Ec717a: Robust Mechanism Design (Bergemann-Morris
Ecta 2005)

Dilip Mookherjee
Boston University

Ec 717a, 2020: Lecture 2

DM (BU) 2020 1/23

Introduction: Problems with CPA

@ Most game theory and mechanism design is based on the assumption
of a common prior

@ Based on Harsanyi ‘story’ that types are drawn from an urn according
to a known probability distribution

@ In words, CPA means ‘All differences in beliefs stem from differences
in information’

@ CPA has strong implications: we cannot ‘agree to disagree’
(Aumann); no-trade theorems (Milgrom and Stokey)

DM (BU) 2020 2/23

Payoff Types and CPA

@ Standard mechanism design with private values — identifies types
with ‘valuations’ (v;) or payoff parameters, which agents observe
privately

e Agent strategies b;(v;); payoff functions M;(b;, b—;; vi)

@ With multiple agents that interact in the mechanism, agent's rational
behavior defined by maximization of expected payoffs, with
expectation taken over actions of other agents

@ Optimal strategy of agent i therefore depends on:

o i's beliefs F;(v_;) over others types
o beliefs over strategies of others b;(v;)

@ Beliefs over strategies of others, are rationalized by conjecture that
others behave optimally —- requires i to know beliefs others (j) hold

(Fi(v-1))

DM (BU) 2020 3/23

CPA, contd

@ Equilibrium strategies have to be common knowledge, and this
requires players’ beliefs to be common knowledge

@ Departing from CPA: means we have to modify the definition of
Bayesian equilibrium itself

@ Have to allow players to have beliefs about beliefs of others which
could be wrong

@ This will significantly complicate the theory... is CPA a problem, or a
convenient fiction?

DM (BU) 2020 4/23

Introduction

Related Problems: Mechanism Design with Correlated
Values

@ Cremer-McLean (Ecta 1988) showed that in auctions where bidders
have correlated values (hence beliefs depend on own type: Fi(v_;|v;)),
it is (generically) possible to design an auction in which the auctioneer
can extract almost all of every bidder’s rents and thereby get
arbitrarily close to the first-best (with dominant strategy equilibrium)

@ But if valuations are independent, such rent extraction is not possible!

o McAfee-Reny (Ecta 1992) showed a similar result extends to most
agency problems

DM (BU) 2020 5/23

Introduction

Intuition for Cremer-MclLean Result

@ With correlated values, a change in v; is associated with a change in
bidder i's beliefs over v_;, and this mapping is locally invertible

@ It is possible (at the participation) for P to design a mechanism to
elicit bidder 1's beliefs regarding bidder 2's value (ask bidder 1 to
forecast what 2 will report, compare the forecast with the actual
reports, construct side payments conditioned on these)

@ P can invert from 1's beliefs to infer 1's valuation, and thus overcome
the problem of private information

@ With private (independent) values, this inversion is not possible,
because bidder 1's beliefs do not vary with her own valuation

DM (BU) 2020 6/23

Ways of Escaping the Cremer-McLean Result

@ Some people have pointed out that the result requires risk-neutrality,
unlimited liability, absence of collusion among agents etc.

@ Neeman (JET 2004) argued for another foundational reason built into
the model: agents’ types are defined by their values/preferences, and
beliefs are a function of this type

o If we enlarge the notion of type to include both preferences and
beliefs as separate components, beliefs would not determine values

@ Two types could differ in values and have the same beliefs; then
knowing beliefs will not reveal the agents’ preferences, and agents can
continue to earn private information rents that cannot be extracted
even with correlated values

DM (BU) 2020 7/23

Bergemann-Morris (2005)

@ BM argue for the need to extend mechanism design theory to
contexts where we enlarge type spaces

e ‘Types' should be multidimensional: (values, beliefs), full support
priors should be allowed (echoing Neeman (2004))

@ Moreover, require mechanisms to be robust to the possibility of
misspecified priors (i.e., allow agents to hold ‘wrong’ beliefs)

