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Introduction

Introduction: Problems with CPA

Most game theory and mechanism design is based on the assumption
of a common prior

Based on Harsanyi ‘story’ that types are drawn from an urn according
to a known probability distribution

In words, CPA means ‘All differences in beliefs stem from differences
in information’

CPA has strong implications: we cannot ‘agree to disagree’
(Aumann); no-trade theorems (Milgrom and Stokey)
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Introduction

Payoff Types and CPA

Standard mechanism design with private values — identifies types
with ‘valuations’ (vi ) or payoff parameters, which agents observe
privately

Agent strategies bi (vi ); payoff functions Πi (bi , b−i ; vi )

With multiple agents that interact in the mechanism, agent’s rational
behavior defined by maximization of expected payoffs, with
expectation taken over actions of other agents

Optimal strategy of agent i therefore depends on:
i ’s beliefs Fi (v−i ) over others types
beliefs over strategies of others bj(vj)

Beliefs over strategies of others, are rationalized by conjecture that
others behave optimally —- requires i to know beliefs others (j) hold
(Fj(v−j))
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Introduction

CPA, contd

Equilibrium strategies have to be common knowledge, and this
requires players’ beliefs to be common knowledge

Departing from CPA: means we have to modify the definition of
Bayesian equilibrium itself

Have to allow players to have beliefs about beliefs of others which
could be wrong

This will significantly complicate the theory... is CPA a problem, or a
convenient fiction?

DM (BU) 2020 4 / 23



Introduction

Related Problems: Mechanism Design with Correlated
Values

Cremer-McLean (Ecta 1988) showed that in auctions where bidders
have correlated values (hence beliefs depend on own type: Fi (v−i |vi )),
it is (generically) possible to design an auction in which the auctioneer
can extract almost all of every bidder’s rents and thereby get
arbitrarily close to the first-best (with dominant strategy equilibrium)

But if valuations are independent, such rent extraction is not possible!

McAfee-Reny (Ecta 1992) showed a similar result extends to most
agency problems
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Intuition for Cremer-McLean Result

With correlated values, a change in vi is associated with a change in
bidder i ’s beliefs over v−i , and this mapping is locally invertible

It is possible (at the participation) for P to design a mechanism to
elicit bidder 1’s beliefs regarding bidder 2’s value (ask bidder 1 to
forecast what 2 will report, compare the forecast with the actual
reports, construct side payments conditioned on these)

P can invert from 1’s beliefs to infer 1’s valuation, and thus overcome
the problem of private information

With private (independent) values, this inversion is not possible,
because bidder 1’s beliefs do not vary with her own valuation
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Ways of Escaping the Cremer-McLean Result

Some people have pointed out that the result requires risk-neutrality,
unlimited liability, absence of collusion among agents etc.

Neeman (JET 2004) argued for another foundational reason built into
the model: agents’ types are defined by their values/preferences, and
beliefs are a function of this type

If we enlarge the notion of type to include both preferences and
beliefs as separate components, beliefs would not determine values

Two types could differ in values and have the same beliefs; then
knowing beliefs will not reveal the agents’ preferences, and agents can
continue to earn private information rents that cannot be extracted
even with correlated values
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Introduction

Bergemann-Morris (2005)

BM argue for the need to extend mechanism design theory to
contexts where we enlarge type spaces

‘Types’ should be multidimensional: (values, beliefs), full support
priors should be allowed (echoing Neeman (2004))

Moreover, require mechanisms to be robust to the possibility of
misspecified priors (i.e., allow agents to hold ‘wrong’ beliefs)
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Introduction

Game Theory without common knowledge beliefs

If we allow players to not know the beliefs of others, and continue
with a Bayesian approach, have to model beliefs over beliefs of others

Harsanyi’s universal type space: a type includes valuations, beliefs
over valuations of others, beliefs over beliefs of others (second-order
beliefs), beliefs over second order beliefs (third order), ad infinitum

The universal type space is (tautologically) common knowledge, given
the description of the game; formalized by Mertens-Zamir (1985)

ti ∈ Ti : set of universal types of i ; ti includes i’s valuation vi , first
order and all higher order beliefs
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Introduction

Payoff Environment

Finite set of agents i = 1, . . . , I

Payoff type of i is θi ∈ Θi , a finite set; θ denotes (θ1, . . . , θI )

Set of outcomes Y

Utility function of i : ui : Y ×Θ→ <

Planner’s normative goal: in state θ, select any outcome in
F (θ) ⊆ Y , the social choice correspondence
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Introduction

Example: Separable Payoff Environment

Y = Y0 × Y1 × Y2 × ...YI

ui = vi (y0, yi ; θ)

There is a function f0 : Θ→ Y0 and Fi (θ) ⊆ Yi such that

F (θ) = f0(θ)× F1(θ)× . . .FI (θ)

Interpretation: Player i cares only about public decision y0 and a
private i-specific outcome yi ; private outcomes for different agents can
be chosen independently by P (rules out balanced budget constraint)
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Introduction

Example of a Separable Environment: Quasi-linear Case

Y = Y0 × Y1 × Y2 × ...YI where Yi = <, set of possible transfers to
i , and Y0 is a set of possible ‘allocations’ of goods

Ui = vi (y0, θ) + yi

P cares only about the allocation, represented by a social choice
function (SCF) f0 : Θ→ Y0, so

F (θ) = {(y0, y1, . . . , yn)|y0 = f0(θ)}

(No budget constraint restricting private transfers; could incorporate
participation constraints if needed)
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The Universal Type Space

t0
i = θi (ti ) ∈ T 0

i , i’s payoff parameter

t1
i = (θi , π

1
i (t0
−i )) ∈ T 1

i , where π1
i (t0
−i ) denotes i ’s beliefs over

t0
j ≡ θj , all j 6= i

Proceed iteratively: tki = (θi , π
k
i (tk−1
−i )) ∈ T k

i , all k

Have to impose consistency/coherence conditions, across different
orders

Very large type space! If there is some common knowledge then the
support of the beliefs could be restricted to a subspace
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The Universal Type Space, contd.

