Mechanism Design: Private Value Auctions

Dilip Mookherjee

Boston University

Ec 703b Lectures 7/8 (text: FT Ch 7, pp 271-275)

DM (BU)

703b.5 2019 1 / 23

< ∃ > <

Private Value Auctions: Introduction

- Consider the simplest setting with a seller S who owns an indivisible good, and:
 - S values the good personally at c dollars
 - there are *n* potential buyers/bidders *i* = 1,..., *n* where *i* values the object at θ_i, and is privately informed about realization of θ_i
 - Private Values: common knowledge that θ₁,..., θ_n are drawn from independent distributions F₁,..., F_n, where support of F_i is [θ_i, θ_i] with positive density f_i throughout

(日) (周) (三) (三)

Private Value Auctions, contd.

- Bidders are all risk-neutral: payoff equals θ_i less price paid (in the event of winning), and 0 otherwise
- Participation in the auction is voluntary for all buyers; non-participation payoff is zero
- Seller is risk-neutral; payoff equals price received minus *c*, in the event of sale, and 0 otherwise

Common Forms of Auctions in the Real World

- Open bidding:
 - English auction (ascending prices/bids, last remaining bidder wins)
 - Dutch auctions (descending prices, first entering bidder wins)
- Sealed bids:
 - First price auctions (highest bidder wins, pays her bid)
 - Second price auctions (highest bidder wins, pays second highest bid)
- Most auctions also have a seller's reserve price: for sale to occur the winning bid must exceed the reserve price
- None of these auctions charge any entry fee, and only winners pay

DM (BU)

(日) (同) (日) (日)

Key Questions

- 1. How can we rank these commonly observed forms of auctions, from the standpoint of expected payoff of the seller?
- 2. What is the optimal auction, which maximizes seller's expected payoff?

(4) (3) (4) (4) (4)

1. Comparing Auctions

- First describe how to analyze the outcome of any given auction
- In any given auction with a given set of rules and reserve price, model bidder's behavior as a Bayesian Nash Equilibrium (BNE)
- Let b_i(θ_i) denote the bidding strategy of i (bid submitted in a sealed-bid auction, or last/first price in English/Dutch auction at which bidder is active)
- In any of these auctions, the highest bidder wins, and pays an amount p(b_i, b_{-i}) that depends on her own bid b_i, bids of others b_{-i} (if there is a reserve price r, treat this as a bid submitted by the seller)

イロト イポト イヨト イヨト

Bayesian Equilibrium Bidding Strategies, contd.

- E.g, in first-price auction or Dutch auction, p = b_i > max_{j≠i} b_j; in second-price auction or English auction, p = max_{i≠i} b_i < b_i
- Let G_i denote bidder *i*'s beliefs (cdf) over $z \equiv \max_{j \neq i} \{b_j(\theta_j)\}$, formed by composing the strategies of other bidders $b_j(\theta_j)$ with the distributions $F_j(\theta_j)$ over their types
- Then given a bid b_i , bidder *i* wins with probability $G_i(b_i)$
- A BNE $b_i(\theta_i)$ satisfies:

$$b_i = b_i(\theta_i) \quad \operatorname{Max}_{b_i}[\theta_i G_i(b_i) - \int_{\underline{b}_{-i}}^{b_i} p(b_i, z) dG_i(z)]$$

イロト 不得下 イヨト イヨト 二日

Vickrey's Revenue Equivalence Theorem (VRET)

Vickrey (1961) focused on symmetric private value contexts, where valuations are i.i.d., all bidders use the same bidding strategy $b(\theta_i)$ which is strictly increasing (easy to check that these exist in any of these auction forms)

Theorem

In any symmetric private values context, the English, Dutch, first-price and second-price sealed bid auctions (with a zero reserve price) generate the same expected revenue.