DM (BU) 2020 8/23

Introduction

Game Theory without common knowledge beliefs

o If we allow players to not know the beliefs of others, and continue
with a Bayesian approach, have to model beliefs over beliefs of others

@ Harsanyi's universal type space: a type includes valuations, beliefs
over valuations of others, beliefs over beliefs of others (second-order
beliefs), beliefs over second order beliefs (third order), ad infinitum

@ The universal type space is (tautologically) common knowledge, given
the description of the game; formalized by Mertens-Zamir (1985)

o t; € T;: set of universal types of i; t; includes i's valuation v;, first
order and all higher order beliefs

DM (BU) 2020 9/23

Introduction

Payoff Environment

o Finite set of agents i =1,...,/
o Payoff type of i is 6; € ©;, a finite set; § denotes (01,...,6))
@ Set of outcomes Y

Utility function of /- u; : Y x© = R

@ Planner’s normative goal: in state 6, select any outcome in
F(0) C Y, the social choice correspondence

DM (BU) 2020 10/23

Introduction

Example: Separable Payoff Environment

[Y:YOXY1><Y2><...Y/

ui = vi(yo,yi: 0)
@ There is a function fy : © — Yj and F;(6) C Y; such that

F(0) = fo(0) x F1(0) x ... F/(6)

Interpretation: Player i cares only about public decision yy and a
private i-specific outcome y;; private outcomes for different agents can
be chosen independently by P (rules out balanced budget constraint)

DM (BU) 2020 11/23

Introduction

Example of a Separable Environment: Quasi-linear Case

Y = Yy X Y1 X Yo x ...Y]; where Y; = R, set of possible transfers to
i, and Yp is a set of possible ‘allocations’ of goods

o U =vi(yo,0) +yi

P cares only about the allocation, represented by a social choice
function (SCF) fy : © — Y, so

F(0) = {(»0,y1,---,¥n)lyo = fo(0)}

(No budget constraint restricting private transfers; could incorporate
participation constraints if needed)

DM (BU) 2020 12/23

The Universal Type Space

o 9 =0;(t) € T?, i's payoff parameter

1

° t-1 = (71(t%;)) € T, where 71(t°;) denotes i's beliefs over
||

I
JFI

o Proceed iteratively: tk = (6;, 7(t*71)) € TK, all k

@ Have to impose consistency/coherence conditions, across different
orders

@ Very large type space! If there is some common knowledge then the
support of the beliefs could be restricted to a subspace

DM (BU) 2020 13/23

The Universal Type Space, contd.

@ Under some conditions, the type space can be represented either by
the infinite sequence of higher order beliefs, or implicitly as follows

o Type space T = (T;,0;,#;); where agent i's:
o typeist; € T;
o payoff is 9;(1‘;) T, = ©;
o belief is #;(t;) : T; — A(T-)

DM (BU) 2020 14/23

Incentive Compatibility

o Strategies and beliefs are now a function of the (possibly infinite)
type t;

@ Define expected payoffs for any type t; of i relative to these beliefs:
Eﬁi(t,.)[tﬂ.] U,'(b, b_,'(t_,'); 9,‘(t,'), G_i(t_,')), and extend the definition of
a Bayesian equilibrium (b;(t;) which maximizes this)

@ The question of existence of a mechanism with an equilibrium that
implements the desired SCC, can be simplified as usual by the
Revelation Principle

DM (BU) 2020 15/23

Introduction

(Interim) Incentive Compatibility

@ Revelation Principle: wlog can focus on direct mechanisms
f: T — Y, specifying outcomes corresponding to any type report

e f: T — Y is interim incentive compatible (IIC) on type space T if Vi:
Eny(ente_ Ui(F(ti, 23), 0i(t:), 0-i(t-7))
> EreeqUilF (i, t20), 0i(t:), 0-i(t—7))
for all t;, t; € T;

o Larger the type space T;, the more incentive constraints have to be
satisfied

DM (BU) 2020 16/23

Introduction

(Interim) Incentive Compatibility, contd.

