1. (a) The c.d.f. of v is $F(v) = \frac{v}{v_T}$ for $v \in [0, v_T]$, and the density is $f(v) = \frac{1}{v_T}$. So the virtual valuation of v is $v - \frac{1 - F(v)}{f(v)} = 2v - v_T$. Hence the monopolist’s problem at T is to select probability $\alpha(v)$ of selling to a customer of type v which is nonincreasing in v and which maximizes

$$\int_0^{v_T} \alpha(v)[2v - v_T] \frac{1}{v_T} \, dv.$$

The solution is $\alpha(v) = 1$ if and only if $v > \frac{v_T}{2}$, i.e., the monopolist sets a constant price of $\frac{v_T}{2}$, whence half the population of remaining buyers buy and the other half do not. The monopolist earns profit of $\frac{v_T^2}{4}$, conditional on unit mass of this population (with valuations below v_T). The unconditional profit equals the size of the population v_T multiplied with this, to yield a period T profit $\Pi_T(v_T) = \frac{v_T^2}{4}$.

(b) Here

$$\Pi_{T-1}(v_{T-1}) = \max_{p_{T-1}} [(v_{T-1} - \alpha_{T-1}p_{T-1})p_{T-1} + \delta\Pi_T(\alpha_{T-1}p_{T-1})].$$

First-order conditions for this yield

$$v_{T-1} - 2\alpha_{T-1}p_{T-1} + \delta\alpha_{T-1}\Pi'_T(\alpha_{T-1}p_{T-1}) = 0$$

or $p_{T-1} = \beta_{T-1}v_{T-1}$ where

$$\beta_{T-1} = \frac{1}{\alpha_{T-1}[2 - \frac{\delta}{2}\alpha_{T-1}]}.$$

Corresponding profits are

$$\Pi_{T-1}(v_{T-1}) = v_{T-1}^2\left[\frac{1}{\alpha_{T-1}} - \frac{\delta}{4}\left\{2 - \frac{\delta}{2}\alpha_{T-1}\right\}^2\right].$$

Type $\alpha_{T-1}p_{T-1}$ is indifferent between buying at p_{T-1} and waiting till T when the price will be $\frac{\alpha_{T-1}p_{T-1}}{2}$:

$$\alpha_{T-1}p_{T-1} - p_{T-1} = \delta(\alpha_{T-1}p_{T-1} - \frac{\alpha_{T-1}p_{T-1}}{2})$$

which implies

$$\alpha_{T-1} = \frac{2}{2 - \delta}.$$
Check that $\alpha_{T-1} \beta_{T-1} = \frac{2-\delta}{4-3\delta}$ which is smaller than one as $\delta < 1$.

As δ tends to 1, α_{T-1} tends to 2, β_{T-1} tends to $\frac{1}{2}$, and $\alpha_{T-1} \beta_{T-1}$ tends to 1. Hence at $T-1$, the seller charges a price tending to $\frac{v_{T-1}}{2}$, almost no one buys. Then at T, the seller again charges a price approximately $\frac{v_{T-1}}{2}$, and half the population buys then.

(c) Suppose $\Pi_{t+1}(v_{t+1}) = \frac{\kappa_{t+1}^2}{2} v_{t+1}^2$. Then

$$\Pi_t(v_t) = \max_{p_t} \left[(v_t - \alpha_t p_t) p_t + \delta \Pi_{t+1}(\alpha_t p_t) \right]$$

and the first-order conditions yield

$$v_t - 2\alpha_t p_t + \delta \alpha_t \Pi_{t+1}'(\alpha_t p_t) = 0$$

or

$$p_t = \frac{v_t}{2\alpha_t - \delta \kappa_{t+1} \alpha_t^2}$$

implying

$$\beta_t = \frac{1}{2\alpha_t - \delta \kappa_{t+1} \alpha_t^2}. \quad (1)$$

It is now evident upon inserting $p_t = \beta_t v_t$ into the expression for Π_t above that

$$\Pi_t(v_t) = [v_t - \alpha_t \beta_t v_t] \beta_t v_t + \delta \frac{\kappa_{t+1}}{2} (\alpha_t \beta_t v_t)^2$$

so Π_t is also quadratic in v_t, and we can calculate κ_t as a function of κ_{t+1} and other parameters.

