the next aspiration perturbation causes

another deviation). And when players start with low aspirations, they are prevented

from settling into a low aspiration “trap” by the occasional aspiration perturba-

tions, which motivates them to experiment with different strategies, including the

cooperative one. Once they do simultaneously cooperate, they tend to be satisfied,

and hence stick to these actions, serving to raise their aspirations over time. Of

course this heuristic discussion omits many complications; the reader is invited to

consult KMRV (Sec. 4) for an informal discussion of further details concerning the

aspiration dynamic.

Related results were obtained by Kim (1995a) and Pazgal (1995), both of

whom apply the Gilboa-Schmeidler case-based theory of reinforcement learning.

Kim focused on a similar class of 2 × 2 games, whereas Pazgal examined a larger

class of games of mutual interest, in which there is an outcome which strictly Pareto

dominates all others. Actions are scored on the basis of their cumulative past pay-

off relative to the current aspiration, and players select only those actions with the

highest score. Aspirations evolve in the course of play: aspirations average maximal

experienced payoffs in past plays (in contrast to KMRV who assumed that they

equal a geometric average of past payoffs). Both Kim and Pazgal show that cooper-

ation necessarily results in the long run if initial aspiration levels lie in pre-specified

ranges. Pazgal requires initial aspirations to be sufficiently high relative to the co-

operative payoffs; Kim assumes that they are not much lower than these payoffs.

With high aspirations, players will not be satisfied by non-cooperative strategies

and thus experiment with cooperation. Once they do cooperate, their assumption

concerning aspiration formation implies that they will aspire to cooperative pay-

offs thereafter. Given this, long run strategies must be entirely concentrated on

cooperation.

fSpecifically, limits of the resulting long run distribution are first taken with respect to η → 0 for
a given λ, and then λ is taken to 1.
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Finally, Bendor, et al. (2000) build a model of turnout — electoral participa-

tion by citizens — in which the agents’ aspirations adjust as in KMRV but mixed

strategies are allowed. Given dynamical aspirations and mixed strategies, a com-

plete analytical solution of the model is infeasible, and so computational modelling

(supplemented by partial analytical results) is required. The main finding of their

model is that the “paradox of voting” vanishes: citizens turn out in substantial

numbers (in a typical simulation about half the population votes) even in large

electorates (N = 1, 000, 000) and even when everyone has strictly positive costs of

voting.

5. Aspirations Evolving on the Basis of Experience of Previous

Generations of Players

BMR (2001) explore an extension of their earlier work by explicitly modelling the

dynamics of aspirations. The game is assumed to be played by successive gener-

ations of players. Within any generation, a pair of players are picked to play the

repeated game. The key assumption is that players of any given generation inherit

a fixed aspiration level from the payoff experiences of previous generations; these

aspirations are not modified during their own lifetime (though of course their payoff

experiences will affect the aspirations their children will inherit). This represents

the notion that while behaviour is conditioned by aspirations, the latter is subject

to a more gradual process of “cultural” evolution.

The analytical benefit of this approach is that the dynamic of strategies and

aspirations is sequenced rather than simultaneous, thus limiting the dimensionality

of the state space, which renders the analysis tractable. In particular, the theory

allows players’ states to be represented as mixed strategies following very general

updating rules, and can be applied to arbitrary two-person finite games. Moreover,

as explained below, it permits a sharp and simple characterisation of long run

outcomes, allowing the theory to be applied to a wider range of contexts than is

represented by 2× 2 games of cooperation or coordination.

Within any given generation with a fixed (inherited) aspiration, strategy up-

dating rules follow three simple properties: an action which is positively reinforced

(i.e. generates a payoff which exceeds the aspiration) has its probability weight

increased; negative reinforcement (payoff below aspiration) induces experimenta-

tion with other actions, and inertia (which assigns an additional weight on the

action currently chosen at the next round, and totally mixed strategies are mapped

into totally mixed strategies). These updating rules generate a Markov process (over

mixed strategy pairs), which we shall denote S(A) corresponding to aspirations A.

The dynamic over aspirations updates aspirations across rounds (or generations)

on the basis of the discrepancy between aspirations and average payoffs achieved

in the previous round. Specifically, if AT denotes the aspiration in round T , then

AT+1 = λAT + (1 − λ)ΠT , where λ ∈ (0, 1) and ΠT is the average payoff of

S(AT ). However, the process S(AT ) may not be ergodic, so the average payoff may
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not be uniquely defined. For instance, in the Prisoners Dilemma game depicted

above, if both players have aspirations below δ there are two long run distributions,

which are respectively concentrated on the pure strategy pairs (D, D) and (C,

C). In that case, the average payoff of a generation with these aspirations is path

dependent, hence inherently unpredictable. Accordingly, ΠT is a random variable.

