PROBLEM SET NO. 1

due October 2, 2008

1. A monopolist wishes to sell a good produced at constant unit cost c to a large population of consumers with heterogeneous preferences: a consumer of type θ has a payoff $\theta \log q - t$ for consuming q units of the good, and paying t dollars for it. θ is distributed uniformly on $[0,1]$. The monopolist cannot identify the type of any given consumer.

(a) If $q(\theta)$ denotes the quantity sold to type θ, find a condition on this function $q(.)$ that ensures that it is IC (incentive compatible, i.e., there exists some pricing rule $t(q)$ for which $q(\theta)$ is the optimal purchase of type θ).

(b) For any such IC $q(.)$, what is the associated set of payments (i.e., $t(\theta)$) that customers (of type θ) make to the monopolist?

(c) Obtain an expression for total profit of the monopolist as a function only of the selling strategy $q(.)$.

(d) Calculate the optimal selling strategy $q^*(\theta)$, and the pricing function $t(q)$ which implements it (in the sense of (a) above).

2. A risk-neutral principal P hires an agent A, who chooses an effort $a \geq 0$, which results in gross profit $x = a + \epsilon$ for P, where ϵ is uniformly distributed on $[0,1]$. A’s payoff equals $w^{1-\rho} - a^\rho$, where w denotes a non-negative wage paid by P, and $\rho > 0, \neq 1$ is a parameter of risk-aversion. A has an outside option payoff of \bar{U} which is non-negative if $\rho < 1$ and negative if $\rho > 1$.

(a) If a is contractible, characterize the first-best wage and effort levels.

(b) If a is not contractible, but the profit x is contractible, and $\rho \in (0,1)$, find a condition on the parameters of the problem which ensure that the first-best profit can be achieved by P. If $\bar{U} = 0$, when is this condition satisfied?
(c) If $\rho > 1$ what can you say about implementability of the first-best profit when a is not contractible?

(d) How would you interpret the results in (b) and (c)?

3. You are appointed arbitrator for negotiations for sale of an indivisible input produced by a selling firm S to a buying firm B with \textit{ex ante} uncertain costs and valuations: they respectively have payoffs $t - q\theta_s$ and $q\theta_b - t$ if $q \in \{0, 1\}$ denotes whether or not a sale takes place, and t is the expected monetary transfer from B to S. Parameters θ_s and θ_b are drawn independently from intervals $[\bar{\theta}_b, \bar{\theta}_b], [\underline{\theta}_b, \bar{\theta}_b]$ respectively according to cdf’s F_s, F_b with positive positive densities f_s, f_b which are common knowledge. Each party will observe its own cost or valuation parameter privately. Design a mechanism which is ex post efficient, Bayesian incentive compatible and \textit{ex ante} individually rational (i.e., both parties will be willing to participate if they have to commit to participation \textbf{before} observing their respective costs/valuations).

[If you need a hint, send me an email]