E-governance, Accountability, and Leakage in Public Programs: Experimental Evidence from a Financial Management Reform in India

Banerjee, Duflo, Imbert, Mathew, Pande (Oct 2016)

Presented by: Vittoria Dicandia

December 11, 2018

Fall 2018

1/39

Introduction ●0000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion
ть					

• Field experiment of (temporary) reform in within-state fund-flow of India's federal workfare program MGNREGS.

2 / 39

Introduction ●0000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion
The pr	oject in a	nutshell			

- Field experiment of (temporary) reform in within-state fund-flow of India's federal workfare program MGNREGS.
- Evaluate impact of increased transparency on corruption

Introduction ●0000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

- Field experiment of (temporary) reform in within-state fund-flow of India's federal workfare program MGNREGS.
- Evaluate impact of increased transparency on corruption
- Reform features:
 - linked fund flow to incurred expenditures

Introduction ●0000	Program and RCT	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

- Field experiment of (temporary) reform in within-state fund-flow of India's federal workfare program MGNREGS.
- Evaluate impact of increased transparency on corruption
- Reform features:
 - linked fund flow to incurred expenditures
 - reduced numbers of intermediaries involved in fund disbursement

Introduction ●0000	Program and RCT	Theoretical predictions	Data 000000000	Analysis 00000000	Conclusion

- Field experiment of (temporary) reform in within-state fund-flow of India's federal workfare program MGNREGS.
- Evaluate impact of increased transparency on corruption
- Reform features:
 - linked fund flow to incurred expenditures
 - reduced numbers of intermediaries involved in fund disbursement
- Findings:
 - lower fund leakage
 - no negative impact on real outcomes
 - no improvement in responding to villager needs

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
0000					

Relevant literature

- Implementation bottlenecks constrain effectiveness of social programs
- Empirical studies on corruption:
 - effects of info disclosure, increase in monitoring, monetary incentives [Ferraz and Finan, 2011]
 - effects of change in number of functionaries and jurisdictions [Burgess et al., 2012]
 - effects of reducing bureaucratic discretion [Duflo et al., 2011]
- other aspects of bureaucratic architecture are rarely studied!

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

The project's contribution

- Growing literature on administrative reforms in settings with limited state capacity [Bo et al. (2013), Duflo et. al (2013)]
- Recent works on use of information technology or e-governance
- Most related study: Muralidharan et al. (2014)
 - same program, but different reform in different state
 - focus on disbursement process rather than fund flow

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

The project's contribution

- Growing literature on administrative reforms in settings with limited state capacity [Bo et al. (2013), Duflo et. al (2013)]
- Recent works on use of information technology or e-governance
- Most related study: Muralidharan et al. (2014)
 - same program, but different reform in different state
 - focus on disbursement process rather than fund flow
- Ability to use multiple data sources (including administrative data) and to exploit large scale experimental administrative reform

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

Background - Decentralized programs

- Involve transfer from higher level of government to local implementing body
- Standard practice: cash-advance systems

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

Background - Decentralized programs

- Involve transfer from higher level of government to local implementing body
- Standard practice: cash-advance systems
 - communication is time-consuming with low quality infrastructure
 - delays in payments make programs not implementable

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

Background - Decentralized programs

- Involve transfer from higher level of government to local implementing body
- Standard practice: cash-advance systems
 - communication is time-consuming with low quality infrastructure
 - delays in payments make programs not implementable
- Local authorities have power over transfers
 - slows the process down
 - increases rent-seeking

Fall 2018 5 / 39

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

- Established in 2005
- 100 days p.y. of unskilled manual labor at stipulated min wage guaranteed to every rural household

Introduction 0000●	Program and RCT 00000	Theoretical predictions	Data 000000000	Analysis 00000000	Conclusion

- Established in 2005
- 100 days p.y. of unskilled manual labor at stipulated min wage guaranteed to every rural household
- Local Gram Panchayat (GP) officials:
 - register beneficiaries
 - provide them work on local infrastructure projects

Introduction 0000●	Program and RCT 00000	Theoretical predictions	Data 000000000	Analysis 00000000	Conclusion

