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Introduction

Private Value Auctions: Introduction

Consider the simplest setting with a seller S who owns an indivisible
good, and:

S values the good personally at c dollars

there are n potential buyers/bidders i = 1, . . . , n where i values the
object at θi , and is privately informed about realization of θi

Private Values: common knowledge that θ1, . . . , θn are drawn from
independent distributions F1, . . . ,Fn, where support of Fi is [θi , θ̄i ]
with positive density fi throughout
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Introduction

Private Value Auctions, contd.

Bidders are all risk-neutral: payoff equals θi less price paid (in the
event of winning), and 0 otherwise

Participation in the auction is voluntary for all buyers;
non-participation payoff is zero

Seller is risk-neutral; payoff equals price received minus c , in the event
of sale, and 0 otherwise
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Introduction

Common Forms of Auctions in the Real World

Open bidding:

English auction (ascending prices/bids, last remaining bidder wins)

Dutch auctions (descending prices, first entering bidder wins)

Sealed bids:

First price auctions (highest bidder wins, pays her bid)

Second price auctions (highest bidder wins, pays second highest bid)

Most auctions also have a seller’s reserve price: for sale to occur the
winning bid must exceed the reserve price

None of these auctions charge any entry fee, and only winners pay
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Introduction

Key Questions

1. How can we rank these commonly observed forms of auctions,
from the standpoint of expected payoff of the seller?

2. What is the optimal auction, which maximizes seller’s expected
payoff?
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1. Comparing Auctions

First describe how to analyze the outcome of any given auction

In any given auction with a given set of rules and reserve price, model
bidder’s behavior as a Bayesian Nash Equilibrium (BNE)

Let bi (θi ) denote the bidding strategy of i (bid submitted in a
sealed-bid auction, or last/first price in English/Dutch auction at
which bidder is active)

In any of these auctions, the highest bidder wins, and pays an amount
p(bi , b−i ) that depends on her own bid bi , bids of others b−i (if there
is a reserve price r , treat this as a bid submitted by the seller)
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Bayesian Equilibrium Bidding Strategies, contd.

E.g, in first-price auction or Dutch auction, p = bi > maxj 6=i bj ; in
second-price auction or English auction, p = maxj 6=i bj < bi

Let Gi denote bidder i ’s beliefs (cdf) over z ≡ maxj 6=i{bj(θj)},
formed by composing the strategies of other bidders bj(θj) with the
distributions Fj(θj) over their types

Then given a bid bi , bidder i wins with probability Gi (bi )

A BNE bi (θi ) satisfies:

bi = bi (θi ) Maxbi [θiGi (bi )−
∫ bi

b−i

p(bi , z)dGi (z)]
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Vickrey’s Revenue Equivalence Theorem (VRET)

Vickrey (1961) focused on symmetric private value contexts, where
valuations are i.i.d., all bidders use the same bidding strategy b(θi ) which
is strictly increasing (easy to check that these exist in any of these auction
forms)

Theorem

In any symmetric private values context, the English, Dutch, first-price and
second-price sealed bid auctions (with a zero reserve price) generate the
same expected revenue.
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Intuition underlying VRET

Given private values, bidders do not learn anything about the object
or their own values, from observing the bidding behavior of others

Dutch auction is (strategically) equivalent to first price auction

English auction is (strategically) equivalent to second price auction

Compare first price and second price auctions:

In second price auction, dominant strategy to submit a bid equal to the
true value, but winner pays the second-highest bid
In first price auction, winner pays own bid, but must bid below own
true value
Extent to which bids are shaded below own true value in the first price
auction, depends on what the bidder expects the second-highest bid to
be (conditional on winning)
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Steps in the proof of VRET

We shall prove a more general version of this theorem (next slide)

Notation: Consider any auction and any Bayesian Nash Equilibrium
(BNE) among bidders in that auction

In ex post state (θi , θ−i ), let xi (θi , θ−i ) denote the probability that i
wins the object, and ti (θi , θ−i ) be the payment made by i to the seller.

