Ec717a: Robust Mechanism Design (Bergemann-Morris Ecta 2005)

Dilip Mookherjee

Boston University

Ec 717a, 2020: Lecture 2

2020 1/23

Introduction: Problems with CPA

- Most game theory and mechanism design is based on the assumption of a common prior
- Based on Harsanyi 'story' that types are drawn from an urn according to a known probability distribution
- In words, CPA means 'All differences in beliefs stem from differences in information'
- CPA has strong implications: we cannot 'agree to disagree' (Aumann); no-trade theorems (Milgrom and Stokey)

< □ > < □ > < □ > < □ > < □ > < □ >

Payoff Types and CPA

- Standard mechanism design with private values identifies types with 'valuations' (*v_i*) or payoff parameters, which agents observe privately
- Agent strategies $b_i(v_i)$; payoff functions $\prod_i (b_i, b_{-i}; v_i)$
- With multiple agents that interact in the mechanism, agent's rational behavior defined by maximization of expected payoffs, with expectation taken over actions of other agents
- Optimal strategy of agent *i* therefore depends on:
 - *i*'s beliefs $F_i(v_{-i})$ over others types
 - beliefs over strategies of others $b_j(v_j)$
- Beliefs over strategies of others, are rationalized by conjecture that others behave optimally —- requires *i* to know beliefs others (*j*) hold (*F_j*(*v*_{-*j*}))

CPA, contd

- Equilibrium strategies have to be common knowledge, and this requires players' beliefs to be common knowledge
- Departing from CPA: means we have to modify the definition of Bayesian equilibrium itself
- Have to allow players to have beliefs about beliefs of others which could be wrong
- This will significantly complicate the theory... is CPA a problem, or a convenient fiction?

Related Problems: Mechanism Design with Correlated Values

- Cremer-McLean (Ecta 1988) showed that in auctions where bidders have correlated values (hence beliefs depend on own type: $F_i(v_{-i}|v_i)$), it is (generically) possible to design an auction in which the auctioneer can extract almost all of every bidder's rents and thereby get arbitrarily close to the first-best (with dominant strategy equilibrium)
- But if valuations are independent, such rent extraction is not possible!
- McAfee-Reny (Ecta 1992) showed a similar result extends to most agency problems

Intuition for Cremer-McLean Result

- With correlated values, a change in v_i is associated with a change in bidder i's beliefs over v_{-i}, and this mapping is locally invertible
- It is possible (at the participation) for P to design a mechanism to elicit bidder 1's beliefs regarding bidder 2's value (ask bidder 1 to forecast what 2 will report, compare the forecast with the actual reports, construct side payments conditioned on these)
- P can invert from 1's beliefs to infer 1's valuation, and thus overcome the problem of private information
- With private (independent) values, this inversion is not possible, because bidder 1's beliefs do not vary with her own valuation

イロト イポト イヨト イヨト

Ways of Escaping the Cremer-McLean Result

- Some people have pointed out that the result requires risk-neutrality, unlimited liability, absence of collusion among agents etc.
- Neeman (JET 2004) argued for another foundational reason built into the model: agents' types are defined by their values/preferences, and beliefs are a function of this type
- If we enlarge the notion of type to include both preferences and beliefs as separate components, beliefs would not determine values
- Two types could differ in values and have the same beliefs; then knowing beliefs will not reveal the agents' preferences, and agents can continue to earn private information rents that cannot be extracted even with correlated values

イロト 不得 トイヨト イヨト

Bergemann-Morris (2005)

- BM argue for the need to extend mechanism design theory to contexts where we enlarge type spaces
- 'Types' should be multidimensional: (values, beliefs), full support priors should be allowed (echoing Neeman (2004))
- Moreover, require mechanisms to be robust to the possibility of misspecified priors (i.e., allow agents to hold 'wrong' beliefs)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Game Theory without common knowledge beliefs

- If we allow players to not know the beliefs of others, and continue with a Bayesian approach, have to model beliefs over beliefs of others
- Harsanyi's **universal type space**: a type includes valuations, beliefs over valuations of others, beliefs over beliefs of others (second-order beliefs), beliefs over second order beliefs (third order), ad infinitum
- The universal type space is (tautologically) common knowledge, given the description of the game; formalized by Mertens-Zamir (1985)
- *t_i* ∈ *T_i*: set of universal types of *i*; *t_i* includes i's valuation *v_i*, first order and all higher order beliefs

Payoff Environment

- Finite set of agents $i = 1, \ldots, I$
- Payoff type of *i* is $\theta_i \in \Theta_i$, a finite set; θ denotes $(\theta_1, \ldots, \theta_l)$
- Set of outcomes Y
- Utility function of *i*: $u_i : Y \times \Theta \rightarrow \Re$
- Planner's normative goal: in state θ, select any outcome in F(θ) ⊆ Y, the social choice correspondence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Example: Separable Payoff Environment