- Established in 2005
- 100 days p.y. of unskilled manual labor at stipulated min wage guaranteed to every rural household
- Local Gram Panchayat (GP) officials:
 - register beneficiaries
 - provide them work on local infrastructure projects
- largest social protection program in the world

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000					

- Established in 2005
- 100 days p.y. of unskilled manual labor at stipulated min wage guaranteed to every rural household
- Local Gram Panchayat (GP) officials:
 - register beneficiaries
 - provide them work on local infrastructure projects
- largest social protection program in the world
- heterogeneity in implementation quality across states
- focus on Bihar, poor state with poor MGNREGS performance

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	●0000		0000000000	00000000	00
Fiscal a	architectur	e			

- 1. Tranche-wise transfers from central government to state
 - first based on anticipated demand and previous year expenditures

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	●0000		0000000000	00000000	00
	1.1.1				

- first based on anticipated demand and previous year expenditures
- next ones if labor expenditures accounted for in public access collection system

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	●0000		0000000000	00000000	00

- first based on anticipated demand and previous year expenditures
- next ones if labor expenditures accounted for in public access collection system
- 2. Within-state transfers
 - GP originate fund requests that are aggregated up the chain at beginning of each financial year

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	●0000		0000000000	00000000	00

- first based on anticipated demand and previous year expenditures
- next ones if labor expenditures accounted for in public access collection system
- 2. Within-state transfers
 - GP originate fund requests that are aggregated up the chain at beginning of each financial year
 - funds move down the administrative hierarchy:
 state ⇒ district ⇒ block ⇒ GP ⇒ workers

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	●0000		0000000000	00000000	00

- first based on anticipated demand and previous year expenditures
- next ones if labor expenditures accounted for in public access collection system
- 2. Within-state transfers
 - GP originate fund requests that are aggregated up the chain at beginning of each financial year
 - funds move down the administrative hierarchy: state \implies district \implies block \implies GP \implies workers
 - discretion in passing on funds
 - some units lack funds, others accumulate idle amounts

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	0●000		0000000000	00000000	00
Sample	e				

- Selected 12 districts in the state State map
 - rural population of 33 million
 - more than 900 thousand MGNREGS workers

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	0●000		0000000000	00000000	00
Sample	2				

- Selected 12 districts in the state State map
 - rural population of 33 million
 - more than 900 thousand MGNREGS workers
- $\frac{1}{3}$ blocks per district selected for treatment
- 69 treatment and 126 control block
- Analysis from July 2011 till January 2014:
 - Pre-reform: 2011 2012
 - Reform: 2012 2013
 - Post Reform: 2013 2014

Introduction 00000	Program and RCT 00●00	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

Pre - reform system (2011-2012)

Figure 1: MGNREGS Fund-flow in Control Blocks

Introduction 00000	Program and RCT 000●0	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

Post - reform system (2012-2013)

Figure 2: MGNREGS Fund-flow in Treatment Blocks

Introduction 00000	Program and RCT 0000●	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

Reform implementation

Unaffected elements:

- GP send checks and list of beneficiaries to local bank/post office which credits workers' accounts
- state made payments for materials through CPSMS with districts and blocks as intermediaries
- GP officials required to document jobs spells

11 / 39

Introduction 00000	Program and RCT	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

Reform implementation

Unaffected elements:

- GP send checks and list of beneficiaries to local bank/post office which credits workers' accounts
- state made payments for materials through CPSMS with districts and blocks as intermediaries
- GP officials required to document jobs spells

Implementation wasn't easy nor straightforward

- Iack of adequate IT infrastructure
- government froze program, GP functionaries were on strike
- banks slowed down payments process

Θ ...

