Theories of Electoral Competition: (Median) Voters and (Citizen) Candidates

Dilip Mookherjee

Boston University

Ec 721 Lectures 13 \& 14

Governance Failures

- Many development problems owe to weak/imperfect political institutions or governance
- What is the benchmark/ideal political institution?
- For most people, it is a representative democracy, with accountability of appointed leaders
- Key components of (indirect) democracy:
- executive selected via contested and fair elections (Schumpeter, Dahl)
- separation of powers between executive, legislative and legal branches (Montesquieu, Madison)
- free speech, civil liberties (Locke, Mill)

Contestability and Accountability

- When does contestability (electoral competition) give rise to accountable/representative government?
- First formal model: Median Voter Theorem (Hotelling (1929), Black (1948), Downs (1957))
- Analogue of Arrow-Debreu theory of perfect competition in the economic sphere: helpful in identifying ideal conditions when electoral competition generates representative policies
- Conversely, this helps generate a typology of 'governance frictions' that prevent actual democracies from achieving ideal outcomes

Preview: Varieties of Governance Frictions

- Aggregation: ordinal rather than cardinal preferences (Median Voter model)
- Lack of Commitment/Ideology/Politician preferences (Citizen Candidate model)
- Low political (voter) participation/awareness; non-issue-based preferences (e.g., identity politics) (Probabilistic Voting models; pork-barrel politics)
- Special interest groups and elite capture (Lobbying models); (de facto) autocracy instead of democracy
- Vote buying and political clientelism

Aggregation of Preferences

- Problem with Majority Voting rule: non-existence of a (Condorcet) winner (generalization: Arrow impossibility theorem)
- One resolution: restrict domain of preferences and policy spaces
- Median Voter model: single dimensional Euclidean policy space, single-peaked preferences
- Additional assumptions:
- two contestants
- commitment to policy platforms
- purely opportunistic: maximize probability of winning/vote share
- perfect turnout, voter awareness, no vote counting errors

MV Theorem

- Two stage game: first contestants A, B commit to policy platforms $p_{A}, p_{B} \in \mathcal{R}$, then citizens vote; contestant with more votes wins (50-50 coin toss if tie)
- Under stated assumptions, there is a unique SPNE of this game, where $p_{A}=p_{B}=p_{m}^{*}, p_{i}^{*}$ ideal policy for voter i, m is the median ideal policy
- Zero-sum game, proposing p_{m}^{*} is a minmax strategy
- Median ideal policy: suitable notion of 'representativeness'

Alternative Notion of Representativeness

- Is the median ideal policy the utilitarian optimal policy? Always/sometimes?
- Utilitarianism: embodies cardinality/intensity of (interpersonally comparable) preferences
- Cannot be incorporated by any 0-1 voting mechanism

Application: 'Size' of Government (Persson-Tabellini, Ch

 3)- Two goods: one private, one public
- $2 N+1$ citizens, with exogenous income/endowments $y_{1}<y_{2}<\ldots<y_{2 N+1}$
- Quasi-linear preferences: $U_{i}=c_{i}+H(g)$, where $H^{\prime}>0>H^{\prime \prime}$
- Public good funded by linear income tax τ; B.C: $g=\tau \bar{y}$
- Sole policy variable: $\tau \in[0,1]$
- Single-peaked (concave) preferences: $U_{i}(\tau)=y_{i}(1-\tau)+H(\tau \bar{y})$, ideal policy τ_{i}^{*} satisfies:

$$
y_{i}=\bar{y} H^{\prime}\left(\tau_{i}^{*} \bar{y}\right)
$$

Application of MVT, contd.

- Electoral competition results in both candidates proposing $\tau^{p}=\tau_{N}^{*}$
- Utilitarian optimal policy: τ^{w} maximizes

$$
\sum_{i=1}^{2 N+1} U_{i}=\bar{y}(1-\tau)+H(\tau \bar{y})
$$

- τ^{w} is the ideal policy of the citizen with mean income \bar{y}
- Electoral competition results in utilitarian optimal outcome if and only if median and mean income coincide
- Size of government is too large if income distribution is positively skewed ('populism')
- Alesina-Rodrik (QJE 1994) extension to $A K$ endogenous growth model: cross-country negative growth-inequality correlations

Citizen-Candidate Model (Besley-Coate QJE 1997)

- Primary alternative to the Downsian model, departs in various ways:
- Political candidates have policy preferences of their own (ideology/corruption)
- Candidates cannot commit to policy platforms prior to elections
- Endogenous entry into politics
- Multidimensional policy spaces
- Downsian MVT is robust to certain ranges of policy preferences of candidates, so the CC model needs to depart on other dimensions as well

