Community Networks and The Growth of Private Enterprise in China

Ruochen Dai1 Dilip Mookherjee2 Kaivan Munshi3 Xiaobo Zhang1

1Peking University 2Boston University 3University of Cambridge

Presented by Duoxi Li and Yuheng Zhao
Agenda

- Introduction
- Model
- Empirical Analysis
- Conclusion
Introduction - Motivation

- Misallocation
 - Market Failure: credit, monopoly power
 - Governance Failure: taxes, regulations, enforcement

- What else may we miss?
 - Interactions between firms?
 - Spillover effects?
 - Role of community networks?

- Will community network alleviate the misallocation caused by market or government failure? Will it cause new issues?
Introduction - Motivation

- Misallocation
 - Market Failure: credit, monopoly power
 - Governance Failure: taxes, regulations, enforcement

- What else may we miss?
 - Interactions between firms? Spillover effects? Role of community networks?
Introduction - Motivation

- **Misallocation**
 - Market Failure: credit, monopoly power
 - Governance Failure: taxes, regulations, enforcement

- **What else may we miss?**
 - Interactions between firms? Spillover effects? Role of community networks?

- **Will community network alleviate the misallocation caused by market or government failure? Will it cause new issues?**
China provides an example

Figure 1. Distribution of Firms, by Type

(a) Number of Firms
(b) Registered Capital

Source: SAIC registration database.

Firm Classification: Township-Village Enterprises (TVE’s), State Owned Enterprises (SOE’s), Foreign Owned Firms, and Private (domestically owned) Firms
Introduction - Background

- Lack of general preconditions for economic development in the early stage
 - effective legal systems
 - financial institutions

Informal force: community/social networks (guanxi)
- native-place fellows (laoxiang): entrepreneurs from the same province, city or county
- local custom and dialect: cultural identification

Effect of community networks
- alleviate misallocation between SOE and private enterprises
- cause misallocation within private enterprises
Introduction - Background

- Lack of general preconditions for economic development in the early stage
 - effective legal systems
 - financial institutions
- Informal force: community/social networks (*guanxi*)
 - native-place fellows (*laoxiang*): entrepreneurs from the same province, city or county
 - local custom and dialect: cultural identification
Introduction - Background

- Lack of general preconditions for economic development in the early stage
 - effective legal systems
 - financial institutions

- Informal force: community/social networks (guanxi)
 - native-place fellows (laoxiang): entrepreneurs from the same province, city or county
 - local custom and dialect: cultural identification

- Effect of community networks
 - alleviate misallocation between SOE and private enterprises
 - cause misallocation within private enterprises
Introduction - Background

Dispersion according to birth county of entrepreneurs

Figure 1: Dispersion in Firm Entry
Introduction - Main Questions

- What is the role of community networks in the growth of private enterprise in China?
Introduction - Main Questions

- What is the role of community networks in the growth of private enterprise in China?
- How may community network cause the dispersion in firm entry, sectoral/spatial concentration, and firm size among private enterprises
Establish that population density is a good measure of social connectedness in a county
Introduction - Steps

- Establish that population density is a good measure of social connectedness in a county
- Develop a theoretical model of network dynamics
 - networks with greater social connectedness lead to more entry, more spacial/sectoral concentration, small initial firm size, and faster growth
Establish that population density is a good measure of social connectedness in a county

Develop a theoretical model of network dynamics
 - networks with greater social connectedness lead to more entry, more spacial/sectoral concentration, small initial firm size, and faster growth

Empirically testify the predictions of the model
Establish that population density is a good measure of social connectedness in a county

Develop a theoretical model of network dynamics
 - networks with greater social connectedness lead to more entry, more spacial/sectoral concentration, small initial firm size, and faster growth

Empirically testify the predictions of the model

Quantify the impact of network by structural estimation and counter-factual experiment
 - entry over the 1995-2004 period would have been 40% lower (with a comparable decline in the stock of capital)
Model