Fall 2018

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Set up

 Official at tier *i* of administrative hierarchy: *P* (GP), *B* (block), *D* (district), *S* (state)

12 / 39

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Set up

- Official at tier *i* of administrative hierarchy: *P* (GP), *B* (block), *D* (district), *S* (state)
- *P* in charge of operations:
 - skim off amount s
 - exerting $\frac{1}{2}cs^2$ non-contractible non-pecuniary effort cost
 - with penalty $\pi^T s$ in expectation

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Set up

- Official at tier *i* of administrative hierarchy: *P* (GP), *B* (block), *D* (district), *S* (state)
- *P* in charge of operations:
 - skim off amount s
 - exerting $\frac{1}{2}cs^2$ non-contractible non-pecuniary effort cost
 - with penalty $\pi^T s$ in expectation
- B and D:
 - sign off on fund claim
 - commit ex-ante to price p_i for approving every rupee of funds skimmed by P

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

• *P* chooses *s* to maximize for i = B, D :

$$(1 - \pi^{T})s - p_{i}s - p_{-i}s - \frac{1}{2}cs^{2}$$

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

• *P* chooses *s* to maximize for *i* = *B*, *D* :

$$(1 - \pi^{T})s - p_{i}s - p_{-i}s - \frac{1}{2}cs^{2}$$
$$\implies s = \frac{1 - \pi^{T} - p_{B} - p_{D}}{c}$$

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

• P chooses s to maximize for i = B, D:

$$(1 - \pi^{T})s - p_{i}s - p_{-i}s - \frac{1}{2}cs^{2}$$
$$\implies s = \frac{1 - \pi^{T} - p_{B} - p_{D}}{c}$$

• i = B, D choose p_i to maximize earnings:

$$p_i s = p_i \frac{1 - \pi^T - p_i - p_{-i}}{c}$$

Fall 2018

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

• *P* chooses *s* to maximize for *i* = *B*, *D* :

$$(1 - \pi^T)s - p_i s - p_{-i} s - \frac{1}{2}cs^2$$

 $\implies s = \frac{1 - \pi^T - p_B - p_D}{c}$

• i = B, D choose p_i to maximize earnings:

$$p_i s = p_i \frac{1 - \pi^T - p_i - p_{-i}}{c}$$
$$\implies p_i = \frac{1 - \pi^T - p_{-i}}{2}$$

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000	0000000	0000000000	00000000	

• *P* chooses *s* to maximize for *i* = *B*, *D* :

$$(1 - \pi^T)s - p_i s - p_{-i} s - \frac{1}{2}cs^2$$

 $\implies s = \frac{1 - \pi^T - p_B - p_D}{c}$

• i = B, D choose p_i to maximize earnings:

$$p_i s = p_i \frac{1 - \pi^T - p_i - p_{-i}}{c}$$
$$\implies p_i = \frac{1 - \pi^T - p_{-i}}{2}$$

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Cont'd

• Hence, from solution symmetry, we get:

$$p_i = (1 - \pi^T)/3$$

14 / 39
Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Cont'd

• Hence, from solution symmetry, we get:

$$p_i = (1 - \pi^T)/3$$

• and therefore:

$$s = (1 - \pi^T)/3c$$

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	000000			

Status quo regime - Cont'd

• Hence, from solution symmetry, we get:

$$p_i = (1 - \pi^T)/3$$

• and therefore:

$$s = (1 - \pi^T)/3c$$

• i = B, D earn:

$$Y^{iT}(\pi^{T}) = p_{i}s = \frac{(1-\pi^{T})^{2}}{9c}$$

Fall 2018 14 / 39

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Status quo regime - Cont'd

• Hence, from solution symmetry, we get:

$$p_i = (1 - \pi^T)/3$$

• and therefore:

$$s = (1 - \pi^T)/3c$$

• i = B, D earn:

$$Y^{iT}(\pi^{T}) = p_{i}s = rac{(1-\pi^{T})^{2}}{9c}$$

• *P* earns from skimming: Utility

$$Y^{PT}(\pi^T) = s(1-2p_i) = rac{(1-\pi^T)(1+2\pi^T)}{9c}$$

Banerjee et al. (Dicandia)

E-gov, accountability, leakage in public programs

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	00000000	00
New re	egime - Ca	se 1			

- 1 We have $\pi^N > \pi^T$
- 2 P doesn't have technological capacity to unilaterally claim the money: **need to collude with** *B*
- D is cut out, i.e. $p_D = 0$
- Repeating steps as in the status quo regime:

$$Y^{BN}(\pi^N) = \frac{(1-\pi^N)^2}{4c}$$

Fall 2018 15 / 39

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	00000000	00
New re	egime - Ca	se 1			