Only one restriction is imposed on ΠT : it assigns positive probability to the average

payoff of any invariant distribution of S(AT ) which is stable against small doses of

experimentation by players.

Specifically, suppose the process S(AT ) is perturbed to Sε(AT ), where players’

strategies are subject to i.i.d. trembles with probability η.g The perturbed process

Sε(AT ) is ergodic. The limit of the corresponding ergodic distribution along any

convergent subsequence η → 0 is an invariant distribution of the original unper-

turbed process S(AT ), and thus a mixture of different non-communicating invariant

distributions of the latter process (in each of which all states in the support commu-

nicate with one another). These are the “stable” invariant distributions of S(AT ),

and each of them is postulated to receive positive weight in ΠT .

Aspirations now follow a Markov process. In two relevant cases, they can be

shown to converge to a degenerate distribution, i.e. a limit which is deterministic

with respect to both behaviour and aspirations: (i) if the game is symmetric, with

a symmetric Pareto-efficient pure payoff point, and players of any given generation

inherit the same aspiration; or in more general (possibly asymmetric) games if (ii)

aspirations of the first generation are intermediate, i.e. bounded above by some pure

strategy payoff, and are individually rational (i.e. bounded below by pure strategy

maxmin payoffs).

The long run solution of the game can thus be identified with a deterministic

steady state aspiration of this process (where in addition both players select a

particular pair of pure strategies). This bears a close relation to the (pure strategy

version of) ECA notion in BMR (1992, 1995). Such steady states are shown to be

equivalently represented as follows. Say that a distribution µ is a long run outcome

from initial state γ and aspirations A, if starting from γ the sequence of probability

measures over the state space (of strategies) generated by S(A) converges weakly to

µ. Then distribution µ is said to be consistent if (i) from every state γ in its support,

µ is a long run outcome from γ and aspirations A which equals the expected payoff

under µ; and (ii) average payoffs converge almost surely to A.

In addition to consistency, the solution must be stable with respect to small doses

of experimentation. It suffices to check for the following forms of experimentation,

which we call a single random perturbation. Take any state (α, β) in the support of

the distribution µ, select one of the two players randomly, and alter the behaviour

state of that player to a neighbouring (totally mixed) state. Checking for stability

requires that we go through the following steps:

gWith probability ε, the player’s strategy is set equal to a totally mixed strategy in the neigh-
bourhood of the strategy that would have been chosen otherwise.
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(1) Find the set of all long run distributions µ′ that can be reached from µ (with

aspirations fixed at A) following a single random perturbation.

(2) Check that every such µ′ generates an average payoff vector of A.

(3) Finally, starting from any such µ′, it is possible to return to µ following a

sequence of single random perturbations (i.e. there is a sequence of long run

distributions µ1, µ2, . . . , µN with µ1 = µ′ and µN = µ, such that µk can be

reached from µk−1 following a single random perturbation).

Of interest, therefore, are stable distributions with the additional property that

they are concentrated entirely on a pair of pure strategies, since these correspond to

the deterministic steady states of the process. These are called pure stable outcomes

(pso). BMR (2001) subsequently provide an almost complete characterisation of

pso’s. To explain this characterisation, the following definitions are necessary.

A pure strategy pair is said to be individually rational if each player earns

a payoff at least as large as his (pure strategy) maxmin payoff. It is said to be

strictly individually rational if each player’s payoff strictly exceeds the (pure strat-

egy) maxmin payoff. It is a protected Nash equilibrium if it is a Nash equilibrium

with the additional property that unilateral deviations by any player can neither

hurt the other player, nor generate a (weak) Pareto improvement.h It is a protected

strict Nash equilibrium if it is a protected Nash equilibrium which is also a strict

Nash equilibrium. Finally, a pure strategy pair is efficient if there does not exist

any other pure strategy pair which weakly Pareto dominates it.

The characterisation of pso’s is the following. Every pso is individually rational,

and either a protected Nash equilibrium, or efficient. Conversely, a pure strategy

pair is a pso if it is either strictly individually rational and efficient, or a strict

Nash equilibrium. This implies that a pso is inefficient only if it is a protected Nash

equilibrium, and inefficient pso’s can arise.

An example of an inefficient protected (strict) Nash equilibrium is mutual

defection (D, D) in the Prisoners Dilemma. Here a deviation by any player to C

benefits the opponent and hurts the deviator. Hence the opponent will be satisfied

to stick to the pure strategy D while the deviator experiments with the deviation.