Key Ingredients

- Dynamics of a single network originating in a given origin

- Two sources of network-based spillovers
 - Post-entry cooperation raises the productivity of the entrepreneurs in the network
 - Pre-entry referral process

- Two sources of heterogeneity:
 - Origin social connectedness
 - Individual ability
Key Ingredients

- Dynamics of a single network originating in a given origin
- Two sources of network-based spillovers
 - post-entry cooperation raises the productivity of the entrepreneurs in the network
 - pre-entry referral process
Key Ingredients

- Dynamics of a single network originating in a given origin
- Two sources of network-based spillovers
 - post-entry cooperation raises the productivity of the entrepreneurs in the network
 - pre-entry referral process
- Two sources of heterogeneity:
 - origin social connectedness
 - individual ability
Model

Setup

- Each origin: social connectedness: \(p \geq 0 \rightarrow \) speed of learning or productivity spillover
- Three sectors: \(T, B_1, \) and \(B_2 \)
- Initial entrepreneurs: \(n_i0 \) at \(t = 0 \) in sector \(B_i \)
- Equal-sized cohorts of new agents born at \(t = 1, 2, \ldots \) who live forever
Model

Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, A_{it} = A_0 \exp(n_{i,t-1}\theta(p)) \]

\[t - 1: \quad \begin{array}{c}
T \\
B1 \\
B2
\end{array} \]

\[n_{1,t-1} s_{1,t-1} A_{1,t-1} \quad n_{2,t-1} s_{2,t-1} A_{2,t-1} \]
Model

Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, A_{it} = A_0 \exp(n_{i,t-1} \theta(p)) \]
Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, \quad s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, \quad A_{it} = A_0 \exp(n_{i,t-1} \theta(p)) \]
Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, A_{it} = A_0 \exp(n_{i,t-1} \theta(p)) \]
Model

Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, A_{it} = A_0 \exp(n_{i,t-1}\theta(p)) \]
Self-Selection Stage

- Ability: random draw ω, where $\log \omega \sim U[0, 1]$
- Production:
 - sector T: profit ω^σ
 - sector B_i: production function $y = A_{it} \omega^{1-\alpha} K^\alpha$, where the community TFP (CTFP)

\[A_{it} = A_0 \exp(n_{i,t-1} \theta(p)) \]

$\theta(p)$ is the network quality, increasing in p

- capital cost r, fixed price, agents are selfish and myopic
Model

Self-selection Stage

- The maximized profit given A

$$\log \Pi^*(\omega, A) = \log \omega + \log \psi + \frac{1}{1 - \alpha} \log A - \frac{1}{1 - \alpha} \log r$$

where $\phi \equiv \alpha \frac{1}{1 - \alpha}$ and $\psi \equiv \phi^\alpha - \phi$

- Enter B_i rather than T iff

$$\log \Pi^*(\omega, A) > \log \omega^\sigma$$

$$\implies \text{lower bound } \log \omega \equiv \frac{1}{1 - \sigma} \left[\log \frac{1}{\psi} - \frac{1}{1 - \alpha} \log A + \frac{\alpha}{1 - \alpha} \log r \right]$$

- $\omega \in (0, 1)$ iff

$$\log A \in \left((1 - \alpha) \log \frac{1}{\psi} + \alpha \log r - (1 - \sigma)(1 - \alpha), (1 - \alpha) \log \frac{1}{\psi} + \alpha \log r \right)$$

- Assume $\log A_0$ satisfies this condition and consider the case where CTFP satisfies this condition
Model

Dynamics of Entry and Concentration

- Entry into B_i at t:
 \[e_{it} \equiv n_{i,t} - n_{i,t-1} \]

- Aggregate entry
 \[E_t \equiv N_t - N_{t-1} = e_{1t} + e_{2t} = L + \kappa(p)N_{t-1}H_{t-1} \]

 where $H_{t-1} \equiv s_{1,t-1}^2 + s_{2,t-1}^2 = s_{1,t-1}^2 + (1 - s_{1,t-1})^2$, the Herfindahl Hirschman Index for concentration at $t - 1$.