- 1 We have $\pi^N > \pi^T$
- 2 P doesn't have technological capacity to unilaterally claim the money: **need to collude with** *B*
- D is cut out, i.e. $p_D = 0$
- Repeating steps as in the status quo regime:

$$Y^{BN}(\pi^N) = \frac{(1-\pi^N)^2}{4c}$$

and

$$Y^{PN}(\pi^N) rac{(1-\pi^N)(1+2\pi^N)}{4c}$$

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

Comparison

$$Y^{BT} = \frac{(1 - \pi^{T})^{2}}{9c} \quad vs. \quad Y^{BT} = \frac{(1 - \pi^{N})^{2}}{4c}$$
$$Y^{PN} = \frac{(1 - \pi^{T})(1 + 2\pi^{T})}{9c} \quad vs. \quad Y^{PN} = \frac{(1 - \pi^{N})(1 + 2\pi^{N})}{4c}$$

2 countervalling effects:

- negative from increase in penalty from skimming
- positive from not having to pay D (decrease in denominator) For corruption to decrease, increase in π must be very large in proportional terms

Introduction 00000	Program and RCT	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

- $\mathbf{1} \ \pi^{\textit{N}} > \pi^{\textit{T}}$
- 2 D extracts rents with probability lpha < 1

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion

- $\mathbf{1} \ \pi^{\textit{N}} > \pi^{\textit{T}}$
- 2 D extracts rents with probability lpha < 1

If no cap on p_D , same solution as status quo:

$$\alpha p_D = p_B = (1 - \pi^T)/3$$
 and $s = (1 - \pi^T)/3c$

Introduction 00000	Program and RCT	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion 00

- $\mathbf{1} \ \pi^{\textit{N}} > \pi^{\textit{T}}$
- 2 D extracts rents with probability lpha < 1

If no cap on p_D , same solution as status quo:

$$\alpha p_D = p_B = (1 - \pi^T)/3$$
 and $s = (1 - \pi^T)/3c$

Only penalty rate is changed \implies skimming declines

Fall 2018

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	00000000	00

- $\mathbf{1} \ \pi^{\textit{N}} > \pi^{\textit{T}}$
- 2 D extracts rents with probability lpha < 1

If no cap on p_D , same solution as status quo:

$$\alpha p_D = p_B = (1 - \pi^T)/3$$
 and $s = (1 - \pi^T)/3c$

Only penalty rate is changed \implies skimming declines Unrealistic: if $\alpha \longrightarrow 0$, $p_D \longrightarrow \infty$ $\implies P$ will pay large amounts out ot pocket whenever *D* has chance to extract rents

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	00000000			

$$1 \pi^{N} > \pi^{T}$$

2 *D* extracts rents with probability $\alpha < 1$, **up to** \bar{p}_D

incroduction riogram and	inci ineoretical predictions	Data	Analysis	Conclusion
	00000000			

 $1 \pi^{N} > \pi^{T}$

- 2 *D* extracts rents with probability $\alpha < 1$, **up to** \bar{p}_D
- B now maximizes:

$$p_B \frac{1 - \pi^N - p_B - \alpha \bar{p}_D}{c}$$

• Repeating same procedure as before:

$$Y^{BN}(\pi^N,\alpha) = \frac{(1-\pi^N-\alpha\bar{p}_D)^2}{4c}$$

incroduction riogram and	inci ineoretical predictions	Data	Analysis	Conclusion
	00000000			

$$1 \pi^{N} > \pi^{T}$$

- 2 *D* extracts rents with probability $\alpha < 1$, **up to** \bar{p}_D
- B now maximizes:

$$p_B rac{1-\pi^N-p_B-lphaar{p}_D}{c}$$

• Repeating same procedure as before:

$$Y^{BN}(\pi^N,\alpha) = \frac{(1-\pi^N-\alpha\bar{p}_D)^2}{4c}$$

and

$$Y^{PN}(\pi^N, \alpha) = rac{(1 - \pi^N)(1 + 2\pi^N)}{4c}$$

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

- For $\pi^N < 1 \alpha \bar{p}^D$:
 - increase in π^N reduces skimming and earnings for B and P
 - decrease in α increases all 3

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

For $\pi^N < 1 - \alpha \bar{p}^D$:

- increase in π^N reduces skimming and earnings for B and P
- decrease in α increases all 3
- ambiguous net effect!