In turn, this ensures that the deviator must be dissatisfied with the deviation,

and must eventually return to D. The outcome is therefore stable with respect

to unilateral deviations. In contrast if the game is one of coordination, so θ = 0,

(D, D) is no longer protected. Then a deviation by one player hurts both agents,

motivating both to experiment with other actions. With positive probability, they

will simultaneously experiment with C. Once they do so, they will be positively

reinforced; with positive probability they will stick to (C, C) forever after, resulting

in higher payoffs for both. Consequently (D, D), while a stable outcome in the

Prisoners Dilemma, is unstable in the coordination game.

hBy a weak Pareto improvement we mean that neither player is worse off, and at least one player
is strictly better off.
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Pareto efficient outcomes such as (C, C) are nevertheless stable pure outcomes

in both games, since they are strictly individually rational in either game. Hence,

players may continue to converge to dominated cooperative actions. But they may

also converge to an inefficient outcome, such as (D, D) in the Prisoners Dilemma,

provided it is a protected Nash equilibrium. The prediction is different from the

KMRV analysis, in which aspirations of any given generation were permitted to

evolve within their own lifetime. In that model, (D, D) is not stable in the Prisoners

Dilemma because deviations by one player to C raise the payoff (hence aspiration)

of the other player, so play cannot return to (D, D) as the latter would now be

dissatisfied with this outcome.

These results permit applications to contexts of economic and political competi-

tion. Consider a duopoly involving two firms producing a homogenous or differenti-

ated product, each with constant unit cost. The two firms either set quantities (the

Cournot game) or prices (the Bertrand game) of their respective products. Assume

that (i) both firms are free to exit the market and earn zero profits; (ii) there exist

collusive actions (e.g. lower quantity or higher price than the competitive outcome)

that generate positive profit for both; and (iii) given any such action pair there

exists a deviation by one firm (e.g. sufficiently large quantity or sufficiently low

price) that drives the other firm to a loss. Then maxmin profits are zero for both

firms. Then every collusive (i.e. efficient from the standpoint of the two firms) out-

come will be strictly individually rational, and hence constitute a pso. If there is any

other pso, it must be a zero profit protected Nash equilibrium. An example of this

is a competitive Bertrand equilibrium in the price-setting game with homogenous

products, in which both firms price at unit cost. If such a zero profit equilibrium

does not exist, as is typically the case in the Cournot game, or in the Bertrand

game with differentiated products, then every pso must involve maximal collusion.

This is despite the low order of rationality exhibited by the two firms and the lack

of any conscious effort to collude.

Alternatively, consider a Downsian model of electoral competition between two

political parties. A party’s strategy is a selection of a policy platform from a fi-

nite set of points on the real line. There are a large number of voters, each with

single peaked preferences over the set of platforms. If both parties select the same

platform, they split the vote equally; otherwise citizens vote for the party closer to

their ideal policy platform. Parties’s payoffs are monotonically increasing in their

share of the vote. Then the Downsian outcome, i.e. where both parties select the

median voter’s ideal policy, is the unique pso. The reason is that this is a zero-sum

game in which the Downsian outcome is the unique Nash equilibrium. Hence, it has

the saddle point property: if one party deviates from the median ideal point, the

opponent’s vote share must rise (as its own share falls). So it is a protected strict

Nash equilibrium, implying that it constitutes a pso. Moreover, no other individ-

ually rational pure strategy pair is stable, as a single random perturbation of the

behaviour state of one party can cause an increase in the long run vote share of

that party (e.g. if it deviates to the Downsian platform and thereafter converges to
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the pure strategy concentrated on that platform). It can additionally be shown to

be the unique stable outcome, even when mixed strategy distributions are allowed.

The Downsian insight concerning the “centrist” tendency inherent in two-party

electoral competition is thus upheld even when parties exhibit the low order of ra-

tionality embodied in reinforcement learning behaviour. Extension of this result to

alternative formulations of the nature of electoral competition and policy spaces is

explored in BMR (2000).

6. Aspirations Based on Observed Experience of Peers, and

Alternative Interaction Patterns

Aspirations may be formed also on the payoff experiences of one’s own peers.i Dixon

(2000) considers a set of identical (but separated) duopoly markets; in each market

a given pair of firms repeatedly interact. The aspirations of any firm evolve in

the course of the game, but are based on the profit experiences of firms across all

the markets. Firms also randomly experiment with different actions. If the current

action meets aspirations, then experimentation tends to disappear over time; other-

wise they are bounded away from zero. In this model, play converges to joint profit

maximising actions in all markets, regardless of initial conditions.