- Greater concentration, higher aggregate entry
PROPOSITION 1

- Entry E_t, the stock of entrepreneurs N_t and concentration H_t are rising in t (for any given p) and in p (at any given t).

- $E_t - E_{t-1}$ and $H_t - H_{t-1}$ are both rising in p if $\kappa(p) < 1$ for all p and the share of the larger sector at $t - 1$ is not too close to 1.
PROPOSITION 2

- Initial capital size of marginal entrants (and of average entrants if $\sigma > \frac{1}{2}$) in cohort t is decreasing in p, and decreasing across successive cohorts for any p, in every sector. Averaging across sectors, the initial capital size of marginal entrants (and of average entrants if $\sigma > \frac{1}{2}$) is decreasing more steeply in p across successive cohorts.

- Averaging across sectors, the growth rate of capital size of incumbent entrepreneurs of any past cohort t from $t' - 1 (> t)$ to t' is rising in t' and in p.

Model

Network Dynamics

\[N_{t-1} \equiv n_{1,t-1} + n_{2,t-1}, s_{i,t-1} \equiv \frac{n_{i,t-1}}{N_{t-1}}, A_{it} = A_0 \exp(n_{i,t-1} \theta(p)) \]

\(t - 1: \)

- **T**
- **B1**
- **B2**

New Agents

- Inflow Stage
 - 1-k
 - \(k_{s_{1,t-1}} \)
 - \(k_{s_{2,t-1}} \)

Self-seletion Stage

- **T**
- **B1**
- **B2

\(t: \)

- **T**
- **B1**
- **B2**
Comments and Critiques 1

- Implication: due to network, people with lower ability and initial capital enter certain sectors \implies misallocation

- No negative spillover effects:
 - larger network, more difficult for knowledge sharing
 - no limit on firm entry and sectoral concentration
Alternative Models - No Network Spillovers

- Origin Heterogeneity
 - replace fixed k as $k(p, t)$, increasing in p and t; A_t and s_i invariant in p
 - explain firm entry, get trouble in sectoral concentration and post-entry growth
Alternative Models - No Network Spillovers

- **Origin Heterogeneity**
 - replace fixed k as $k(p, t)$, increasing in p and t; A_t and s_i invariant in p
 - explain firm entry, get trouble in sectoral concentration and post-entry growth

- **Destination Heterogeneity**
 - effect of geography, support provided by local governments, or agglomeration spillovers
 - Example: high p origins have better and increasing access to the faster growing destinations \Rightarrow firms from each origin locate at a unique set of destinations
 - Other possible models
Empirical Analysis - Data

Firm Data

- Firm registration database by the State Administrative of Industry and Commerce (SAIC, 1990-2009)
 - establishment date
 - 4-digit sector
 - location
 - registered capital
 - list of major shareholder and manager (with ID)

- SAIC’s inspection database
 - Annual firm-level information on assets and sales from 2004 onwards.

Network-related Data

- Population and social connectedness
 - China Family Panel Studies (CFPS, 2010)
 - Family module for frequency of social interactions;
 - Individual module for the people interact most and trust level
 - Population census (1982)
 - Population density on county level
 - Education on county level
Network (Social Connectedness)

- Measurement of social connectedness by population density in the entrepreneur’s birth county (for county-born ones)
 - Assumption: Social heterogeneity within counties does not increase with pop density.

- Argument for validity of pop density proxy
 - Condition 1: Positively associated with social connectedness;
 - Condition 2: Sufficient variation in pop density across counties.
Empirical Analysis - Social Connectedness

- Evidence from CFPS (2010)
 - More social interaction are connected with county pop density:
 - Higher frequency of visits and chatting;
 - More likelihood of chatting most with local resident;
 - More trust in local residents;
 - Things are different in city.

- Evidence from population census (1982)
 - Before the rural-urban labor migration in the early 1990’s:
 - Ranges from 20-1000 people per km^2
Empirical Analysis - Social Connectedness

Figure 2: Population density across counties (1982)
There could be heterogeneous community network among different counties.