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

For $\pi^N < 1 - \alpha \bar{p}^D$:

- increase in π^N reduces skimming and earnings for B and P
- decrease in α increases all 3
- ambiguous net effect!

Who is affected the most?

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

For $\pi^N < 1 - \alpha \bar{p}^D$:

- increase in π^N reduces skimming and earnings for B and P
- decrease in α increases all 3
- ambiguous net effect!

Who is affected the most?

$$\frac{Y^{BN}(\pi^N,\alpha)}{Y^{PN}(\pi^N,\alpha)} = \frac{1 - \alpha \bar{p}_D + \pi^N}{1 - \alpha \bar{p}_D - \pi^N}$$

Fall 2018 19 / 39

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
	0000000			

For $\pi^N < 1 - \alpha \bar{p}^D$:

- increase in π^N reduces skimming and earnings for B and P
- decrease in α increases all 3
- ambiguous net effect!

Who is affected the most?

$$\frac{Y^{BN}(\pi^N,\alpha)}{Y^{PN}(\pi^N,\alpha)} = \frac{1 - \alpha \bar{p}_D + \pi^N}{1 - \alpha \bar{p}_D - \pi^N}$$

Ambiguous effect again! \implies increase in transparency doesn't necessarily reduce corruption

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		●000000000	00000000	00

Data sources

1 Daily financial database associated with CPSMS system

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0●00000000	Analysis 00000000	Conclusion
Financ	ial databas	se			

- daily credits and debits of each GP savings account
- no distinction between material and labor expenses
- no identification of transfer recipients

Introduction 00000	Program and RCT	Theoretical predictions	Data oo●ooooooo	Analysis 00000000	Conclusion
Data s	ources				

- 1 Daily financial database associated with CPSMS system
- 2 Public accessible electronic data collection system (nrega.nic.in)

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		000●000000	00000000	00
nrega.ı	nic.in				

- category-wise expenditures at the aggregate fiscal year level:
 - unskilled labor
 - material
 - skilled labor
 - administrative expenses
- beneficiary details
 - who has worked in household
 - duration and dates of work
 - wages paid

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000●00000	Analysis 00000000	Conclusion

Data sources

- 1 Daily financial database associated with CPSMS system
- 2 Public accessible electronic data collection system (nrega.nic.in)
- 3 Socio-Economic Caste Census (SECC)

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		00000●0000	00000000	00
SECC					

Content:

- conducted in 2012, covers 16480 villages in 195 blocks
- include name and age of members of each household

Use:

- match villages with those in dataset 2
- match household names with job-cards in dataset 2

Possibility for errors, but no reason for consistent differences between treatment and control groups

Introduction 00000	Program and RCT	Theoretical predictions	Data 000000●000	Analysis 00000000	Conclusion 00

Data sources

- 1 Daily financial database associated with CPSMS system
- 2 Public accessible electronic data collection system (nrega.nic.in)
- 3 Socio-Economic Caste Census (SECC)
- 4 Affidavit data on GP and block official assets

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000●00	Analysis 00000000	Conclusion
Affiday	vit data				

Self-reported data on

- personal assets, both movable and immovable
- for all employees of GP and block official assets

Introduction	Program and RCT	RCT Theoretical predictions Data		Analysis	Conclusion	
00000	00000	00000000 000000000000000000000000000		00000000	00	
Affidav	vit data					

Self-reported data on

- personal assets, both movable and immovable
- for all employees of GP and block official assets

Caution needed but it's still a useful signal

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 00000000●0	Analysis 00000000	Conclusion

Data sources

- 1 Daily financial database associated with CPSMS system
- 2 Public accessible electronic data collection system (nrega.nic.in)
- 3 Socio-Economic Caste Census (SECC)
- 4 Affidavit data on GP and block official assets
- 5 Independent survey conducted by authors

Fall 2018

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		000000000●	00000000	00

Independent survey

Main feature:

- Conducted in May-July 2013
- randomly sampled 2 GP per block and 25 households per GP
- total of 10,036 in 390 GPs
- goal to measure participation, employment and payments in MGNREGS

