1. A monopolist wishes to sell a good produced at constant unit cost $c \in (0, 1)$ to a large population of consumers with heterogeneous preferences: a consumer of type θ has a payoff $\theta \log(q + 1) - t$ for consuming $q \geq 0$ units of the good and paying t dollars for it. θ is distributed uniformly on $[0, 1]$. The monopolist cannot identify the type of any given consumer. Each customer has an outside option of 0.

(a) If $q(\theta)$ denotes the quantity sold to type θ, find a condition on this function $q(.)$ that ensures that it is IC (incentive compatible, i.e., there exists some pricing rule $t(q)$ for which $q(\theta)$ is the optimal purchase of type θ).

(b) For any such IC $q(.)$, what is the associated set of payments (i.e., $t(\theta)$) that customers (of type θ) make to the monopolist?

(c) Obtain an expression for total profit of the monopolist as a function only of the selling strategy $q(.)$ and payoff of consumer of type 0.

(d) Calculate the optimal selling strategy $q^*(\theta)$, and find the corresponding schedule of payments $t^*(\theta)$.

(e) Find the payment rule $t(q)$ that implements this outcome, i.e., where a consumer of type θ selects $q^*(\theta)$ to maximize $\theta \log(1 + q) - t(q)$ and $t^*(\theta) = t(q^*(\theta))$. Does the optimal nonlinear pricing rule involve unit price discounts or premia for high q purchases?

2. A risk-neutral principal P hires an agent A, who chooses an effort $a \geq 0$, which results in gross profit $x = a + \epsilon$ for P, where ϵ is uniformly distributed on $[0, 1]$. Hence the support of the distribution of x varies with a. A’s payoff equals $w^{1-\rho} - \frac{2^2}{2}$, where w denotes a non-negative wage paid by P, and $\rho > 0, \neq 1$ is a parameter of risk-aversion. A has an outside option payoff of \bar{U} which is non-negative if $\rho < 1$ and negative if $\rho > 1$.

(a) If \(a \) is contractible, characterize the first-best wage and effort levels. Be careful to distinguish between the cases where \(\rho \) is smaller and where it is larger than 1.

(b) If \(a \) is not contractible, but the profit \(x \) is contractible, and \(\rho \in (0, 1) \), find a condition on the parameters of the problem which ensure that the first-best profit can be achieved by P. If \(\bar{U} = 0 \), when is this condition satisfied?

(c) If \(\rho > 1 \) what can you say about implementability of the first-best profit when \(a \) is not contractible? Provide an intuitive explanation of these results.