The potential alternative measurement for network

- Counties characterized with more Confucian temples witnessed much less conflicts during economic shock (Kung and Ma, 2014);
- Religiosity is associated with a higher willingness to help and trust of individuals within one’s own community (Gaduh, 2012).
- Measurement: Number of ancestral shrines or temples.
Comments and Critique 2

Figure 3: Number of Buddhist temples from 50 CE to late Qing China.
Entry from a given origin is increasing over time and increasing in social connectedness at each point of time; Sector/spatial concentration ↑; Ability and initial firm size ↓; Post-entry growth rates of firm size ↑;
Evidence on Firm Entry

- Nonparametric estimates of relationship between firm entry and pop density
 - The firm entry is:
 - Increasing in pop density at each point in time;
 - Increasing over time;
 - Increasing more steeply in pop density over time.
 - Match with model prediction where pop density is replaced by social connectedness.

![Figure 4: Firm entry](image)
Discussion of other potential explanation

- Case 1: Pop density may be correlated with other variables (education) that determine the model’s outcome.
 - Control for 1982 literacy in an augmented specification;
- Case 2: Entrepreneurs born in high pop density counties have access to sectors or destinations that grew faster.
 - Sector fixed effect and destination fixed effect;
- 60% of county-born entrepreneurs establish their firms outside birth counties, but there are still 40% in their birth county.
- There might be estimation bias in this local group.
 - GDP per capita, infrastructure, financial institutions, labor market etc.
- What’s more, there could be substantial difference between these 2 groups (remain local and outside birth counties)
 - Who choose to run business outside of hometown?
 - Would be helpful to compare the result of 2 groups
Evidence on Firm Size

- There was a negative selection process in firm size due to network externality.
- The firm’s marginal initial capital (bottom 1%) is:
 - Decreasing in pop density at each point in time;
 - Decreasing over time;

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>marginal ability</th>
<th>marginal initial capital</th>
<th>average initial capital</th>
<th>marginal initial capital</th>
<th>average initial capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time period</td>
<td>-18.532***</td>
<td>-0.882***</td>
<td>-0.115***</td>
<td>-0.655***</td>
<td>-0.109***</td>
</tr>
<tr>
<td></td>
<td>(0.409)</td>
<td>(0.012)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Birth county population density × time period</td>
<td>-1.040***</td>
<td>-0.028**</td>
<td>0.002</td>
<td>-0.069***</td>
<td>-0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.394)</td>
<td>(0.012)</td>
<td>(0.008)</td>
<td>(0.010)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>49.36</td>
<td>-1.744</td>
<td>-0.401</td>
<td>-1.223</td>
<td>-0.374</td>
</tr>
<tr>
<td>Origin-sector fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Location fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>21,028</td>
<td>43,579</td>
<td>43,579</td>
<td>46,417</td>
<td>46,417</td>
</tr>
</tbody>
</table>
Testing the Mechanism

- Whether initial entry would generates subsequent entry and how
 - One additional initial entrant generates 7 additional in 2000-2004 and 9 in 2005-2009;
 - Conditional on birth-county initial entry, the total number of entrants has no effect on subsequent entry;
 - Effect of initial entry is larger for county with higher pop density.