Palomino and Vega-Redondo (1999) consider a non-repeated game setting (akin

to those studied in evolutionary game theory) where pairs are randomly selected

from a large population in every period to play the Prisoners Dilemma. Aspira-

tions of each player are based on the payoff experiences of the entire popula-

tion. They show that in the long run, a positive fraction of the population will

cooperate.

Ghosh (1998) studies a similar interaction pattern in which pairs are randomly

selected from the population in every period to play a Nash demand game. Once a

pair is selected, they must split one dollar. They independently submit minimum

demands. If these demands add up to more than one, each gets nothing. Otherwise

the dollar is split halfway between their respective demands. Ghosh assumes that

players demand their current aspiration level. Each player updates his aspirations

on the basis of his own experience at the previous round: it moves down if there

was no agreement, otherwise it is increased. Irrespective of the distribution of initial

aspirations in the population, Ghosh shows that the distribution converges to the

degenerate one concentrated at the “fair” outcome involving a fifty-fifty split of the

dollar. This is the Nash bargaining solution in this setting, one of a continuum of

Nash equilibria of the game. The striking feature of this result is that it is obtained

without presuming either that players experiment with alternative strategies or

that the game itself is perturbed.

iSociologists, who have studied this phenomenon empirically for quite some time, call a set of such
peers a reference group [Merton and Rossi (1950)].
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7. Concluding Comments

The small but growing literature surveyed here suggests that reinforcement learning

is worthy of interest not just for its relevance in interpreting experimental evidence.

Theoretical analysis of its long run properties indicates that in repeated interac-

tion settings, these learning processes are marked by a number of distinct features,

even relative to evolutionary models.j The most striking of these is the general

possibility — indeed inevitability in certain settings — of the emergence of cooper-

ative behaviour. This is despite the possibility that cooperative strategies may be

strongly dominated in the stage game (as in the Prisoners Dilemma), and despite

the fact that players learn from experience in an adaptive and myopic fashion. In

particular, non-Nash outcomes will often occur in the long run, despite the propen-

sity of players to constantly experiment with different actions. The reason is simple

yet fundamental: profitable unilateral deviations rarely remain unilateral for long

periods of time if the deviation hurts the opponent, since this provokes the latter

to respond by switching to alternative strategies.

At least two aspects of these models differentiate them from evolutionary

models. One is the interaction pattern: repeated interaction between a few players,

rather than random matching of players from a large population. The other is the

importance of aspirations in adapting strategies to past experience. The assump-

tions underlying most evolutionary models are influenced by the biological context

in which such theories originally arose, and so may be less appropriate in many

contexts involving human agents.

Obviously, the contexts studied so far in the literature on reinforcement learning

are also stylised with a limited range of applications. This necessitates extending

these models to a richer range of contexts, e.g. involving more than two players, and

non-repeated patterns of interaction. This is particularly so as reinforcement learn-

ing processes seem more appropriate to contexts involving large populations where

the complexity of modelling and tracking the behaviour of all the other participants

is too great to justify devoting significant cognitive resources to such activities. This

may include buying, selling or search behaviour of “small” traders in markets. For

instance, it is a plausible description of buying and search behaviour by individ-

ual households for products involving a moderate fraction of total expenditures. It

may also be a plausible description of pricing or product decisions made by firms

that lack information concerning search or demand patterns of households, or the

cost structure of other firms, as studied in Vishwanath (1994). In such settings it

is difficult to imagine most market participants acting on the basis of a coherent

“model” of the entire market and the incentives of all participants. Similar argu-

ments can be made concerning behaviour of voters or citizens in political processes,

jIt is worth clarifying this is so when both models are applied to the stage game strategies, rather
than to automata or supergame strategies. While evolutionary analyses of the latter have been
explored by Axelrod (1984), Bendor and Swistak (1997) and Binmore and Samuelson (1992), we
are not familiar with any analysis of reinforcement learning applied to supergame strategies.
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collective action problems (e.g. involving environmental issues) or other forms of

social interaction such as traffic behaviour.

Alternative formulations of strategies and their revision processes incorporating

different degrees of sophistication also need to be studied. For instance, players may

revise strategies on the basis of more information concerning past payoff experience.

The strategies themselves may include rules for reacting to past actions of others.

Eventually, the degree of sophistication may itself be chosen on the basis of a

higher order reinforcement learning process, as suggested by Selten (1978) and

Stahl (1996).
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