Intuition underlying VRET

- Given private values, bidders do not learn anything about the object or their own values, from observing the bidding behavior of others
- Dutch auction is (strategically) equivalent to first price auction
- English auction is (strategically) equivalent to second price auction
- Compare first price and second price auctions:
 - In second price auction, dominant strategy to submit a bid equal to the true value, but winner pays the second-highest bid
 - In first price auction, winner pays own bid, but must bid below own true value
 - Extent to which bids are shaded below own true value in the first price auction, depends on what the bidder expects the second-highest bid to be (conditional on winning)

イロト イポト イヨト イヨト

Steps in the proof of VRET

- We shall prove a more general version of this theorem (next slide)
- Notation: Consider any auction and any Bayesian Nash Equilibrium (BNE) among bidders in that auction
 - In ex post state (θ_i, θ_{-i}), let x_i(θ_i, θ_{-i}) denote the probability that i wins the object, and t_i(θ_i, θ_{-i}) be the payment made by i to the seller.
 - Let the corresponding (interim) expected probability of winning for *i* be denoted X_i(θ_i) ≡ E_{θ-i}[x_i(θ_i, θ_{-i})] and (interim) expected payment be T_i(θ_i) ≡ E_{θ-i}[t_i(θ_i, θ_{-i})].
 - Let the (interim) expected payoff of bidder *i* be denoted $W_i(\theta_i) \equiv \theta_i X_i(\theta_i) T_i(\theta_i)$.

イロト 不得下 イヨト イヨト 二日

Generalized Revenue Equivalence Theorem

Theorem

Any two auctions with corresponding BNEs that result in the same (interim) winning probabilities for every bidder ($\{X_i(.)\}_i$) and the same payoffs for the lowest valuation types ($\{W_i(\underline{\theta}_i)\}_i$) generate the same expected payoff for the seller.

A E > A E >

Proof of the GRET

• Use arguments analogous to those underlying the Revelation Principle, the seller's expected payoff from any BNE in any auction can be expressed as

$$\Pi \equiv \sum_i E_{ heta_i}[\mathcal{T}_i(heta_i)] - c \sum_i E_{ heta_i}[X_i(heta_i)]$$

• and the BNE strategies must satisfy $(\forall i, \forall \theta_i :)$

$$\tilde{ heta}_i = heta_i \quad Max \quad W_i(\tilde{ heta}_i| heta_i) \equiv [heta_i X_i(\tilde{ heta}_i) - T_i(\tilde{ heta}_i)]$$
 (BIC)

i.e., truth-telling must be optimal for each bidder in a revelation mechanism where reports of $\{\tilde{\theta}_i\}_i$ are followed by *i* paying $t_i(\tilde{\theta}_i, \tilde{\theta}_{-i})$ and winning the object with probability $x_i(\tilde{\theta}_i, \tilde{\theta}_{-i})$

Proof of the GRET, contd.

- Now use the Mirrlees-Myerson theorem for single agent contexts, to argue that (BIC) is equivalent to:
 - (a) $W_i(heta_i) = W_i(\underline{ heta}_i) + \int_{\underline{ heta}_i}^{ heta_i} X_i(\tilde{ heta}_i) d\tilde{ heta}_i$
 - and (b) $X_i(.)$ nondecreasing
- Equation (a) can be rewritten as:

$$heta_i X_i(heta_i) - au_i(heta_i) = W_i(heta_i) + \int_{ heta_i}^{ heta_i} X_i(heta_i) d heta_i$$

implying

$$T_i(heta_i) = heta_i X_i(heta_i) - \int_{\underline{ heta}_i}^{ heta_i} X_i(\tilde{ heta}_i) d\tilde{ heta}_i - W_i(\underline{ heta}_i)$$

i.e., the expected payment function for bidder *i* is entirely determined by the interim winning probability function $X_i(.)$ and the payoff $W_i(\underline{\theta}_i)$ of the lowest valuation type of *i*, QED

DM (BU)

Proof of Vickrey's RET

 In any symmetric auction with zero reserve price where bidders use the same (strictly increasing) strategy b(.), bidder i wins provided b(θ_i) > max_{j≠i}{b(θ_j)}

