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@ Recall the simple contract design problem for a single risk averse
agent with moral hazard (Holmstrom 1979, Grossman-Hart 1983)

@ Optimal contract is quite complicated, and rarely linear

@ When risk-sharing is unnecessary (both P and A are risk-neutral) but
there is limited liability (besides moral hazard) — Innes (JET 1990)
shows the optimal contract is piece-wise linear w(y) = min{ay, y}

@ However real-world contracts in moral hazard settings are often linear
(e.g., sharecropping, uber drivers, authors, executives)

@ The share of the agent does not vary finely with detailed features of
the environment such as the production function, agent disutility or
nature of uncertainty (e.g., ‘standard’ contracts)
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Introduction

Competition and Custom in Economic Contracts:
A Case Study of lllinois Agriculture

By H. PEYTON YOUNG AND MARY A. BURKE*

Survey data suggest that cropsharing contracts exhibit a much higher degree of

than is by economic

We propose a dynamic

model of contract choice to explain this phenomenon. Landowners and tenants
recontract periodically, taking into account expected returns as well as conformity
with local practice. The resulting stochastic dynamical system is studied using
techniques from statistical mechanics. The most likely states consist of patches
where contractual terms are nearly uniform, separated by boundaries where the
terms shift abruptly. These and other predictions of the model are borne out by
survey data on agricultural contracts in Illinois. (JEL J43,C73)

[TThe constraining force of custom and pub-
lic opinion ... resembled the force which holds
rain-drops on the lower edges of a window
frame: the repose is complete till the window is
violently shaken, and then they fall together.

—Alfred Marshall

Economists have long been puzzled by the
extent to which local custom, rather than com-
petition, shapes the terms of certain kinds of
contracts. A well-known example is cropshar-
ing contracts, whereby a landlord leases his
farm to a tenant laborer in return for a fixed
share of the crops. The high degree of unifor-
mity in the terms of such contracts has attracted
the attention (though by no means the approval)
of almost all writers on the subject, both ancient
and modern. In speaking of the system then
prevalent in Italy and France, for example, John
Stuart Mill remarks:

This proportion ... is usually (as is implied
by the words metayer, mezzaiuolo, and
medietarius) one-half. There are places,
however, such as the rich volcanic soil of

the province of Naples, where the Tand-
lord takes two-thirds ... Whether the pro-
portion is two-thirds or one-half, it is a
fixed proportion, not variable from farm
to farm, or from tenant to tenant (Mill,
1848 p. 303).

Similarly, in a more recent study of contract
forms in West Bengal, Ashok Rudra writes:

the proportion 50:50 for paddy shows a
great resilience in that it is known to have
existed for a long time in this state ..
respective of soil conditions, improved or
backward methods of cultivation, and
other factors which could be expected to
affect the profitability of farm business
(Rudra, 1975 p. A58).

For those who find these observations dis-
turbing or lmplauslble there are two comfort-
ing One is that ing is
largely a feature of pre-economic, custom-
bound cultures; in modern societies, contracts
are surely structured more rationally and are
governed by competitive forces. Alfred Mar-
shall seems to have been of this view, assert-
ing that the sway of custom is a feature of
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FIGURE 1. CROP SHARE FREQUENCIES IN ILLINOIS:
TENANT’S SHARE OF THE CORN CROP
(Frequencies in percent)

Source: Illinois Cooperative Agricultural Extension
Service Farm Leasing Survey, 1995,
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Whats Missing in the Model?

o Effort Arbitrage: In a risk-sharing-incentives context,
Holmstrom-Milgrom (Ecta 1987) model the idea that the agent has a
lot of opportunity to ‘arbitrage’ effort across points of time

@ But their model delivers linearity of optimal contracts only when
combined with restrictive assumptions (CARA utility, continuous
time, Brownian motion)

@ Robustness: In a setting with risk neutrality and limited liability,
Carroll (2015) models a longstanding idea (Hurwicz and Shapiro (BJE
1978)) that P does not know much about the environment, e.g. the
exact set of technologies available to A, and may not be able to
formulate a Bayesian prior over these

@ Could evaluate contracts in terms of their worst-case performance, i.e.
minimum payoff guarantees
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Non-Bayesian Model

@ Real world phenomenon: P often does not know many features of the
environment, is unable to form priors and behave like a Bayesian
decision-makers