Program and RCT	Theoretical predictions	Data	Conclusion
		000000000	

Independent survey

Main feature:

- Conducted in May-July 2013
- randomly sampled 2 GP per block and 25 households per GP
- total of 10,036 in 390 GPs
- goal to measure participation, employment and payments in MGNREGS

Caveats:

- Low participation in that period
- small sample size leads estimated effects to be imprecise

Fall 2018 29 / 39

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis ●0000000	Conclusion
Rando	mization c	heck			

$$X_{pd} = \alpha + \beta T_p + \eta_d + \varepsilon_p$$

regress GP treatment dummy and district FE on vector of baseline characteristics of GP p in district d β : pre-treatment differences

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis ●0000000	Conclusion
Dandan		la a al a			

Randomization check

$$X_{pd} = \alpha + \beta T_p + \eta_d + \varepsilon_p$$

regress GP treatment dummy and district FE on vector of baseline characteristics of GP p in district d

- β : pre-treatment differences
 - no significant differences in Census and survey data

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	●0000000	00

Randomization check

$$X_{pd} = \alpha + \beta T_p + \eta_d + \varepsilon_p$$

regress GP treatment dummy and district FE on vector of baseline characteristics of GP p in district d

- β : pre-treatment differences
 - no significant differences in Census and survey data
 - 13% higher labor expenditure for treatment GP in public access database
 - but spending was similar for CPSMS and no statistically significant difference in work days, workers or material exp
 - conclude it's a reporting error Table 1

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	0●000000	00
Financi	ial data				

$$Y_{pdt} = \alpha + \beta T_p + \eta_d + \varepsilon_{pt}$$

- Y_{pdt} are balances, expenditures and total debit data
- errors are clustered at block level
- no other controls included
- perform this analysis using both CPSMS and public data portal

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
			0000000	

Financial data - CPSMS

	Before	Set up	Inte	rvention Pe	riod	After
	Sept 2011 -	July-	Sept-Dec	Jan - Mar	Whole	Apr 2013 -
	June 2012	August	2012	2013	Period	Jan 2014
		2012				
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Total Debit from GP Accounts						
Treatment	-0.502	0.0472	-1.039***	-1.267***	-2.259***	-0.345
	(0.729)	(0.291)	(0.315)	(0.280)	(0.759)	(0.895)
Observations	3,025	3,025	3,025	3,025	3,025	3,025
Mean in Control	14.37	4.122	5.394	4.146	13.66	16.03
Panel B: Closing Balance in GP Accounts						
Treatment	-0.0843	0.191	-1.007***	-1.277***	-1.277***	-0.117
	(0.245)	(0.220)	(0.240)	(0.244)	(0.244)	(0.235)
Observations	3,025	3,025	3,025	3,025	3,025	3,025
Mean in Control	4.147	4.407	4.099	4.274	4.274	4.236
Panel C: Total Credit to GP Accounts						
Treatment	-0.179	0.251	-2.192***	-1.249***	-3.190***	0.896
	(0.830)	(0.338)	(0.367)	(0.335)	(0.781)	(0.883)
Observations	3,025	3,025	3,025	3,025	3,025	3,025
Mean in Control	15.27	4.282	5.146	4.006	13.43	15.97

Note: The unit of observation is a Gram Panchayat (GP). In Panel A the dependent variable is the sum of debits from the savings account of each GP for each period (in lakhs Rupees). In Panel B the dependent variable is the closing balance on the savings account of each GP at the end of each period (in lakhs Rupees). In Panel C the dependent variable is the sum of credits made to the savings account of each Panchayat for each period (in lakhs Rupees). Treatment is a dummy which is equal to one for the blocks selected for the intervention. All specifications include district fixed effects. Standard errors are clustered at the block level.