Let the corresponding (interim) expected probability of winning for i be
denoted Xi (θi ) ≡ Eθ−i [xi (θi , θ−i )] and (interim) expected payment be
Ti (θi ) ≡ Eθ−i [ti (θi , θ−i )].

Let the (interim) expected payoff of bidder i be denoted
Wi (θi ) ≡ θiXi (θi )− Ti (θi ).
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Generalized Revenue Equivalence Theorem

Theorem

Any two auctions with corresponding BNEs that result in the same
(interim) winning probabilities for every bidder ({Xi (.)}i ) and the same
payoffs for the lowest valuation types ({Wi (θi )}i ) generate the same
expected payoff for the seller.
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Proof of the GRET

Use arguments analogous to those underlying the Revelation
Principle, the seller’s expected payoff from any BNE in any auction
can be expressed as

Π ≡
∑
i

Eθi [Ti (θi )]− c
∑
i

Eθi [Xi (θi )]

and the BNE strategies must satisfy (∀i ,∀θi :)

θ̃i = θi Max Wi (θ̃i |θi ) ≡ [θiXi (θ̃i )− Ti (θ̃i )] (BIC )

i.e., truth-telling must be optimal for each bidder in a revelation
mechanism where reports of {θ̃i}i are followed by i paying ti (θ̃i , θ̃−i )
and winning the object with probability xi (θ̃i , θ̃−i )
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Proof of the GRET, contd.

Now use the Mirrlees-Myerson theorem for single agent contexts, to
argue that (BIC) is equivalent to:

(a) Wi (θi ) = Wi (θi ) +
∫ θi
θi

Xi (θ̃i )d θ̃i

and (b) Xi (.) nondecreasing

Equation (a) can be rewritten as:

θiXi (θi )− Ti (θi ) = Wi (θi ) +

∫ θi

θi

Xi (θ̃i )d θ̃i

implying

Ti (θi ) = θiXi (θi )−
∫ θi

θi

Xi (θ̃i )d θ̃i −Wi (θi )

i.e., the expected payment function for bidder i is entirely determined
by the interim winning probability function Xi (.) and the payoff
Wi (θi ) of the lowest valuation type of i , QED
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Proof of Vickrey’s RET

In any symmetric auction with zero reserve price where bidders use
the same (strictly increasing) strategy b(.), bidder i wins provided
b(θi ) > maxj 6=i{b(θj)}

i.e., provided θi > maxj 6=i{θj}

hence every symmetric auction has the same interim win probability
function Xi (θi ) = Prob [θi > maxj 6=i{θj}]

Finally, the lowest type bids the least and never wins, so obtains a
zero payoff

Now apply GRET
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2. Optimal Private Value Auctions

So far we considered specific auctions and compared the expected
revenues that they would generate

Now ask: what is the optimal auction for a profit maximizing seller?

Allow asymmetric bidders, and reserve price to be set

By the Revelation Principle, P can confine attention to revelation
mechanisms specifying {xi (θi , θ−i ), ti (θi , θ−i )}i satisfying feasibiility
constraints:

xi (θi , θ−i ) ∈ [0, 1],
∑
i

xi (θi , θ−i ) ≤ 1

besides Bayesian incentive compatibility and interim participation
constraints
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Optimal Private Value Auctions, contd.

With Xi (θi ) ≡ Eθ−i
[xi (θi , θ−i )],Ti (θi ) ≡ Eθ−i

[ti (θi , θ−i )],Wi (θi ) ≡
θiXi (θi )− Ti (θi ), problem is to maximize P’s expected profit:

Π =
∑
i

Eθi [Ti (θi )− cXi (θi )]

Constraints (for all i):

Ti (θi ) = θiXi (θi )−
∫ θi

θi

Xi (θ̃i )d θ̃i −Wi (θi ) (BIC 1)

Xi (θi ) nondecreasing (BIC 2)

Wi (θi ) ≥ 0 (IPC )

xi (θi , θ−i ) ∈ [0, 1],
∑
i

xi (θi , θ−i ) ≤ 1 (F )
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Steps in Solving for Optimal Auction

Substitute (BIC) into the objective function, to express Π depending
only on {Xi (.),W i ≡Wi (θi )}i (same argument to prove GRET):

Π =
∑
i

Eθi [θiXi (θi )−
∫ θi

θi

Xi (θ̃i )d θ̃i −W i − cXi (θi )]

Integrating by parts (just as in single agent problems):

Π =
∑
i

Eθi [{vi (θi )− c}Xi (θi )]−
∑
i

W i

where vi (θi ) ≡ θi − 1−Fi (θi )
fi (θi )

is the virtual value of i

Optimal to set W i = 0
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Steps in Solving for Optimal Auction, contd.