@ So P seeks to maximize worst-case-scenario profits

@ Similar approach is used in computer science or electrical engineering
in selecting algorithms
@ Related also to ideas of ambiguity-aversion, and ‘satisficing’
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Introduction

Intuition

e ‘Simple’ (linear) contracts are good because they are robust/reliable

@ Trying sophisticated non-linear contracts optimal relative to some
prior, could backfire if P makes ‘a mistake’ in forming the prior

@ With linear contracts, expected net returns of P and A move
together, so if A does something unexpected to raise her own return,
it will also raise P's return — so P is ‘protected’
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Introduction

Main Features of Carroll Model

o Risk neutral agent A, subject to limited liability, zero outside option
payoff

Selects costly effort ¢, which determines probability distribution F
over compact set of possible outputs Y C ; normalize min Y to 0.

@ P offers contract a continuous function w(y) : Y—R" (limied
liability)
@ P has limited information about the ‘technology’ available to A:

o knows that A definitely has access to a given set Ag
e does not know what additional options A has, i.e., A has access to
some A where 45 C A

o Nontriviality Assumption There exists (F, c) € Ag such that
E,:[y] —c>0
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Contracts and Payoffs

@ Ex post payoff (if y realized): w(y) — c for A, y — w(y) for P

e Timeline: (i) P offers w(.), (ii) A selects (F,c) € A, (iii) y and
payoffs realized

@ No participation decision for A incorporated (or assume that
(00,0) € Ao, where ¢, denotes degenerate distribution concentrated

on y)
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Contracts and Payoffs, contd.
@ Agent's action choice: (F,c) chosen from A to maximize

Erlw(y)] - ¢
@ Denote resulting payoff of A by
v A) = E —
a(wlA) = max Erlwly)l —c
@ P’s payoff conditional on A is

V = Erly —
p(wl|A) Fom Fly = w(y)]

where A*(w|.A) denotes the set of optimal choices for A (break ties in
P’s favor)

@ P selects w to maximize worst-case-profit:

VP(W) = Aig./félo VP(W|A)
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Introduction

Theorem

There exists linear contract w(y) = ayy for some « € [0, 1] that maximizes
Vp(.).
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What P can Guarantee with a Linear Contract (Lemma
2.3)

e Given any w(.), P knows that A will attain an exp payoff of at least
Va(w|Ap), implying (if (F,c) is actually chosen):

Er[w(y)] = (EF[w(y)] — ¢ =) Va(w|Ao)
o If w'(y) = ay, then y — w*(y) = (1 —a)y = 22w*(y)

@ Hence
* -« *
Vp(w*) > Va(w*|Ao)
1—a
= E _
o (F@ngo{a Flyl —c}

o Finally observe RHS is exactly P's profit if A's feasible set is Ag, hence

11—«
Vp(w*) = E, —
p(w') = = max {aErly] - c)
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Structure of Rest of Proof

@ Show that given any nonlinear contract, there exists a linear contract
which generates at least much worst case profit for P

@ Use a separating hyperplane argument

o First step is to show that wlog can widen range of options for A to
include every probability distribution F over Y
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Introduction

Lemma 2.2 Let w be any eligible contract (satisfying
Vp(w) > 0, Vp(w) > Vp(0), where 0 is the null contract), which is
non-null. Then

Vp(w) =m =inf EFly — w] s.t.F € A(Y), EF(w) > Va(w|Ay)
If the minimum is attained at F*, then Ep-[w] = Va(w|Ay).

Widening the feasible set as much as possible: allowing the agent here to
select any F, besides the necessary condition Ef(w) > Va(w|.Ap)

Since we are taking an upper bound of A's feasible set, obvious that
Vp(w) > m

So need to show that Vp(w) < m, i.e., that P cannot guarantee anything
strictly above this.
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Steps in Proof of Lemma 2.2

o If P can guarantee something better than m, take the (approximate)
solution F* in the defined problem, and show P’s profit could be close
to it in some cases

@ Suppose A did have access to (only) the option (F*,c = 0), besides
Ap: would she choose it?
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Introduction

Proof of Lemma 2.2, contd.

o If F* does not put all its weight on y's that maximize w on Y, we
can select a distribution F** close to it which assigns a little bit more
weight to outputs generating higher wages
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Proof of Lemma 2.2, contd.