E-gov, accountability, leakage in public programs

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
			0000000	

Financial data - program public data

	Pre-	Set up and	Post-
	intervention	intervention	intervention
	Apr 2011-Mar	Apr 2012-Mar	Apr 2013-Mar
	2012	2013	2014
	(1)	(2)	(3)
Panel A: GP Expenditures on labor from nrega.nic.in			
Treatment	0.996**	-2.270***	-0.271
	(0.495)	(0.760)	(0.729)
Observations	2,950	2,947	2,954
Mean in Control	7.551	13.83	13.66
Panel B: GP Expenditures on material from nrega.nic.in			
Treatment	0.508	-1.077**	0.315
	(0.432)	(0.526)	(0.534)
Observations	2,950	2,947	2,954
Mean in Control	6.504	7.717	8.377

Note: The unit of observation is a Gram Panchayat (GP) The dependent variables are expenditures from MIS reports for financial years 2011-12, 2012-13, 2013-14 (in lakhs Rupees). Data was downloaded from the MGNREGS website (nrega.nic.in) in November 2014. The intervention started in September 2012 and ended on March 31st, 2013. Treatment is a dummy which is equal to one for the blocks selected for the intervention. All specifications include district fixed effects. Standard errors are clustered at the block level.
Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
			00000000	

Beneficiary outcomes

Was there less work done or just less ghost work?

-	Pre intervention	Set up	Int	Intervention Period		Post intervention
	April 2011 - June	July-August	Sept-Dec	Jan - Mar	Whole	Apr 2013 - March
	2012	2012	2012	2013	Period	2014
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Days worked (nrega.nic.i	n)					
Treatment	91.88	-130.3	-404.6*	-267.8	-672.4*	-859.5
	(530.3)	(111.5)	(227.6)	(163.3)	(363.6)	(542.7)
Observations	2,959	2,959	2,959	2,959	2,959	2,959
Mean in Control	10313	1058	2759	2269	5028	10603
Panel B: Days per working househ	old (nrega.nic.in)					
Treatment	-0.0269	-0.712	-0.286	0.187	-0.00410	-0.308
	(1.010)	(0.605)	(0.805)	(0.701)	(0.930)	(0.838)
Observations	2,952	2,514	2,728	2,717	2,868	2,945
Mean in Control	36.85	17.35	29.14	25.14	33.65	39.54
Panel C: Number of working hous	eholds (nrega.nic.in)				
Treatment	2.988	-3.132	-10.02	-8.342	-13.60*	-15.03
	(12.49)	(5.151)	(6.233)	(5.700)	(8.150)	(10.33)
Observations	2,959	2,959	2,959	2,959	2,959	2,959
Mean in Control	273.6	59.92	91.68	90.37	140.2	257.2

Note: The unit of observation is a Gram Panchayat (GP). In Panel A the dependent variable is the total number of days provided. In panel 8 the dependent variable is the total number of days provided to households reported to have worked. In panel C the dependent variable is the number of households reported to have worked. In panel D the dependent variable is the number of days worked by households who could not be matched with survey households. In Panel E the dependent variable is the number of days worked by households matched with survey households. The data was extracted from Job card information on the mega.nic.in server. It covers the beriod from JUV 2011 to See 2013. Treatment is a dummy which is equal to one for the blocks selected for the intervention. All

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
			00000000	

Incidence of ghost workers

• For each GP compute match rate of job cards with names in SECC

regress:

$$Y_{vd} = \alpha + \beta T_v + \eta_d + \varepsilon_{vt}$$

- 1. for all reported working in MGNREGS
- 2. for those only during intervention period
- 3. for those working in post-reform period
- increase in math rate for single-worker households significant only in first 2 cases (1.87 p.p. and 1.81 p.p. respectively)

Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
			00000000	

Creation of physical assets

	Number R	Number Registered All Projects Ongoing		r found
	All Projects			Ongoing
	(1)	(2)	(3)	(4)
Treatment	0.0494	-0.210	0.309	0.0271
	(0.263)	(0.413)	(0.239)	(0.267)
Observations	390	390	385	385
Mean in Control	13.80	11.69	11.79	9.819

Note: the unit of observation is a Gram Panchayat (GP). The dependent variables are the number of projects registered in the public data portal (nrega.nic.in) on May 15, 2013 (1), the number of projects declared as ongoing in nrega.nic.in (2), the number of registered (3) and ongoing (4) projects found by surveyors in June-July 2013. Out of 5390 projects registered in nrega.nic.in for the 390 GP of the survey sample, a random sample of 3900 projects were surveyed (10 per GP). The number of projects found in the survey is scaled up using the number of registered projects divided by the number of sampled projects rate. 5 GP (28 projects) could not be surveyed. All specifications include district fixed effects.