Next, type $\alpha_t p_t$ must be indifferent between the current price p_t and the price next period $\alpha_t \beta_{t+1} p_t$:

$$\alpha_t p_t - p_t = \delta (\alpha_t p_t - \beta_{t+1} \alpha_t p_t)$$

generating the following difference equation

$$\alpha_t = \frac{1}{1 - \delta \left\{ 1 - \frac{1}{2\alpha_{t+1} - \delta \kappa_{t+1} + 2\alpha_{t+1}} \right\}}. \quad (2)$$

With α_t generated by this difference equation, β_t can be obtained from equation (1) above.
2. Consider the following variation on the incentive scheme following the node \(x_{it}|h_{t-1} \): at date \(t \) the agent gets \(v \) utils more; following this node at date \(t+1 \) the agent gets \(\frac{v}{3} \) utils less irrespective of report \(j \); and at all other nodes the transfers are unchanged. This does not affect the agent’s expected utility of reporting \(i \) at \(t \), nor the relative payoffs from different reports at \(t+1 \) at nodes following the report of \(i \) at \(t \). Hence all incentive and participation constraints of the agent are satisfied. This variation causes a change in expected cost to the principal (conditional on being at the node \(x_{it}|h_{t-1} \)) of

\[
\frac{1}{u(x_{it}|h_{t-1})} - \sum_j f_j \frac{1}{u(x_{j,t+1}|h_{t-1} \cup \{i\})}
\]

which yields the first-order condition provided.

3. If 1 owns the asset,

\[
B_1 = \frac{1}{6} \left[2\{v(1,2,3),a|x) - v(2,3,\emptyset|x) \} + v(1,2),\{a|x) + v(1,3),\{a|x) \\
+ 2\{v(1,a|x) - v(\emptyset|x) \} \right]
\]

\[
= \frac{1}{6} \left[2\{r_1(x_1) + r_2(x_2) + v \} + r_1(x_1) + r_2(x_2) + r_1(x_1) + v + 2r_1(x_1) \right]
\]

\[
= r_1(x_1) + \frac{1}{2} r_2(x_2) + \frac{v}{2}
\]

Hence in this case \(x_1 \) will be chosen to maximize \(\alpha_1 x_1 - \frac{x_1^2}{2} \), implying \(x_1 = \alpha_1 \).

\[
B_2 = \frac{1}{6} \left[2\{v(1,2,3),a|x) - v(1,3),\{a|x) \} + v(1,2),\{a|x) - v(1),\{a|x) \\
+ 2\{v(1,a|x) - v(\emptyset|x) \} \right]
\]

\[
= \frac{1}{6} \left[2\{r_1(x_1) + r_2(x_2) + v - r_1(x_1) - v \} + r_1(x_1) + r_2(x_2) - r_1(x_1) \right]
\]

\[
= \frac{1}{2} r_2(x_2)
\]

\(x_2 \) will be chosen to maximize \(\frac{1}{2} \alpha_2 x_2 - \frac{x_2^2}{2} \), so \(x_2 = \frac{1}{2} \alpha_2 \).

If \{1,2,3\} collectively own the asset, then

\[
B_1 = \frac{1}{6} \left[2\{v(1,2,3),a|x) - v(2,3),\{a|x) \} + v(1,2),\{a|x) + v(1,3),\{a|x) \\
+ 2\{v(1,a|x) - v(\emptyset|x) \} \right]
\]

\[
= \frac{1}{6} \left[2r_1(x_1) + r_1(x_1) + r_2(x_2) r_1(x_1) \right]
\]

\[
= \frac{2}{3} r_1(x_1) + \frac{1}{6} r_2(x_2) + \frac{v}{6}
\]
Hence in this case x_1 will be chosen to maximize $\frac{2}{3}\alpha_1 x_1 - \frac{x_1^2}{2}$, implying $x_1 = \frac{2}{3}\alpha_1$.

$$B_2 = \frac{1}{6}[2\{r_1(x_1) + r_2(x_2) + v - r_1(x_1) - v\} + r_1(x_1) + r_2(x_2) + r_2(x_2) + v]$$

$$= \frac{2}{3}r_2(x_2) + \frac{1}{6}r_1(x_1) + \frac{v}{6}$$

x_2 will be chosen to maximize $\frac{2}{3}\alpha_2 x_2 - \frac{x_2^2}{2}$, so $x_2 = \frac{2}{3}\alpha_2$.

If 3 owns the asset:

$$B_1 = \frac{1}{6}[2\{r_1 + r_2 + v - r_2 - v\} + r_1]$$

$$= \frac{r_1}{2}$$

implying $x_1 = \frac{1}{2}\alpha_1$, while

$$B_2 = \frac{1}{6}[2\{r_1 + r_2 + v - r_2 - v\} + r_2]$$

$$= \frac{r_2}{2}$$

implying $x_2 = \frac{1}{2}\alpha_2$.

Since there is underinvestment in this model, it follows that welfare is lowest when 3 owns the asset. 1 invests more when (s)he owns the asset privately, while 2 invests less, compared with collective ownership. So the relative welfare of these two ownership structures depends on the relative magnitudes of α_1 and α_2.