<table>
<thead>
<tr>
<th>Table 11a. The Effect of Initial Entry on Subsequent Entry (within birth place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
</tr>
<tr>
<td>Birth place:</td>
</tr>
<tr>
<td>Time period:</td>
</tr>
<tr>
<td>Initial entrants from the birth place</td>
</tr>
<tr>
<td>All initial entrants at the location</td>
</tr>
<tr>
<td>Initial entrants from the birth place × birth place population density</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>count (1) 2000-2004</td>
</tr>
<tr>
<td>7.120*** (0.711)</td>
</tr>
<tr>
<td>0.054 (0.050)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>3.065 (0.619)</td>
</tr>
<tr>
<td>413,452</td>
</tr>
<tr>
<td>count (2) 2005-2009</td>
</tr>
<tr>
<td>8.935*** (0.972)</td>
</tr>
<tr>
<td>-0.020 (0.057)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>3.128 (0.991)</td>
</tr>
<tr>
<td>804,918</td>
</tr>
<tr>
<td>count (3) 2000-2004</td>
</tr>
<tr>
<td>5.239*** (1.065)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>1.361** (0.619)</td>
</tr>
<tr>
<td>413,452</td>
</tr>
<tr>
<td>count (4) 2005-2009</td>
</tr>
<tr>
<td>5.796*** (1.356)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>2.262** (0.991)</td>
</tr>
<tr>
<td>804,918</td>
</tr>
<tr>
<td>count (5) 2000-2004</td>
</tr>
<tr>
<td>7.830*** (0.959)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>-0.073 (0.240)</td>
</tr>
<tr>
<td>313,520</td>
</tr>
<tr>
<td>count (6) 2005-2009</td>
</tr>
<tr>
<td>6.994*** (0.982)</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>-0.437** (0.220)</td>
</tr>
<tr>
<td>449,207</td>
</tr>
</tbody>
</table>
Structural Estimation and Quantification

\[e_{ci,t} = G(\alpha, \sigma, r, A_0)k_cS_{ci,t-1} + \frac{\theta}{(1 - \sigma)(1 - \alpha)} k_cS_{ci,t-1} \cdot pn_{ci,t-1} + u_{ci,t} \]

\[\log K_{ci,t}^\alpha = H_t(\alpha, \sigma, r, A_0, f_t) + \frac{\theta(1 - 2\sigma)}{2(1 - \sigma)(1 - \alpha)} pn_{ci,t-1} + v_{ci,t} \]

- Allow \(\alpha \), which measures the marginal return to capital, to vary across sectors
- 8 structural equations and 6 parameters

\[\alpha_1, \alpha_2, \alpha_3, \alpha_4, \sigma, \theta \]
Structural Estimation and Quantification

- Seems to fit the data well both within and out of sample except for the initial capital 2000-2004
 - U shape vs decline trend;
 - Has the role of network changed?

Figure 5: Actual and predicted, firm entry and initial capital
Counter factual analysis 1

- Setting $\theta = 0$, thus shut down the network effect;
- Total entrants and stock of capital would have declined by 40% over 1995-2004;
- Sector-level spillovers has no impact on entry.

Figure 6: Counter-factual simulation: Effect of community networks on entry and total initial capital.
Counter-factual analysis 2

- Decrease r from 0.2 to 0.15, one-time credit subsidy;
- Total profits generates are less than cost to government; But the spillover effect is substantial.
- The targeted program are strictly better in total profits.

Figure 7: Counter-factual simulation: Effect of interest rate subsidy on profits
Policy prescriptions

- May provide subsidized credit to marginal entrepreneurs from high pop density counties due to network externalities

Potential concerns

- Will only be effective where community network is active;
- May cause inter-community inequality.

Takeaways

- Lower ability individuals enter business sector in high pop density counties, it is another kind of misallocation, but it’s second best.
- Due to community network, smaller firms or greater dispersion in firm size may not be inefficient, but rather a effective response to missing markets and formal institutions.
This paper identifies and qualifies the role of community network in the growth of private enterprises in China.
Conclusion

- This paper identifies and qualifies the role of community network in the growth of private enterprises in China.
- Set up a model of network based on social connectedness and validate its prediction.
Conclusion

- This paper identifies and qualifies the role of community network in the growth of private enterprises in China.
- Set up a model of network based on social connectedness and validate its prediction.
- Build a structural model and conduct counter-factual simulations.
This paper identifies and qualifies the role of community network in the growth of private enterprises in China.

Set up a model of network based on social connectedness and validate its prediction.

Build a structural model and conduct counter-factual simulations.

Give policy prescription taking consideration of network externality.