@ F is interim implementable on T if there exists direct mechanism

A

f: T — Y whichisllCon T, and f(t) € F(0(t)) forallte T

@ Notion of robustness can be built in by requiring F to be interim
implementable on large enough type spaces T — i.e., allow beliefs of
agents to vary a lot

@ Size of the type space determines the restrictiveness of the theory

DM (BU) 2020 17/23

Different Kinds of Type Spaces

o Payoff type spaces: T; = ©;, 0; is identity map

@ Finite type space T satisfies CPA (with prior p) if there exists
p € A(T) such that 7, 5 p(ti,t_;) >0 forall i, ¢t and

p(tl'a t*l')
ZtQ,eT,, p(ti,t’ ;)

Ti(t)[t-i] =

@ Standard mechanism design models restrict attention to payoff type
spaces with a common prior

@ Can require interim implementability on bigger type spaces: e.g., all
common prior type spaces, or all type spaces, to capture different
notions of robustness

DM (BU) 2020 18/23

A Simple ‘Belief Free' IC Condition

o Consider a specific game where agents are asked to report only their
preferences; i should prefer to report payoff type truthfully at any ex
post state 6, if all others are reporting truthfully:

@ A preference revelation mechanism f : © — Y is ex post IC if for all
i, all 0 € ©:
ui(£(0),0)) = ui(f(6;,6-7),0)

for all 0; € ©;

@ SCC F is ex post implementable if there exists f : © — Y such
that f is ex post IC and f(0) € F(0) for all 6 € ©

DM (BU) 2020 19/23

Introduction

Sufficiency Theorem

Proposition 1 If F is ex post implementable, it is interim implementable
on any type space.
Proof: Suppose f*: © — Y is ex post IC which implements F

Take arbitrary type space T; define direct mechanism on this space

n

f:T — Y satisfying f(t) = £*(6(t)).

Claim f is interim IC on T, i.e.,

t; € arg max /T | u;(f(t;, t_i), (9,'(1“;)7 QA_,-(t_,-))dﬁ,-(t,-)[t_,-]

teT;

DM (BU) 2020 20/23

Introduction

Proof of Sufficiency, contd.

Maximand equals

/ ui(F(O(t]), 0-i(t-1)), (Bi(t:), 0-i(t-i))di()[t-]

Fix any 0_; € ©_;, and let P;(t;)[0—;] denote probability assessed by t;
that others’ preference parameter is 0_;

Then maximand equals

> PO Jui(F(0i(t), 0-); 6i(:), 0-1)

0_,e0_;

Result now follows from ex post IC property of f*.

DM (BU) 2020 21/23

Introduction

Converse: Necessity

Proposition 2 Suppose the environment is separable. If F is interim
implementable on every common prior payoff type space, it is ex post
implementable.

Proof: Consider the type space where it is common knowledge that types
of all agents other than i is 6_;, but t; is observed only by i.

Then interim implementability on this type space implies existence of a
function gi’e—’(ﬁ; :©; — Yp X Y7 X ... such that IIC condition for i holds,
and g"?-1(6:)(6;) € F(6).
Separability of the environment implies

i0_; i,0_;
8 (0i)(67) = fo(0;,0-i), 8" (6:)(0;) € Fi(0;,6-i)
Finally construct f(0) = (f(0), ...,g,"")—"(e,-), ..) and use ex post IC
property. [

DM (BU) 2020 22/23

Corollary to Prop 2

In a separable environment, the following are equivalent conditions:

@ F is interim implementable on all type spaces
@ F is interim implementable on all common prior type spaces

@ F is interim implementable on all payoff type spaces

@ F is interim implementable on all common prior payoff type spaces
°

F is ex post implementable

DM (BU) 2020

23 /23

	Introduction