•
$$Y = Y_0 \times Y_1 \times Y_2 \times ... Y_l$$

• $u_i = v_i(y_0, y_i; \theta)$

• There is a function $f_0 : \Theta \to Y_0$ and $F_i(\theta) \subseteq Y_i$ such that $F(\theta) = f_0(\theta) \times F_1(\theta) \times \dots F_I(\theta)$

 Interpretation: Player i cares only about public decision y₀ and a private i-specific outcome y_i; private outcomes for different agents can be chosen independently by P (rules out balanced budget constraint)

Example of a Separable Environment: Quasi-linear Case

- $Y = Y_0 \times Y_1 \times Y_2 \times ... Y_i$ where $Y_i = \Re$, set of possible transfers to *i*, and Y_0 is a set of possible 'allocations' of goods
- $U_i = v_i(y_0, \theta) + y_i$
- P cares only about the allocation, represented by a *social choice* function (SCF) $f_0: \Theta \to Y_0$, so

$$F(\theta) = \{(y_0, y_1, \ldots, y_n) | y_0 = f_0(\theta)\}$$

• (No budget constraint restricting private transfers; could incorporate participation constraints if needed)

The Universal Type Space

•
$$t_i^0 = heta_i(t_i) \in T_i^0$$
, i's payoff parameter

- $t_i^1 = (\theta_i, \pi_i^1(t_{-i}^0)) \in T_i^1$, where $\pi_i^1(t_{-i}^0)$ denotes *i*'s beliefs over $t_j^0 \equiv \theta_j$, all $j \neq i$
- Proceed iteratively: $t_i^k = (\theta_i, \pi_i^k(t_{-i}^{k-1})) \in T_i^k$, all k
- Have to impose consistency/coherence conditions, across different orders
- Very large type space! If there is *some* common knowledge then the support of the beliefs could be restricted to a subspace

イロト 不得下 イヨト イヨト 二日

The Universal Type Space, contd.

 Under some conditions, the type space can be represented either by the infinite sequence of higher order beliefs, or implicitly as follows

• Type space
$$\mathcal{T}\equiv(\mathcal{T}_i,\hat{ heta}_i,\hat{\pi}_i)_i$$
 where agent i 's:

• type is $t_i \in T_i$

• payoff is
$$\hat{ heta}_i(t_i): T_i o \Theta_i$$

• belief is $\hat{\pi}_i(t_i): T_i \to \Delta(T_{-i})$

< □ > < □ > < □ > < □ > < □ > < □ >

Incentive Compatibility

- Strategies and beliefs are now a function of the (possibly infinite) type *t_i*
- Define expected payoffs for any type t_i of i relative to these beliefs: $E_{\hat{\pi}_i(t_i)[t_{-i}]}U_i(b, b_{-i}(t_{-i}); \hat{\theta}_i(t_i), \hat{\theta}_{-i}(t_{-i}))$, and extend the definition of a Bayesian equilibrium $(b_i(t_i)$ which maximizes this)
- The question of existence of a mechanism with an equilibrium that implements the desired SCC, can be simplified as usual by the Revelation Principle

イロト イヨト イヨト 一座

(Interim) Incentive Compatibility

- Revelation Principle: wlog can focus on direct mechanisms $f: T \rightarrow Y$, specifying outcomes corresponding to any type report
- $f: T \to Y$ is interim incentive compatible (IIC) on type space T if $\forall i$:

$$E_{\hat{\pi}_{i}(t_{i})[t_{-i}]}U_{i}(f(t_{i}, t_{-i}), \hat{\theta}_{i}(t_{i}), \hat{\theta}_{-i}(t_{-i}))$$

$$\geq E_{\hat{\pi}_{i}(t_{i})[t_{-i}]}U_{i}(f(t_{i}^{'}, t_{-i}), \hat{\theta}_{i}(t_{i}), \hat{\theta}_{-i}(t_{-i}))$$

for all $t_i, t'_i \in T_i$

• Larger the type space T_i , the more incentive constraints have to be satisfied

イロト イボト イヨト イヨト

(Interim) Incentive Compatibility, contd.

