Mechanism Design: Bargaining

Dilip Mookherjee

Boston University

Ec 703b Lecture 5 (text: FT Ch 7, pp 275-279)

The Bargaining Problem

- Two agents: S, seller and B, a prospective buyer, of an indivisible good
- They know their own valuations of the good:
$\theta_{s} \in\left[\underline{\theta}_{s}, \bar{\theta}_{s}\right], \theta_{b} \in\left[\underline{\theta}_{b}, \bar{\theta}_{b}\right]$
- Common knowledge that θ_{b}, θ_{s} are drawn independently according to cdf's F_{s}, F_{b}
- x : probability of sale, p price in the event of a sale
- Payoffs $U_{S} \equiv\left(p-\theta_{s}\right) x, U_{B} \equiv\left(\theta_{b}-p\right) x$
- Trade must be voluntary: each agent has the option not to participate (attain 0 payoff from $x=0$)

Negotiations and Haggling

- Most actual bargaining situations involve a dynamic negotiation game
- E.g. the seller offers to sell at an asking price, the buyer responds by saying yes, or refuses and makes a counteroffer, to which the seller responds...
- Suppose game ends at each round with a fixed probability q
- Can study the outcome of a perfect Bayesian equilibrium of this game
- Each agent will tend to keep negotiating for a 'better' price, so the game may end without any sale occurring, despite the existence of gains from trade $\left(\theta_{b}>\theta_{s}\right)$

Chatterjee-Samuelson Bargaining Game (F-T Chapter 6, Example 6.4)

- Chatterjee-Samuelson (1983) studied a 'double auction' game with one round of simultaneous offers, where both valuations are uniform on $[0,1]$
- Buyer submits a bid $\tilde{\theta}_{b}$, seller asks for $\tilde{\theta}_{s}$; trade occurs iff the bid exceeds the asking price, at a price equal to their average $\left(p=\frac{\tilde{\theta}_{b}+\tilde{\theta}_{s}}{2}\right)$
- A Bayesian equilibrium where bids and asks are linear in the true valuations: $\tilde{\theta}_{b}=\frac{1}{12}+\frac{2}{3} \theta_{b} ; \tilde{\theta}_{s}=\frac{1}{4}+\frac{2}{3} \theta_{s}$
- Trade occurs iff $\theta_{b}-\theta_{s} \geq \frac{1}{4}$
- If $\frac{1}{4}>\theta_{b}-\theta_{s}>0$, there is no sale despite the existence of gains from trade

Scope for Designing the Bargaining Game

- Maybe there is scope for reducing the inefficiency, by adding more rounds, or going to a sequential procedure...?
- Could a negotiation game be designed which always generates efficient outcomes in all possible states?
- Difficult to use a trial and error process to answer this question, there are infinite number of possible negotiation games
- Can cut through this problem, using the Revelation Principle!
- RP states that if there exists an efficient negotiation protocol, there must also exist a static revelation mechanism which results in efficient trade and satisfies the Partiicipation Constraint (PC)

Bargaining Revelation Mechanisms

- In a revelation mechanism, buyer and seller simultaneously report $\tilde{\theta}_{s}, \tilde{\theta}_{b}$, which determines $x\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right), t_{s}\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right), t_{b}\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right)$, where t_{s}, t_{b} denote expected transfers to (from) the seller (buyer)
- (if trade probability is $x^{*} \equiv x\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right)$, price in event of trade is $p^{*} \equiv p\left(\tilde{\theta}_{b}, \tilde{\theta}_{s}\right)$ and there is no broker commission or entry fee, then $\left.t_{s}\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right)=p^{*} x^{*}=-t_{b}\left(\tilde{\theta}_{s}, \tilde{\theta}_{b}\right)\right)$
- (Interim) Payoffs:

$$
\begin{aligned}
U_{s}\left(\tilde{\theta}_{s} ; \theta_{s}\right) & \equiv E_{\theta_{b}}\left[t_{s}\left(\tilde{\theta}_{s}, \theta_{b}\right)-\theta_{s} x\left(\tilde{\theta}_{s}, \theta_{b}\right)\right] \\
U_{b}\left(\tilde{\theta}_{b} ; \theta_{b}\right) & \equiv E_{\theta_{s}}\left[\theta_{b} x\left(\theta_{s}, \tilde{\theta}_{b}\right)-t_{b}\left(\theta_{s}, \tilde{\theta}_{b}\right)\right]
\end{aligned}
$$

Bargaining Revelation Mechanisms, contd.