o If F* does not put all its weight on y's that maximize w on Y, we
can select a distribution F** close to it which assigns a little bit more
weight to outputs generating higher wages

@ In that case Ep«+[w] > Ep«[w] > Va(w|Ap), and A would choose
(F**,c = 0) if that is the only option apart from the set Ay, resulting
in payoff for P arbitrarily close to &
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Proof of Lemma 2.2, contd.

o If F* does not put all its weight on y's that maximize w on Y, we
can select a distribution F** close to it which assigns a little bit more
weight to outputs generating higher wages

@ In that case Ep«+[w] > Ep«[w] > Va(w|Ap), and A would choose
(F**,c = 0) if that is the only option apart from the set Ay, resulting
in payoff for P arbitrarily close to &

o If F* puts all its weight on y's that maximize w, and
Er«[w](= maxw(y)) > Va(w|Ap), the same argument applies.
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Proof of Lemma 2.2, contd.

@ So suppose Ep-[w](= maxw(y)) = Va(w|Ap), implying existence of
(F,0) € Ap which guarantees max w(y) to A

@ Then under Ag, A will select this technology; and will be willing to
select it (and participate) if P deviates to a null contract, so
Vp(w) < Vp(0) and w could not be essential
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Proof of Lemma 2.2, contd.

@ So suppose Ep-[w](= maxw(y)) = Va(w|Ap), implying existence of
(F,0) € Ap which guarantees max w(y) to A

@ Then under Ag, A will select this technology; and will be willing to
select it (and participate) if P deviates to a null contract, so
Vp(w) < Vp(0) and w could not be essential

@ For the last part, if it were not true we would have
Ep-[w] > Va(w|Ag), we could find F close to F* (shift some weight
to zero output) which would be chosen by A and result in worse
profits for P (since Vp(w) > 0)
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Separating Hyperplane argument

@ Lemma 2.2 implies: there does not exist F € A(Y') satisfying
Er[w(y)] > Va(w|Ao) and  Efly — w(y)] < Vp(w)

@ i.e., S the convex hull of (w(y),y — w(y)), and of
T = {(u,v) € R2|u > Va(w|Ap),v < Vp(w)} do not have any
interior points in common
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Separating Hyperplane argument

@ Lemma 2.2 implies: there does not exist F € A(Y') satisfying
Er[w(y)] > Va(w|Ao) and  Efly — w(y)] < Vp(w)

@ i.e., S the convex hull of (w(y),y — w(y)), and of
T = {(u,v) € R%|u > Va(w|Ap), v < Vp(w)} do not have any

interior points in common
@ So there exists k, A, u with (A, 1) # (0, 0) such that

ply —w(y)] = k+w(y),VyeY
,U,VP(W) > k—i-/\VA(W‘.Ao)
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Separating Hyperplane argument, contd.

e Not difficult to check that (A, x) >> (0,0), so we can normalize by
setting =1

o (Vp(w), Va(w|Ap)) belongs to the boundary of both S and T, so
VP(W) =k+ )\VA(W|A0)

@ So we get Lemma 2.4: for any non-zero eligible contract w:

y=w(y) = k+iw(y),VyeY
Vp(w) = k+AVa(w|Ao)
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Last Steps

o Consider the affine contract w/(y) = =% > w(y),Vy (using first >
in L2.4)

@ Implies: Va(w'|Ag) > Va(w]|Ap)

@ P’s worst case profit cannot go down, because if A chooses F’ in
response to w':

Erly — w'(y)] k+ AEp [w'(y)]
k 4+ AVa(w'|Ap)

k + /\VA(W’.A()) = VP(W)

AVARAVARY]
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o Consider the affine contract w/(y) = =% > w(y),Vy (using first >
in L2.4)

@ Implies: Va(w'|Ag) > Va(w]|Ap)

@ P’s worst case profit cannot go down, because if A chooses F’ in
response to w':

Erly — w'(y)] k+ AEp [w'(y)]
k 4+ AVa(w'|Ap)

k + /\VA(W’.A()) = VP(W)

AVARAVARY]

o Finally, observe that any affine contract is dominated by
corresponding linear contract (lump sum payment is non-negative,
does not affect A's behavior, so can be eliminated)
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