• i.e., provided
$$heta_i > \max_{j \neq i} \{ heta_j\}$$

- hence every symmetric auction has the same interim win probability function X_i(θ_i) = Prob [θ_i > max_{j≠i}{θ_j}]
- Finally, the lowest type bids the least and never wins, so obtains a zero payoff
- Now apply GRET

イロト 不得下 イヨト イヨト 二日

2. Optimal Private Value Auctions

- So far we considered specific auctions and compared the expected revenues that they would generate
- Now ask: what is the optimal auction for a profit maximizing seller?
- Allow asymmetric bidders, and reserve price to be set
- By the Revelation Principle, P can confine attention to revelation mechanisms specifying {x_i(θ_i, θ_{-i}), t_i(θ_i, θ_{-i})}_i satisfying feasibility constraints:

$$x_i(heta_i, heta_{-i})\in [0,1], \sum_i x_i(heta_i, heta_{-i})\leq 1$$

besides Bayesian incentive compatibility and interim participation constraints

・ロン ・四 ・ ・ ヨン ・ ヨン

Optimal Private Value Auctions, contd.

With $X_i(\theta_i) \equiv E_{\theta_{-i}}[x_i(\theta_i, \theta_{-i})], T_i(\theta_i) \equiv E_{\theta_{-i}}[t_i(\theta_i, \theta_{-i})], W_i(\theta_i) \equiv \theta_i X_i(\theta_i) - T_i(\theta_i)$, problem is to maximize P's expected profit:

$$\Pi = \sum_{i} E_{\theta_i} [T_i(\theta_i) - cX_i(\theta_i)]$$

Constraints (for all *i*):

$$T_i(\theta_i) = \theta_i X_i(\theta_i) - \int_{\underline{\theta}_i}^{\theta_i} X_i(\tilde{\theta}_i) d\tilde{\theta}_i - W_i(\underline{\theta}_i)$$
(BIC1)

$$X_i(\theta_i)$$
 nondecreasing (BIC2)

$$W_i(\underline{\theta}_i) \ge 0$$
 (IPC)

$$x_i(\theta_i, \theta_{-i}) \in [0, 1], \sum_i x_i(\theta_i, \theta_{-i}) \le 1$$
 (F)

703b.5 2019 16 / 23

Steps in Solving for Optimal Auction

 Substitute (BIC) into the objective function, to express Π depending only on {X_i(.), <u>W</u>_i ≡ W_i(<u>θ</u>_i)}_i (same argument to prove GRET):

$$\Pi = \sum_{i} E_{\theta_i} [\theta_i X_i(\theta_i) - \int_{\underline{\theta}_i}^{\theta_i} X_i(\tilde{\theta}_i) d\tilde{\theta}_i - \underline{W}_i - c X_i(\theta_i)]$$

• Integrating by parts (just as in single agent problems):

$$\Pi = \sum_{i} E_{\theta_i} [\{v_i(\theta_i) - c\} X_i(\theta_i)] - \sum_{i} \underline{W}_i$$

where $v_i(\theta_i) \equiv \theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)}$ is the virtual value of i

• Optimal to set $\underline{W}_i = 0$

DM (BU)

703b.5 2019 17 / 23

▲ロト ▲興ト ▲ヨト ▲ヨト ニヨー わえぐ

Steps in Solving for Optimal Auction, contd.

• Consider problem of choosing functions $\{x_i(\theta_i, \theta_{-i})\}_i$ to maximize

$$\Pi = \sum_{i} E_{\theta_{i},\theta_{-i}}[\{v_{i}(\theta_{i}) - c\}x_{i}(\theta_{i},\theta_{-i})]$$

subject to $(\forall \theta_i, \theta_{-i}; \forall i:)$

$$x_i(heta_i, heta_{-i}) \geq 0, \sum_i x_i(heta_i, heta_{-i}) \leq 1$$

- Call this the *relaxed* problem (dropping (BIC2): X_i(.) is nondecreasing)
- Later check whether the solution to the relaxed problem satisfies (BIC2)

DM (BU)

703b.5 2019 18 / 23

(日) (周) (三) (三)