- *F* is **interim implementable** on *T* if there exists direct mechanism $f: T \to Y$ which is IIC on *T*, and $f(t) \in F(\hat{\theta}(t))$ for all $t \in T$
- Notion of robustness can be built in by requiring F to be interim implementable on large enough type spaces T — i.e., allow beliefs of agents to vary a lot
- Size of the type space determines the restrictiveness of the theory

<ロト <部ト <注入 < 注入 = 二 =

Different Kinds of Type Spaces

- Payoff type spaces: $T_i = \Theta_i$, $\hat{\theta}_i$ is identity map
- Finite type space \mathcal{T} satisfies CPA (with prior p) if there exists $p \in \Delta(\mathcal{T})$ such that $\sum_{t_{-i} \in \mathcal{T}_{-i}} p(t_i, t_{-i}) > 0$ for all i, t_i and

$$\hat{\pi}_i(t_i)[t_{-i}] = \frac{p(t_i, t_{-i})}{\sum_{t'_{-i} \in \mathcal{T}_{-i}} p(t_i, t'_{-i})}$$

- Standard mechanism design models restrict attention to payoff type spaces with a common prior
- Can require interim implementability on bigger type spaces: e.g., all common prior type spaces, or all type spaces, to capture different notions of robustness

A Simple 'Belief Free' IC Condition

- Consider a specific game where agents are asked to report only their preferences; *i* should prefer to report payoff type truthfully at any ex post state θ, if all others are reporting truthfully:
- A preference revelation mechanism $f : \Theta \to Y$ is **ex post IC** if for all i, all $\theta \in \Theta$:

$$u_i(f(\theta), \theta)) \geq u_i(f(\theta'_i, \theta_{-i}), \theta)$$

for all $\theta'_i \in \Theta_i$

SCC F is ex post implementable if there exists f : Θ → Y such that f is ex post IC and f(θ) ∈ F(θ) for all θ ∈ Θ

イロト 不得 トイヨト イヨト 二日

Sufficiency Theorem

Proposition 1 If F is expost implementable, it is interim implementable on any type space.

Proof: Suppose $f^* : \Theta \to Y$ is expost IC which implements *F*

Take arbitrary type space \mathcal{T} ; define direct mechanism on this space $f: \mathcal{T} \to Y$ satisfying $f(t) = f^*(\hat{\theta}(t))$.

Claim f is interim IC on \mathcal{T} , i.e.,

$$t_i \in rg\max_{t_i' \in \mathcal{T}_i} \int_{\mathcal{T}_{-i}} u_i(f(t_i',t_{-i}),(\hat{ heta}_i(t_i),\hat{ heta}_{-i}(t_{-i}))d\hat{\pi}_i(t_i)[t_{-i}]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Proof of Sufficiency, contd.

Maximand equals

$$\int_{\mathcal{T}_{-i}} u_i(f^*(\hat{\theta}(t'_i), \hat{\theta}_{-i}(t_{-i})), (\hat{\theta}_i(t_i), \hat{\theta}_{-i}(t_{-i})) d\hat{\pi}_i(t_i)[t_{-i}]$$

Fix any $\theta_{-i} \in \Theta_{-i}$, and let $P_i(t_i)[\theta_{-i}]$ denote probability assessed by t_i that others' preference parameter is θ_{-i}

Then maximand equals

$$\sum_{\theta_{-i}\in\Theta_{-i}} P_i(t_i)[\theta_{-i}]u_i(f^*(\hat{\theta}_i(t_i'),\theta_{-i});\hat{\theta}_i(t_i),\theta_{-i})$$

Result now follows from ex post IC property of f^* .

Converse: Necessity

Proposition 2 Suppose the environment is separable. If F is interim implementable on every common prior payoff type space, it is ex post implementable.

Proof: Consider the type space where it is common knowledge that types of all agents other than *i* is θ_{-i} , but t_i is observed only by *i*.

Then interim implementability on this type space implies existence of a function $g^{i,\theta_{-i}}(\theta'_i:\Theta_i \to Y_0 \times Y_1 \times ...$ such that IIC condition for *i* holds, and $g^{i,\theta_{-i}}(\theta_i)(\theta_i) \in F(\theta)$.

Separability of the environment implies $g_0^{i,\theta_{-i}}(\theta_i)(\theta_i) = f_0(\theta_i, \theta_{-i}), g_j^{i,\theta_{-i}}(\theta_i)(\theta_i) \in F_j(\theta_i, \theta_{-i})$

Finally construct $f(\theta) = (f_0(\theta), ..., g_i^{i,\theta_{-i}}(\theta_i), ...)$ and use ex post IC property.

2020

Corollary to Prop 2

In a separable environment, the following are equivalent conditions:

- F is interim implementable on all type spaces
- F is interim implementable on all common prior type spaces
- F is interim implementable on all payoff type spaces
- F is interim implementable on all common prior payoff type spaces
- F is ex post implementable

・ 何 ト ・ ヨ ト ・ ヨ ト