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Introduction

Private Value Auctions: Introduction

@ Consider the simplest setting with a seller S who owns an indivisible

good, and:
o S values the good personally at ¢ dollars
o there are n potential buyers/bidders i = 1,...,n where i values the
object at 6;, and is privately informed about realization of 6;
o Private Values: common knowledge that 6y,...,6, are drawn from
independent distributions Fy, ..., F,, where support of F; is [6;, 6;]

with positive density f; throughout
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Introduction

Private Value Auctions, contd.

o Bidders are all risk-neutral: payoff equals 6; less price paid (in the
event of winning), and 0 otherwise

@ Participation in the auction is voluntary for all buyers;
non-participation payoff is zero

@ Seller is risk-neutral; payoff equals price received minus c, in the event
of sale, and 0 otherwise
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Introduction

Common Forms of Auctions in the Real World

@ Open bidding:

e English auction (ascending prices/bids, last remaining bidder wins)

o Dutch auctions (descending prices, first entering bidder wins)

@ Sealed bids:
o First price auctions (highest bidder wins, pays her bid)

e Second price auctions (highest bidder wins, pays second highest bid)

@ Most auctions also have a seller’s reserve price: for sale to occur the
winning bid must exceed the reserve price

@ None of these auctions charge any entry fee, and only winners pay
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Introduction

Key Questions

@ 1. How can we rank these commonly observed forms of auctions,
from the standpoint of expected payoff of the seller?

@ 2. What is the optimal auction, which maximizes seller's expected
payoff?
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Introduction

1. Comparing Auctions

@ First describe how to analyze the outcome of any given auction

@ In any given auction with a given set of rules and reserve price, model
bidder's behavior as a Bayesian Nash Equilibrium (BNE)

@ Let b;(0;) denote the bidding strategy of i (bid submitted in a
sealed-bid auction, or last/first price in English/Dutch auction at
which bidder is active)

@ In any of these auctions, the highest bidder wins, and pays an amount
p(bi, b—;) that depends on her own bid b;, bids of others b_; (if there
is a reserve price r, treat this as a bid submitted by the seller)
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Bayesian Equilibrium Bidding Strategies, contd.

e E.g, in first-price auction or Dutch auction, p = b; > max;; b;; in
second-price auction or English auction, p = max;.; b; < b;

o Let G; denote bidder i's beliefs (cdf) over z = max;.;{b;(6;)},
formed by composing the strategies of other bidders b;(6;) with the
distributions F;j(6;) over their types

@ Then given a bid b;, bidder i wins with probability G;(b;)

e A BNE b;(6;) satisfies:

b;
bi = bi(6)) Maxb,.[e,c,-(b,-)/b p(bi, 2)dGi(2)]

=—i
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Vickrey's Revenue Equivalence Theorem (VRET)

Vickrey (1961) focused on symmetric private value contexts, where
valuations are i.i.d., all bidders use the same bidding strategy b(6;) which
is strictly increasing (easy to check that these exist in any of these auction
forms)

Theorem

In any symmetric private values context, the English, Dutch, first-price and
second-price sealed bid auctions (with a zero reserve price) generate the
same expected revenue.
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Intuition underlying VRET

@ Given private values, bidders do not learn anything about the object
or their own values, from observing the bidding behavior of others

@ Dutch auction is (strategically) equivalent to first price auction

English auction is (strategically) equivalent to second price auction

Compare first price and second price auctions:

e In second price auction, dominant strategy to submit a bid equal to the
true value, but winner pays the second-highest bid

o In first price auction, winner pays own bid, but must bid below own
true value

o Extent to which bids are shaded below own true value in the first price
auction, depends on what the bidder expects the second-highest bid to
be (conditional on winning)
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Steps in the proof of VRET

@ We shall prove a more general version of this theorem (next slide)

o Notation: Consider any auction and any Bayesian Nash Equilibrium
(BNE) among bidders in that auction

o In ex post state (6;,0_;), let x;(0;,0_;) denote the probability that i
wins the object, and t;(0;,6_;) be the payment made by / to the seller.

o Let the corresponding (interim) expected probability of winning for i be
denoted X;(6;) = Eo_,[xi(0i,0—-;)] and (interim) expected payment be
Ti(0;) = Eo_,[ti(0;,0-7)].

o Let the (interim) expected payoff of bidder i be denoted
VV,(Q,) = Q,X,(Q,) — T,(@,)
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Introduction

Generalized Revenue Equivalence Theorem

Theorem

Any two auctions with corresponding BNEs that result in the same
(interim) winning probabilities for every bidder ({Xi(.)}i) and the same

payoffs for the lowest valuation types ({W;(0;)}i) generate the same
expected payoff for the seller.
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Proof of the GRET

@ Use arguments analogous to those underlying the Revelation
Principle, the seller's expected payoff from any BNE in any auction
can be expressed as

Nn= Z Eo,[Ti(0;)] — CZ Eo, [Xi(67)]

e and the BNE strategies must satisfy (Vi, V0, :)
0; =0; Max W;(d;|0;) = [0:Xi(0;) — T:(6))] (BIC)

i.e., truth-telling must be optimal for each bidder in a revelation
mechanism where reports of {0;}; are followed by i paying t;(f;,0_;)
and winning the object with probability x;(f;,0_;)
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Proof of the GRET, contd.

