# Models of Probabilistic Voting, Lobbying and Special Interest Capture

Dilip Mookherjee

Boston University

Lectures 14-15

DM (BU)

2018 1 / 27

### Outline of This Lecture

- We shall examine models of probabilistic voting, where voters care both about policy and non-policy (candidate image, loyalty, ethnic/gender identity) dimensions
- Models in the Downsian tradition: two candidates/parties, pre-election commitments to policy platforms
  - 1. Conditions for First-Best Accountability
  - 2. Imperfections:
    - Voter Turnout/Awareness
    - Pork-Barrel programs
    - Lobbies and Elite Capture



### Analytical Framework

- Downsian political economy model, extended to incorporate probabilistic voting
- Advantage of the extension is that the policy space and citizen preferences are very general
- Policy space: P is set of feasible policies for a local government
- Citizen groups: i = 1, ..., G with demographic weights  $\alpha_i > 0, \sum_i \alpha_i = 1$  and utility functions  $U_i(p) : P \to \Re$
- Groups classified on the basis of location, age, occupation, assets
- Utilitarian first-best/optimal policy:  $p^*$  which maximizes  $W(p) \equiv \sum_j \alpha_j U_j(p)$  over P, where welfare weights are demographic weights



### Assumptions

- Two candidates A, B in the election
- Elected official gets a large fixed salary or attains ego-rent R, which is exogenous and fixed
- Candidates objective is to maximize probability of winning the election (chance to earn *R*)
- No scope for siphoning off resources (corruption/embezzlement)

#### **Elections**

- First stage: candidates announce their policy platforms  $p_A$ ,  $p_B$ , and commit to these if elected
- Second stage: citizens vote
- Third Stage: votes are counted, candidate with more votes is elected



## Probabilistic Voting

- Candidates are also differentiated on the basis of personal characteristics (history, appearance, ethnicity, gender etc)
- Voters care about both policy and candidate characteristics
- Dispersed (subjective) preferences over candidate characteristics: relative preference of voter of type i for candidate represented by realization of random variable  $\epsilon_i$  with a given (smooth) probability distribution



### Probabilistic Voting, contd.

- Voters are of two types: informed and uninformed
- Fraction  $\lambda_i$  of type i citizens are informed; random fraction  $\tau_i$  of voters of type i (both informed and uninformed) turn out to vote
- Informed voter of type i prefers candidate A if  $U_i(p_A) + \epsilon_i > U_i(p_B)$
- Uninformed voter of type i prefers candidate A if  $\epsilon_i > 0$
- Vote counting errors: candidate A wins with probability  $\phi(v_A)$  if  $v_A$  is vote share of A, where  $\phi$  is smooth, increasing,  $\phi(\frac{1}{2}) = \frac{1}{2}$ , convex below and concave above  $\frac{1}{2}$
- Sincere voting is a dominant strategy (given two candidates)

4D > 4A > 4B > 4B > B 900

7 / 27

## Simplifying Assumption

- Assume that  $\epsilon_i$  is uniformly distributed with constant density  $\sigma_i$  on  $[b_i \frac{1}{2\sigma_i}, b_i + \frac{1}{2\sigma_i}]$
- $b_i$ : average bias of type i citizen in favor of candidate A
- $\sigma_i$ : swing propensity of type i citizen (assume it is small enough so we can focus on interior solutions for policy choice)
- Large number of citizens within every group i



### **Vote Shares**

• Fraction of type i informed voters that vote for A equals probability of event that  $\epsilon_i > U_i(p_B) - U_i(p_A)$ :

$$\sigma_{i}[b_{i} + \frac{1}{2\sigma_{i}} - U_{i}(p_{B}) + U_{i}(p_{A})] = \frac{1}{2} + \sigma_{i}b_{i} + \sigma_{i}[U_{i}(p_{A}) - U_{i}(p_{B})]$$

• Fraction of *i* uninformed voters that vote for A equals probability of event that  $\epsilon_i > 0$ :

$$\frac{1}{2} + \sigma_i b_i$$

- ullet Fraction  $au_i$  of either type turn out to vote; total votes cast  $\sum_j lpha_j au_j$
- Vote share of A:

$$v_A = \frac{1}{\sum_j \alpha_j \tau_j} \sum_i \alpha_i \tau_i \left[ \frac{1}{2} + \sigma_i b_i + \lambda_i \sigma_i \{ U_i(p_A) - U_i(p_B) \} \right]$$

### Conditions for Ideal Democracy

#### Proposition

Suppose turnout, information and swing propensity do not vary across groups ( $\tau_i = \tau, \lambda_i = \lambda, \sigma_i = \sigma$  for all i). Then both candidates will have a dominant strategy to select the first-best utilitarian optimal policy  $p^*$ .