Consider problem of choosing functions {xi (θi , θ−i )}i to maximize

Π =
∑
i

Eθi ,θ−i
[{vi (θi )− c}xi (θi , θ−i )]

subject to (∀θi , θ−i ;∀i :)

xi (θi , θ−i ) ≥ 0,
∑
i

xi (θi , θ−i ) ≤ 1

Call this the relaxed problem (dropping (BIC2): Xi (.) is
nondecreasing)

Later check whether the solution to the relaxed problem satisfies
(BIC2)
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Solving the Relaxed Problem

Point-wise optimization: fix any state θ = (θi , θ−i ) and choose
xi , i = 1, . . . , n to maximize

∑
i [vi (θi )− c]xi subject to

xi ≥ 0,
∑

i xi ≤ 1

Define s ≡
∑

j xj the probability of sale, and provided s > 0, define
ai ≡ xi

s the probability of selling it to i , conditional on selling it

Set of controls equivalently written as s, {ai}i (so xi ≡ sai ), objective
is s

∑
i [vi (θi )− c]ai , constraints: s ∈ [0, 1], ai ∈ [0, 1],

∑
j aj = 1

Solution:
ai = 1 if vi (θi ) ≥ maxj{vj(θj}, and 0 otherwise
s = 1 if maxj{vj(θj)} > c , and 0 otherwise
(ignore ties as they would happen with zero probability)
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Solution to the Relaxed Problem

xi (θi , θ−i ) = 1 if vi (θi ) ≥ max{max
j
{vj(θj)}, c} and 0 otherwise

If bidders are ex ante symmetric (Fi = F and vi = v , all i) this reduces to:

xi (θi , θ−i ) = 1 if θi ≥ max{max
j
{θj}, v−1(c)} and 0 otherwise

In words: treat seller as an additional (potential) bidder reporting a
valuation of v−1(c) (reserve price), and then allocate the object to the
bidder reporting the highest valuation
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When is this the Solution to the Original Problem?

If vi (θi ) ≡ θi − 1−Fi (θi )
fi (θi )

is increasing, then xi (θi , θ−i ) is increasing in

θi , and Xi (.) ≡ Eθ−i
[xi (θi , θ−i )] is increasing in θi

Hence monotone hazard rates for all Fi ’s ensures this is the solution
to the original problem
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Optimal Prices in the Problem with Symmetric Bidders

All buyers have same interim probability of winning:
Xi = X (θi ) ≡ Prob[z < θi ], where r ≡ v−1(c) and
z ≡ max{r ,maxj 6=i{θj}}

Letting G denote cdf of z , we have X (θi ) = G (θi )

Optimal transfers must satisfy

Ti (θi ) = θiXi (θi )−
∫ θi

θ
Xi (θ̃i )d θ̃i

= θiG (θi )−
∫ θi

θ
G (θ̃i )d θ̃i

=

∫ θi

θi

zdG (z)
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Optimal Auction with Symmetric Bidders

So it is optimal for i to pay z if z < θi and 0 otherwise

This is exactly the second-price auction!

By Vickrey’s RE Theorem, all four auction forms (English, Dutch,
first-price and second price auctions) are optimal (combined with a
suitable reserve price, corresponding to r = v−1(c) in the
revelation/second-price mechanism)

The outcome is ex post Pareto efficient only if v−1(c) ≤ θi or
c ≤ v(θi ), whence the object is sold with probability one; otherwise it
is sold with too low a probability (reflecting the monopoly power of
the seller)
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