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Introduction

Introduction

Recall the simple contract design problem for a single risk averse
agent with moral hazard (Holmstrom 1979, Grossman-Hart 1983)

Optimal contract is quite complicated, and rarely linear

When risk-sharing is unnecessary (both P and A are risk-neutral) but
there is limited liability (besides moral hazard) – Innes (JET 1990)
shows the optimal contract is piece-wise linear w(y) = min{αy , ȳ}

However real-world contracts in moral hazard settings are often linear
(e.g., sharecropping, uber drivers, authors, executives)

The share of the agent does not vary finely with detailed features of
the environment such as the production function, agent disutility or
nature of uncertainty (e.g., ‘standard’ contracts)
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Introduction

Whats Missing in the Model?

Effort Arbitrage: In a risk-sharing-incentives context,
Holmstrom-Milgrom (Ecta 1987) model the idea that the agent has a
lot of opportunity to ‘arbitrage’ effort across points of time

But their model delivers linearity of optimal contracts only when
combined with restrictive assumptions (CARA utility, continuous
time, Brownian motion)

Robustness: In a setting with risk neutrality and limited liability,
Carroll (2015) models a longstanding idea (Hurwicz and Shapiro (BJE
1978)) that P does not know much about the environment, e.g. the
exact set of technologies available to A, and may not be able to
formulate a Bayesian prior over these

Could evaluate contracts in terms of their worst-case performance, i.e.
minimum payoff guarantees

DM (BU) 2020 5 / 19



Introduction

Non-Bayesian Model

Real world phenomenon: P often does not know many features of the
environment, is unable to form priors and behave like a Bayesian
decision-makers

So P seeks to maximize worst-case-scenario profits

Similar approach is used in computer science or electrical engineering
in selecting algorithms

Related also to ideas of ambiguity-aversion, and ‘satisficing’
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Intuition

‘Simple’ (linear) contracts are good because they are robust/reliable

Trying sophisticated non-linear contracts optimal relative to some
prior, could backfire if P makes ‘a mistake’ in forming the prior

With linear contracts, expected net returns of P and A move
together, so if A does something unexpected to raise her own return,
it will also raise P’s return — so P is ‘protected’
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Main Features of Carroll Model

Risk neutral agent A, subject to limited liability, zero outside option
payoff

Selects costly effort c , which determines probability distribution F
over compact set of possible outputs Y ⊆ <; normalize minY to 0.

P offers contract a continuous function w(y) : Y→<+ (limied
liability)

P has limited information about the ‘technology’ available to A:

knows that A definitely has access to a given set A0

does not know what additional options A has, i.e., A has access to
some A where A0 ⊆ A

Nontriviality Assumption There exists (F , c) ∈ A0 such that
EF [y ]− c > 0

DM (BU) 2020 8 / 19



Introduction

Contracts and Payoffs

Ex post payoff (if y realized): w(y)− c for A, y − w(y) for P

Timeline: (i) P offers w(.), (ii) A selects (F , c) ∈ A, (iii) y and
payoffs realized

No participation decision for A incorporated (or assume that
(δ0, 0) ∈ A0, where δy denotes degenerate distribution concentrated
on y)
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Contracts and Payoffs, contd.

Agent’s action choice: (F , c) chosen from A to maximize
EF [w(y)]− c

Denote resulting payoff of A by

VA(w |A) = max
(F ,c)∈A

EF [w(y)]− c

P’s payoff conditional on A is

VP(w |A) = max
(F ,c)∈A∗(w |A)

EF [y − w(y)]

where A∗(w |A) denotes the set of optimal choices for A (break ties in
P’s favor)

P selects w to maximize worst-case-profit:

VP(w) = inf
A⊇A0

VP(w |A)
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Theorem

There exists linear contract w(y) = αy for some α ∈ [0, 1] that maximizes
VP(.).
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What P can Guarantee with a Linear Contract (Lemma
2.3)

Given any w(.), P knows that A will attain an exp payoff of at least
VA(w |A0), implying (if (F , c) is actually chosen):

EF [w(y)] ≥ (EF [w(y)]− c ≥)VA(w |A0)

If w∗(y) = αy , then y − w∗(y) = (1− α)y = 1−α
α w∗(y)

Hence

VP(w∗) ≥ 1− α
α

VA(w∗|A0)