### Proof of Proposition 1

- Candidate A's objective is to maximize  $\frac{1}{\sum_{j} \alpha_{j} \tau_{j}} \sum_{i} \alpha_{i} \tau_{i} \lambda_{i} \sigma_{i} U_{i}(p_{A})$ , no matter what  $p_{B}$  is
- Candidate B's objective is to minimize  $-\frac{1}{\sum_{j}\alpha_{j}\tau_{j}}\sum_{i}\alpha_{i}\tau_{i}\lambda_{i}\sigma_{i}U_{i}(p_{B})$ , no matter what  $p_{A}$  is
- So both share the same objective: maximize  $\frac{1}{\sum_{j} \alpha_{j} \tau_{j}} \sum_{i} \alpha_{i} \tau_{i} \lambda_{i} \sigma_{i} U_{i}(p)$  over P (Downsian convergence)
- If  $\tau_i = \tau, \lambda_i = \lambda, \sigma_i = \sigma$ , this objective function reduces to utilitarian welfare  $\sum_i \alpha_i U_i(p)$



DM (BU) 2018 11/27

### Imperfection #1: Pork Barrel Politics

- The Proposition states a sufficient condition for democracy to achieve perfect accountability
- When this condition does not hold, both parties have the common objective function  $\sum_i \omega_i U_i(p)$  where the welfare weight on group i is  $\omega_i \equiv \frac{\alpha_i \tau_i \lambda_i \sigma_i}{\sum_i \alpha_i \tau_i}$
- Consider the case of equal turnout rates across all groups  $\tau_i = \tau$ , and equal proportions of informed voters  $\lambda_i = \lambda$ , but different swing propensities  $\sigma_i$
- Then  $\omega_i = \alpha_i \sigma_i$
- Groups with higher swing propensity  $\sigma_i$  get higher welfare weight relative to utilitarian objective

4D > 4B > 4B > 4B > 900

# Pork Barrel Politics (Dixit-Londregan 1996)

- Pork-Barrel politics: term in US politics for specific regions that get more projects than they need, as an implicit subsidy at the expense of other regions
- Groups with higher swing propensity get disproportionately favored (Dixit-Londregan theory)
- Intuition: groups with high  $\sigma_i$  place greater weight on policy issues relative to candidate characteristics  $\longrightarrow$  they respond more in their votes to a unit increase in policy-based utility
- Recall expression for vote share of A among informed voters from group i:

$$\sigma_{i}[b_{i} + \frac{1}{2\sigma_{i}} - U_{i}(p_{B}) + U_{i}(p_{A})] = \frac{1}{2} + \sigma_{i}b_{i} + \sigma_{i}[U_{i}(p_{A}) - U_{i}(p_{B})]$$

**◆ロト→御ト→きト→き** → 9へ(~)

2018

13 / 27

### Pork Barrel Politics, contd.

- Uneven swing propensities can be one possible source of pork-barrel politics
- Other sources: groups with low  $(\tau_i)$  voter turnout rates, and with low  $(\lambda_i)$  levels of political awareness, will also get discriminated against
- For a similar reason: they respond less with votes to increases in policy-based utility
- One reason suggested for anti-poor bias in US politics: lowest 20% of the population have substantially lower rates of political participation and awareness (Rosenstone and Hansen 1993)



DM (BU) 2018 14/27

# Imperfection#2: Lobbies and Elite Capture (Grossman-Helpman 1996)

- One form of elite capture arises if elite is more politically aware and turnout more to vote than other groups (Benabou AER 2000)
- Additional channel: elites can form lobby that make contributions to candidate campaign funds
- Campaign funds are used by candidates to spend on campaign advertising, which affect votes of the uninformed



## Lobbies, Campaign Funds and Ads

- Abstract from differences in turnout, awareness and swing propensity between groups:  $\sigma_i = \sigma, \tau_i = \tau, \lambda_i = \lambda$  so in the absence of lobbying the first-best welfare will be realized
- Elite group e which is wealthy, and well connected with candidates, forms a lobby which suggests policy  $p_k$  to candidate k = A, B and offers funds  $C_k \ge 0$  if candidate k selects  $p_k$  (instead of  $p^*$ )
- What can candidate k do with funds  $C_k$  purchase political ads which affect voting of uniformed voters (only)
- Uninformed voters in group i vote for A if  $h.C_A + \epsilon_i > h.C_B$  where h is relative weight on ads ('persuasion' parameter)



DM (BU) 2018 16/27

# Vote Shares with Campaign Ads

- Fraction of uninformed voters in group i that vote for A is now  $\frac{1}{2} + \sigma b_i + h(C_A C_B)$
- Vote share of A is modified to

$$v_A = \frac{\frac{1}{2} + \sigma \sum_i \alpha_i b_i + }{+\sigma \sum_i \alpha_i [\lambda \{U_i(p_A) - U_i(p_B)\} + (1 - \lambda)h\{C_A - C_B\}]}$$

- Party A objective: maximize  $\sum_i \alpha_i U_i(p_A) + \chi C_A$  where  $\chi \equiv \frac{h(1-\lambda)}{\lambda}$  is relative weight on campaign finance
- Party B objective: maximize  $\sum_i \alpha_i U_i(p_B) + \chi C_B$
- Elite group objective:  $\phi(v_A)U_e(p_A) + (1-\phi(v_A))U_e(p_B) C_A C_B$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