@ Now use the Mirrlees-Myerson theorem for single agent contexts, to
argue that (BIC) is equivalent to:

o (a) Wi(0h) = Wi(8)) + [y’ Xi(f:)dd
e and (b) X;(.) nondecreasing

e Equation (a) can be rewritten as:

0;.X:(0;) — Ti(6;) /x

implying

0; . N
Ti0) = 6:X(0) ~ | XiB)a, - wis)
i.e., the expected payment function for bidder i is entirely determined
by the interim winning probability function X;(.) and the payoff
W;(8;) of the lowest valuation type of i, QED
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Proof of Vickrey's RET

@ In any symmetric auction with zero reserve price where bidders use
the same (strictly increasing) strategy b(.), bidder i wins provided
b(6;) > max;<i{b(6))}

e i.e., provided §; > max;-i{6;}

@ hence every symmetric auction has the same interim win probability
function X;(6;) = Prob [0 > max;i{6;}]

o Finally, the lowest type bids the least and never wins, so obtains a
zero payoff

@ Now apply GRET
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2. Optimal Private Value Auctions

So far we considered specific auctions and compared the expected
revenues that they would generate

@ Now ask: what is the optimal auction for a profit maximizing seller?
@ Allow asymmetric bidders, and reserve price to be set

@ By the Revelation Principle, P can confine attention to revelation
mechanisms specifying {x;(0;,0-;), ti(0;,0—;)}; satisfying feasibiility
constraints:

X,'(a,'7 9,,') S [0, 1], ZX,'((Q,’, 9,,') <1
1

besides Bayesian incentive compatibility and interim participation
constraints
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Introduction

Optimal Private Value Auctions, contd.

With X;(0;) = Eo_.[xi(0i,0-i)], Ti(0:) = Ep_,[ti(0;,60—-:)], Wi(0;) =
0:Xi(0;) — Ti(0;), problem is to maximize P's expected profit:

n= ZEg[T ) — Xi(67)]

Constraints (for all /):

T:(65) = 0,X:(0:) - /9 9 Xi(0;)dB; — Wi(9;) (BIC1)
Xi(6:) non'decreasing (BIC2)

W;(9;) > 0 (IPC)

xi(07,0-7) € [0,1],) " xi(6;,6-;) <1 (F)
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Steps in Solving for Optimal Auction

@ Substitute (BIC) into the objective function, to express 1 depending

only on {X;(.), W; = W;(6;)}; (same argument to prove GRET):

I'I—ZE(;[QX / Xi(0:)db; — W, — cXi(6;)]

@ Integrating by parts (just as in single agent problems):

=3 Eal{wi(0:) — c}Xi(0N] - YW,

where v;(6;) = 0; — ("(?’) is the virtual value of i

e Optimal to set W; =0
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Steps in Solving for Optimal Auction, contd.

o Consider problem of choosing functions {x;(0;,6_;)}; to maximize
M= Epo [{vi(6:) — c}xi(0;,6-)]
subject to (V6;,0_;; Vi)

xi(0;,6_;) >0, Zx, (0;,0_;

o Call this the relaxed problem (dropping (BIC2): Xi(.) is
nondecreasing)
@ Later check whether the solution to the relaxed problem satisfies

(BIC2)
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Solving the Relaxed Problem

e Point-wise optimization: fix any state 8 = (0;,6_;) and choose
xi,i =1,...,n to maximize ) _;[vj(6;) — c]x; subject to
xp >0, x<1

@ Define s = ijj- the probability of sale, and provided s > 0, define

a; = * the probability of selling it to /, conditional on selling it

@ Set of controls equivalently written as s, {a;}; (so x; = sa;), objective
is s> _,;[vi(0;) — claj, constraints: s € [0,1],2; € [0,1],> ;2 =1

@ Solution:
aj = 1 if v;(0;) > max;{v;(6;}, and 0 otherwise
s =1 if max;{vj(#;)} > ¢, and 0 otherwise
(ignore ties as they would happen with zero probability)
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Introduction

Solution to the Relaxed Problem

xi(0i,0—-;) =1 if vi(0;) > max{max{v;(0;)},c} and 0 otherwise
J
If bidders are ex ante symmetric (F; = F and v; = v, all i) this reduces to:
xi(0;,0_;) =1 if 6; >max{max{6;},v " (c)} and 0 otherwise
J

In words: treat seller as an additional (potential) bidder reporting a
valuation of v=1(c) (reserve price), and then allocate the object to the
bidder reporting the highest valuation
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Introduction

When is this the Solution to the Original Problem?

o If vi(6;) =0; — 1__F’(_9’) is increasing, then x;(0;,0_;) is increasing in
f:(6:)

0;, and Xi(.) = Eg_,[x;(0;,0_;)] is increasing in 0;

@ Hence monotone hazard rates for all F;'s ensures this is the solution
to the original problem
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Optimal Prices in the Problem with Symmetric Bidders

@ All buyers have same interim probability of winning:
X; = X(0;) = Prob[z < 6;], where r = v~!(c) and
z = max{r, max;«i{6;}}

@ Letting G denote cdf of z, we have X(6;) = G(0;)

@ Optimal transfers must satisfy

Ti(0;) = 9:'Xi(‘9i)_/:ixi(§i)d9i
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Optimal Auction with Symmetric Bidders

So it is optimal for i to pay z if z < #; and 0 otherwise
This is exactly the second-price auction!

By Vickrey's RE Theorem, all four auction forms (English, Dutch,
first-price and second price auctions) are optimal (combined with a
suitable reserve price, corresponding to r = v=(c) in the
revelation/second-price mechanism)

The outcome is ex post Pareto efficient only if v=1(c) < 6; or

¢ < v(#;), whence the object is sold with probability one; otherwise it
is sold with too low a probability (reflecting the monopoly power of
the seller)
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