Citizen Candidate Model, Assumptions

- Citizens $i=1, \ldots, N \geq 3$, all are potential candidates
- Policy space \mathcal{A} unrestricted; default policy $0 \in \mathcal{A}$ ('shutdown', if no one runs for office)
- Citizen i preferences: $V^{i}(x, j)$ for policy x, candidate j
- $\delta \geq 0$: cost of running for office

Stages of

- Since candidates are citizens, they have preferences over policy
- Key assumption: candidates cannot commit to policy platforms before the election
- Key implicit assumption: static game, or myopic behavior: elected officials have no concerns about re-election
- Hence elected, they will select their own favorite policy (no checks and balances): $x_{j}^{*}=\arg \max _{x \in \mathcal{A}} V^{j}(x, j)$ (assumed unique)
- Citizen preferences are common knowledge, so candidate j identified by voters with expectation of policy x_{j}^{*}

Stages of Game

- Stage 1: citizens decide whether to run for office $s_{i} \in\{0,1\}$: determines candidate set \mathcal{C}
- Stage 2: citizen i casts vote or abstains (selects $\alpha_{i} \in \mathcal{C} \cup\{0\}$, pure strategy)
- Stage 3: Candidate with highest number of votes wins, with coin toss determining winner in case of ties
- If j wins, selects policy x_{j}^{*}; if no one ran for office, government shuts down (policy 0)

Equilibrium concept, properties

- Subgame perfect equilibrium in weakly undominated strategies (to prevent some voter coordination problems)
- Lemma: Pure (voting) strategy equilibrium always exists in the second stage, for any given candidate set
- Candidate entry strategies: generally exist in mixed strategies
- This game tends to have 'too many' equilibria, as we shall soon see

Some Definitions

- $v_{i j} \equiv V_{i}\left(x_{j}^{*}, j\right)$, citizen i utility if j is elected; candidate utility is $v_{j j}-\delta$
- Given candidate set \mathcal{C}, a sincere partition $\left(N_{i}\right)_{i \in \mathcal{C} \cup\{0\}}$ is a partition of N, the set of voters such that:
- $I \in N_{i}$ implies j is an optimal candidate for i
- $I \in N_{0}$ implies $/$ is indifferent between all candidates
- When there are two candidates, voting sincerely is optimal (not necessarily if there are more than two candidates)

One Candidate Equilibria

Proposition 2: An equilibrium where a single candidate i runs unopposed, exists if and only if:
(i) $v_{i i}-v_{i 0} \geq \delta$
(ii) For any $k \neq i$ such that $\# N_{k} \geq \# N_{i}$ in a sincere partition of $\mathcal{C}=\{i, k\}$, either

$$
v_{k k}-v_{k i} \leq \delta \quad \text { and } \quad \# N_{k}>\# N_{i}
$$

or:

$$
\frac{1}{2}\left(v_{k k}-v_{k i}\right) \leq \delta \quad \text { and } \quad \# N_{k}=\# N_{i}
$$

One Candidate Equilibria, contd.

Corollary to Proposition 2: Suppose citizens care only about policies. If for all sufficiently small δ an equilibrium where i runs unopposed exists, then x_{i}^{*} is a Condorcet winner amongst $\left\{x_{j}^{*}: j \in N\right\}$.
Conversely, if x_{i}^{*} is a strict Condorcet winner in this set, there is an equilibrium where i runs unopposed for all δ small enough.

Hence, policy prediction coincides with the MVT under the assumptions of single peaked preferences over a unidimensional policy space

Two Candidate Equilibrium

Proposition 3: If there is an equilibrium where exactly two candidates (i, j) enter, there exists a sincere partition $\left(N_{i}, N_{j}, N_{0}\right)$ of $\mathcal{C}=\{i, j\} \cup\{0\}$ such that $\# N_{i}=\# N_{j}$ and $\frac{1}{2} \min \left\{v_{i i}-v_{i j}, v_{j j}-v_{j i}\right\} \geq \delta$.

If this condition holds, and in addition $\# N_{0}+1<\# N_{i}=\# N_{j}$, such a two candidate equilibrium exists.

Proof: Necessity is obvious. For sufficiency, a third candidate does not want to enter if 'swing' voters $\left(N_{0}\right)$ are few (e.g., less than one third of the population) relative to others (who could keep voting for the same candidate, expecting others to do so).

Two Candidate Equilibrium, contd.

- This applies even if all voters prefer the third candidate to i and j !
- Any pair of candidates who split the vote can form a two candidate equilibrium if their policies are 'not too close' (contrary to MV model predictions of policy convergence)
- Note also that i and j must split the vote, so every voter is pivotal!

Three Candidate Equilibrium

- Tend to be rare in elections based on pluraity voting (Duverger's Law); voters tend to coordinate on two candidates
- Nevertheless, three candidate equilibria can exist
- Besley-Coate provide an example of three candidate equilibria where one wins for sure
- Why do the losing candidates enter? To affect the election outcome by diverting votes away from candidates they don't want to win