### Lobbying Game

- 1. Lobby representing e group offers  $p_k$ ,  $C_k$  to candidate k = A, B
- 2. Candidates respond: accept or reject
- 3. Candidates that accept are committed to policy recommended by lobby, those that reject select a policy platform
- 4. Citizens vote, votes counted, winner declared



DM (BU)

18 / 27

# Solution to Lobbying Game

- Work backwards from stage 3: candidate that rejects lobby offer will select p to maximize  $\sum_i \alpha_i U_i(p) \longrightarrow$  select welfare optimal policy  $p^*$
- Stage 2: candidate k will accept lobby offer if and only if  $\sum_{i} \alpha_{i} U_{i}(p_{k}) + \chi C_{k} \geq \sum_{i} \alpha_{i} U_{i}(p^{*})$ , i.e.:

$$C_k \ge \underline{C}_k \equiv \frac{1}{\chi} \sum_i \alpha_i [U_i(p^*) - U_i(p_A)]$$
 (1)

• Observe that  $C_{\nu} > 0$ 



• Stage 1: Elite e selects  $p_A, p_B, C_A, C_B$  to maximize

$$\phi(v_A)U_e(p_A) + (1 - \phi(v_A))U_e(p_B) - C_A - C_B$$

subject to

$$C_k \geq \underline{C}_k, k = A, B$$

and expression for vote share  $v_A$  as a function of  $p_A$ ,  $p_B$ ,  $C_A$ ,  $C_B$ 



 If the candidate acceptance constraints are binding (pure influence motive):

$$C_k = \underline{C}_k \equiv \frac{1}{\chi} \sum_i \alpha_i [U_i(p^*) - U_i(p_A)]$$
 (2)

and vote shares are unaffected by lobbying

$$v_A = \frac{1}{2} + \sigma \sum_i \alpha_i b_i \equiv \bar{v}^A \tag{3}$$

• If candidate A is intrinsically more popular,  $\sum_i \alpha_i b_i > 0$ , will win with probability  $\bar{\phi}^A \equiv \phi(\bar{v}^A) > \frac{1}{2}$ ) both with and without lobbying

4日ト 4個ト 4里ト 4里ト ■ 99℃

• If only influence motive operates, elite's payoff reduces to:

$$\bar{\phi}^{A}U_{e}(p_{A}) + (1 - \bar{\phi}^{A})U_{e}(p_{B}) - \underline{C}_{A} - \underline{C}_{B}$$

$$= \bar{\phi}^{A}U_{e}(p_{A}) + (1 - \bar{\phi}^{A})U_{e}(p_{B}) - \frac{1}{\chi} \sum_{i} \alpha_{i}[U_{i}(p^{*}) - U_{i}(p_{A})]$$

$$- \frac{1}{\chi} \sum_{i} \alpha_{i}[U_{i}(p^{*}) - U_{i}(p_{B})]$$

$$= [\bar{\phi}^{A}U_{e}(p_{A}) + \frac{1}{\chi} \sum_{i} \alpha_{i}U_{i}(p_{A})]$$

$$+ [(1 - \bar{\phi}^{A})U_{e}(p_{B}) + \frac{1}{\chi} \sum_{i} \alpha_{i}U_{i}(p_{B})] + K$$



#### Proposition

If only influence motive operates, solution to the lobbying game is as follows:

- (i)  $p_a$  is chosen to maximize  $\sum_i \alpha_i U_i(p) + \chi \bar{\phi}^A U_e(p)$
- (b)  $p_b$  is chosen to maximize  $\sum_i \alpha_i U_i(p) + (1 \chi \bar{\phi}^A) U_e(p)$



23 / 27

### **Implications**

- Extra weight attached to elite's payoff by both parties elite capture
- More popular party (A) is subject to more capture, as  $\bar{\phi}^A > \frac{1}{2}$



### Determinants of Elite Capture

- Lack of Competition: If election is not close (candidate A is much more popular,  $\bar{\phi}^A$  is large), this candidate is more subject to elite capture and more likely to win
- Lack of Political Awareness: Extra weight on elite payoff depends on  $\chi \equiv \frac{h(1-\lambda)}{\lambda}$ , which is high if  $\lambda$ , proportion of informed voters, is low
- Effectiveness of Political Advertising:  $\chi$  is high if h is high



### Other Sources of Elite Capture

- Lack of extension of franchise to the poor in various ways:
  - Historical and contemporary instances of lack of democracy (elites control policy directly)
  - Partial franchise for males, whites, those above a certain wealth etc in UK, US and Latin America until the 20th century
  - Voter registration rules, lack of electronic ballots (Brazil; Fujiwara (2015))



### Link between Elite Capture and Inequality

- Higher inequality in wealth implies greater gap in awareness/participation between poor and rich, resulting in direct impact on pro-rich bias
- ullet Compounded in the presence of lobbying: if political awareness is concave (and increasing) in education/wealth, **average** proportion of aware voters is decreasing in inequality, raising  $\chi$  and hence elite capture



27 / 27