=
1− α
α

max
(F ,c)∈A0

{αEF [y ]− c}

Finally observe RHS is exactly P’s profit if A’s feasible set is A0, hence

VP(w∗) =
1− α
α

max
(F ,c)∈A0

{αEF [y ]− c}
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Structure of Rest of Proof

Show that given any nonlinear contract, there exists a linear contract
which generates at least much worst case profit for P

Use a separating hyperplane argument

First step is to show that wlog can widen range of options for A to
include every probability distribution F over Y
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Lemma 2.2 Let w be any eligible contract (satisfying
VP(w) > 0,VP(w) ≥ VP(0), where 0 is the null contract), which is
non-null. Then

VP(w) = π ≡ inf EF [y − w ] s.t.F ∈ ∆(Y ),EF (w) ≥ VA(w |A0)

If the minimum is attained at F ∗, then EF∗ [w ] = VA(w |A0).

Widening the feasible set as much as possible: allowing the agent here to
select any F , besides the necessary condition EF (w) ≥ VA(w |A0)

Since we are taking an upper bound of A’s feasible set, obvious that
VP(w) ≥ π

So need to show that VP(w) ≤ π, i.e., that P cannot guarantee anything
strictly above this.
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Steps in Proof of Lemma 2.2

If P can guarantee something better than π, take the (approximate)
solution F ∗ in the defined problem, and show P’s profit could be close
to it in some cases

Suppose A did have access to (only) the option (F ∗, c = 0), besides
A0: would she choose it?
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Proof of Lemma 2.2, contd.

If F ∗ does not put all its weight on y ’s that maximize w on Y , we
can select a distribution F ∗∗ close to it which assigns a little bit more
weight to outputs generating higher wages

In that case EF∗∗ [w ] > EF∗ [w ] ≥ VA(w |A0), and A would choose
(F ∗∗, c = 0) if that is the only option apart from the set A0, resulting
in payoff for P arbitrarily close to π

If F ∗ puts all its weight on y ’s that maximize w , and
EF∗ [w ](= maxw(y)) > VA(w |A0), the same argument applies.
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Proof of Lemma 2.2, contd.

So suppose EF∗ [w ](= maxw(y)) = VA(w |A0), implying existence of
(F , 0) ∈ A0 which guarantees maxw(y) to A

Then under A0, A will select this technology; and will be willing to
select it (and participate) if P deviates to a null contract, so
VP(w) < VP(0) and w could not be essential

For the last part, if it were not true we would have
EF∗ [w ] > VA(w |A0), we could find F̃ close to F ∗ (shift some weight
to zero output) which would be chosen by A and result in worse
profits for P (since VP(w) > 0)
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Separating Hyperplane argument

Lemma 2.2 implies: there does not exist F ∈ ∆(Y ) satisfying

EF [w(y)] > VA(w |A0) and EF [y − w(y)] < VP(w)

i.e., S the convex hull of (w(y), y − w(y)), and of
T ≡ {(u, v) ∈ <2|u > VA(w |A0), v < VP(w)} do not have any
interior points in common

So there exists k, λ, µ with (λ, µ) 6= (0, 0) such that

µ[y − w(y)] ≥ k + λw(y), ∀y ∈ Y

µVP(w) ≥ k + λVA(w |A0)
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Separating Hyperplane argument, contd.

Not difficult to check that (λ, µ) >> (0, 0), so we can normalize by
setting µ = 1

(VP(w),VA(w |A0)) belongs to the boundary of both S and T , so
VP(w) = k + λVA(w |A0)

So we get Lemma 2.4: for any non-zero eligible contract w :

y − w(y) ≥ k + λw(y),∀y ∈ Y

VP(w) = k + λVA(w |A0)
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Last Steps

Consider the affine contract w ′(y) = y−k
1+λ ≥ w(y), ∀y (using first ≥

in L2.4)

Implies: VA(w ′|A0) ≥ VA(w |A0)

P’s worst case profit cannot go down, because if A chooses F ′ in
response to w ′:

EF ′ [y − w ′(y)] ≥ k + λEF ′ [w
′(y)]

≥ k + λVA(w ′|A0)

≥ k + λVA(w |A0) = VP(w)

Finally, observe that any affine contract is dominated by
corresponding linear contract (lump sum payment is non-negative,
does not affect A’s behavior, so can be eliminated)
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