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 0000000●	Conclusion

Assets of MGNREGS functionaries

Source: Affidavits of MGNREGS employees 2013-14, Government of Bihar

Introduction	Program and RCT	Theoretical predictions	Data	Analysis	Conclusion
00000	00000		0000000000	00000000	●○
Summ	ary of findi	ings			

- theoretical predictions were ambiguous as per the effect of this reform
- financial data shows that for treatment GPs there was a decline in spending and in number of workdays and workers hired
- decline in spending is mainly driven by a decrease in workers and there is direct evidence of decline in ghost workers
- not accompanied by a decline in MGNREGS assets
- suggestive evidence that patterns are accounted for by reduction in corruption
- seems to be corroborated by wealth reduction for GP and block officials

Introduction 00000	Program and RCT 00000	Theoretical predictions	Data 0000000000	Analysis 00000000	Conclusion ○●
E-g	overnance,	Accountabi	lity, and I	_eakage	in
Publi	c Program	s: Experime	ntal Evid	ence frc	om a
	Financial N	<i>lanagement</i>	Reform i	n India	

Banerjee, Duflo, Imbert, Mathew, Pande (Oct 2016)

O

Presented by: Vittoria Dicandia

December 11, 2018

Fall 2018 1

P maximizes:

$$(1 - \pi^{T})s - p_{i}s - p_{-i}s - \frac{1}{2}cs^{2}$$

Can be rewritten as:

$$s(1-2p_i)-\pi^{\mathsf{T}}s-\frac{1}{2}cs^2$$

Given:

$$Y^{PT}(\pi^T) = s(1-2p_i)$$

P's utility

$$U^{PT}(\pi^{T}) = Y^{PT}(\pi^{T}) - \pi^{T}s - \frac{1}{2}cs^{2}$$

	Control	Treatment	D://	01
	Blocks	Blocks	Difference	Observations
Panel A: Census 2011				
Area (hectares)	1101	1129	28.38	2,936
Number of households	1860	1845	-15.22	2,936
% SC Population	0.196	0.194	-0.00164	2,936
% ST Population	0.0112	0.0144	0.00320	2,936
Literacy Rate	0.64	0.639	-0.000859	2,936
% With education facility	0.992	0.997	0.00529*	2,936
% With medical facility	0.668	0.679	0.0114	2,936
% With post office	0.0394	0.0357	-0.00367	2,936
% With bank branch	0.352	0.402	0.0496**	2,936
% With electricity supply	0.426	0.46	0.0344	2,936
% Land Irrigated	0.53	0.523	-0.00639	2,936
Panel B: Household Survey				
% Hindu	0.92	0.89	-0.0268**	390
% Scheduled Castes	0.26	0.24	-0.0188	390
% Other Backward Castes	0.59	0.60	0.0162	390
% House without a solid roof	0.38	0.41	0.0246	390
% Owns Land	0.58	0.57	-0.0139	390
% Male Head	0.78	0.76	-0.0129	390
% Literate Head	0.56	0.55	-0.00884	390
Household Size	6.52	6.44	-0.0836	390
Number of adults in the household	3.42	3.36	-0.0664	390
Panel C: nrega.nic.in reports (April 2011- March 2012)				
MGNREGS beneficiary households	187	196	9.283	2,950
MGNREGS work days provided	6290	6673	383.7	2,950
MGNREGS labor expenditures (lakhs)	7.69	8.68	0.996**	2,950
MGNREGS material expenditures (lakhs)	6.57	7.07	0.508	2,950
Panel D: CPSMS reports (Sept 2011- March 2012)				
MGNREGS funds spent (CPSMS)	9.00	8.73	-0.272	3,025
MGNREGS funds received (CPSMS)	9.52	9.59	0.0645	3,025

Note: The unit of observations is a Gram Parokyed (GP). Out of 30G7 GP from our sample list, we match 239G GP (and 1996) and 1996 GP (and 2005) GP with respective indicate [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 GP with CR5M) fait [And 1996 GP (and 3025 G