Solving the Relaxed Problem

- Point-wise optimization: fix any state $\theta = (\theta_i, \theta_{-i})$ and choose $x_i, i = 1, ..., n$ to maximize $\sum_i [v_i(\theta_i) c] x_i$ subject to $x_i \ge 0, \sum_i x_i \le 1$
- Define $s \equiv \sum_j x_j$ the probability of sale, and provided s > 0, define $a_i \equiv \frac{x_i}{s}$ the probability of selling it to *i*, conditional on selling it
- Set of controls equivalently written as s, {a_i}_i (so x_i ≡ sa_i), objective is s ∑_i[v_i(θ_i) − c]a_i, constraints: s ∈ [0, 1], a_i ∈ [0, 1], ∑_j a_j = 1

• Solution:

 $a_i = 1$ if $v_i(\theta_i) \ge \max_j \{v_j(\theta_j)\}$, and 0 otherwise s = 1 if $\max_j \{v_j(\theta_j)\} > c$, and 0 otherwise (ignore ties as they would happen with zero probability)

イロト 不得 トイヨト イヨト 二日

Solution to the Relaxed Problem

$$x_i(heta_i, heta_{-i}) = 1$$
 if $v_i(heta_i) \geq \max\{\max_j \{v_j(heta_j)\}, c\}$ and 0 otherwise

If bidders are ex ante symmetric ($F_i = F$ and $v_i = v$, all *i*) this reduces to:

$$x_i(heta_i, heta_{-i})=1$$
 if $heta_i\geq \max\{\max_j\{ heta_j\}, v^{-1}(c)\}$ and 0 otherwise

In words: treat seller as an additional (potential) bidder reporting a valuation of $v^{-1}(c)$ (reserve price), and then allocate the object to the bidder reporting the highest valuation

(日) (周) (三) (三)

When is this the Solution to the Original Problem?

- If $v_i(\theta_i) \equiv \theta_i \frac{1 F_i(\theta_i)}{f_i(\theta_i)}$ is increasing, then $x_i(\theta_i, \theta_{-i})$ is increasing in θ_i , and $X_i(.) \equiv E_{\theta_{-i}}[x_i(\theta_i, \theta_{-i})]$ is increasing in θ_i
- Hence monotone hazard rates for all *F_i*'s ensures this is the solution to the original problem

・ロン ・聞と ・ ほと ・ ほと

Introduction

Optimal Prices in the Problem with Symmetric Bidders

- All buyers have same interim probability of winning: $X_i = X(\theta_i) \equiv \operatorname{Prob}[z < \theta_i]$, where $r \equiv v^{-1}(c)$ and $z \equiv \max\{r, \max_{j \neq i}\{\theta_j\}\}$
- Letting G denote cdf of z, we have $X(\theta_i) = G(\theta_i)$
- Optimal transfers must satisfy

$$ar{G}_{i}(heta_{i}) = heta_{i}X_{i}(heta_{i}) - \int_{ heta}^{ heta_{i}}X_{i}(heta_{i})d heta_{i}$$
 $= heta_{i}G(heta_{i}) - \int_{ heta}^{ heta_{i}}G(heta_{i})d heta_{i}$
 $= \int_{ heta_{i}}^{ heta_{i}}zdG(z)$

DM (BU)

703b.5 2019 22 / 23

• • = • • = •

Optimal Auction with Symmetric Bidders

- So it is optimal for *i* to pay *z* if $z < \theta_i$ and 0 otherwise
- This is exactly the second-price auction!
- By Vickrey's RE Theorem, all four auction forms (English, Dutch, first-price and second price auctions) are optimal (combined with a suitable reserve price, corresponding to $r = v^{-1}(c)$ in the revelation/second-price mechanism)
- The outcome is ex post Pareto efficient only if v⁻¹(c) ≤ <u>θ</u>_i or c ≤ v(<u>θ</u>_i), whence the object is sold with probability one; otherwise it is sold with too low a probability (reflecting the monopoly power of the seller)

イロト 不得下 イヨト イヨト 二日