Under some conditions, the type space can be represented either by
the infinite sequence of higher order beliefs, or implicitly as follows

Type space T ≡ (Ti , θ̂i , π̂i )i where agent i ’s:

type is ti ∈ Ti

payoff is θ̂i (ti ) : Ti → Θi

belief is π̂i (ti ) : Ti → ∆(T−i )
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Introduction

Incentive Compatibility

Strategies and beliefs are now a function of the (possibly infinite)
type ti

Define expected payoffs for any type ti of i relative to these beliefs:
Eπ̂i (ti )[t−i ]Ui (b, b−i (t−i ); θ̂i (ti ), θ̂−i (t−i )), and extend the definition of
a Bayesian equilibrium (bi (ti ) which maximizes this)

The question of existence of a mechanism with an equilibrium that
implements the desired SCC, can be simplified as usual by the
Revelation Principle
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(Interim) Incentive Compatibility

Revelation Principle: wlog can focus on direct mechanisms
f : T → Y , specifying outcomes corresponding to any type report

f : T → Y is interim incentive compatible (IIC) on type space T if ∀i :

Eπ̂i (ti )[t−i ]Ui (f (ti , t−i ), θ̂i (ti ), θ̂−i (t−i ))

≥ Eπ̂i (ti )[t−i ]Ui (f (t
′
i , t−i ), θ̂i (ti ), θ̂−i (t−i ))

for all ti , t
′
i ∈ Ti

Larger the type space Ti , the more incentive constraints have to be
satisfied
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(Interim) Incentive Compatibility, contd.

F is interim implementable on T if there exists direct mechanism
f : T → Y which is IIC on T , and f (t) ∈ F (θ̂(t)) for all t ∈ T

Notion of robustness can be built in by requiring F to be interim
implementable on large enough type spaces T — i.e., allow beliefs of
agents to vary a lot

Size of the type space determines the restrictiveness of the theory
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Different Kinds of Type Spaces

Payoff type spaces: Ti = Θi , θ̂i is identity map

Finite type space T satisfies CPA (with prior p) if there exists
p ∈ ∆(T ) such that

∑
t−i∈T−i

p(ti , t−i ) > 0 for all i , ti and

π̂i (ti )[t−i ] =
p(ti , t−i )∑

t′−i∈T−i
p(ti , t ′−i )

Standard mechanism design models restrict attention to payoff type
spaces with a common prior

Can require interim implementability on bigger type spaces: e.g., all
common prior type spaces, or all type spaces, to capture different
notions of robustness

DM (BU) 2020 18 / 23



Introduction

A Simple ‘Belief Free’ IC Condition

Consider a specific game where agents are asked to report only their
preferences; i should prefer to report payoff type truthfully at any ex
post state θ, if all others are reporting truthfully:

A preference revelation mechanism f : Θ→ Y is ex post IC if for all
i , all θ ∈ Θ:

ui (f (θ), θ)) ≥ ui (f (θ
′
i , θ−i ), θ)

for all θ
′
i ∈ Θi

SCC F is ex post implementable if there exists f : Θ→ Y such
that f is ex post IC and f (θ) ∈ F (θ) for all θ ∈ Θ
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Sufficiency Theorem

Proposition 1 If F is ex post implementable, it is interim implementable
on any type space.

Proof: Suppose f ∗ : Θ→ Y is ex post IC which implements F

Take arbitrary type space T ; define direct mechanism on this space
f : T → Y satisfying f (t) = f ∗(θ̂(t)).

Claim f is interim IC on T , i.e.,

ti ∈ arg max
t
′
i ∈Ti

∫
T−i

ui (f (t
′
i , t−i ), (θ̂i (ti ), θ̂−i (t−i ))d π̂i (ti )[t−i ]
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Proof of Sufficiency, contd.

Maximand equals∫
T−i

ui (f
∗(θ̂(t ′i ), θ̂−i (t−i )), (θ̂i (ti ), θ̂−i (t−i ))d π̂i (ti )[t−i ]

Fix any θ−i ∈ Θ−i , and let Pi (ti )[θ−i ] denote probability assessed by ti
that others’ preference parameter is θ−i

Then maximand equals∑
θ−i∈Θ−i

Pi (ti )[θ−i ]ui (f
∗(θ̂i (t

′
i ), θ−i ); θ̂i (ti ), θ−i )

Result now follows from ex post IC property of f ∗.
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Converse: Necessity

Proposition 2 Suppose the environment is separable. If F is interim
implementable on every common prior payoff type space, it is ex post
implementable.

Proof: Consider the type space where it is common knowledge that types
of all agents other than i is θ−i , but ti is observed only by i .

Then interim implementability on this type space implies existence of a
function g i ,θ−i (θ

′
i : Θi → Y0 × Y1 × ... such that IIC condition for i holds,

and g i ,θ−i (θi )(θi ) ∈ F (θ).

Separability of the environment implies

g
i ,θ−i

0 (θi )(θi ) = f0(θi , θ−i ), g
i ,θ−i

j (θi )(θi ) ∈ Fj(θi , θ−i )

Finally construct f (θ) = (f0(θ), ..., g
i ,θ−i

i (θi ), ..) and use ex post IC
property.
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Corollary to Prop 2

In a separable environment, the following are equivalent conditions:

F is interim implementable on all type spaces

F is interim implementable on all common prior type spaces

F is interim implementable on all payoff type spaces

F is interim implementable on all common prior payoff type spaces

F is ex post implementable
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