- $\mathrm{BB}: t_{s}\left(\theta_{s}, \theta_{b}\right)+t_{b}\left(\theta_{s}, \theta_{b}\right)=0$ for all θ_{b}, θ_{s}
- PE: Sale occurs (does not occur) $(x=1(0))$ if $\theta_{b}>(<) \theta_{s}$
- PC: $U_{b}\left(\theta_{b} ; \theta_{b}\right) \geq 0, U_{s}\left(\theta_{s} ; \theta_{s}\right) \geq 0$ for all θ_{b}, θ_{s}
- BIC: $\tilde{\theta}_{b}=\theta_{b}$ maximizes $U_{b}\left(\tilde{\theta}_{b} ; \theta_{b}\right), \tilde{\theta}_{s}=\theta_{s}$ maximizes $U_{s}\left(\tilde{\theta}_{s} ; \theta_{s}\right)$, for all θ_{b}, θ_{s}
- The Problem: Does there exist a mechanism satisfying BB, PE, PC and BIC?

Connection with the Public Good Problem

- We can reformulate it as a 'public decision' problem:
$d \equiv x ; V_{S}=-x \theta_{S}+t_{S}, V_{B}=x \theta_{B}+t_{B}$
- The ADAV Theorem states that there does exist a set of balanced budget transfers that implement the PO allocation (where truthful reporting of valuations by both agents constitutes a Bayesian equilibrium)
- But what about the Participation Constraint?
- There is no PC in the public goods problem - payment of taxes is not voluntary for most people!

Cases where Efficient Bargaining Mechanisms Exist

- Suppose there are gains from trade with probability one $\left(\bar{\theta}_{s}<\underline{\theta}_{b}\right)$: set $x \equiv 1$ and $p=\frac{\bar{\theta}_{s}+\underline{\theta}_{b}}{2}, t_{s}=p-\bar{\theta}_{s}, t_{b}=-t_{s}$
- Suppose there are gains from trade with probability zero $\left(\bar{\theta}_{b}<\underline{\theta}_{s}\right)$: set $x \equiv 0 \equiv t_{s} \equiv t_{b}$

Myerson-Satterthwaite Theorem

Theorem

Suppose there are gains from trade with positive probability less than one $\left(\bar{\theta}_{s}>\underline{\theta}_{b}, \bar{\theta}_{b}>\underline{\theta}_{s}\right)$, and F_{s}, F_{b} have positive densities f_{s}, f_{b} at every interior state $\left(\theta_{s}, \theta_{b}\right)$. Then there does not exist any bargaining mechanism satisfying $B B, B I C, P E$ and $P C$.

Proof of M-S Theorem

In an efficient mechanism, $x\left(\theta_{b}, \theta_{s}\right)=1$ iff $\theta_{b}>\theta_{s}$ (ignoring measure zero states where $\theta_{b}=\theta_{s}$), hence:

$$
U_{b}\left(\tilde{\theta}_{b} ; \theta_{b}\right)=\theta_{b} F_{s}\left(\tilde{\theta}_{b}\right)-T_{b}\left(\tilde{\theta}_{b}\right), U_{s}\left(\tilde{\theta}_{s} ; \theta_{s}\right)=T_{s}\left(\tilde{\theta}_{s}\right)-\theta_{s}\left[1-F_{b}\left(\tilde{\theta}_{s}\right)\right]
$$

(where $T_{s}\left(\theta_{s}\right) \equiv E_{\theta_{b}} t_{s}\left(\theta_{s}, \theta_{b}\right) ; T_{b}\left(\theta_{b}\right) \equiv E_{\theta_{s}} t_{b}\left(\theta_{s}, \theta_{b}\right)$)
BIC for buyer requires (using Mirrlees-Myerson characterization of IC constraint in single agent problems from L2):

$$
U_{b}\left(\theta_{b} ; \theta_{b}\right) \equiv \theta_{b} F_{s}\left(\theta_{b}\right)-T_{b}\left(\theta_{b}\right)=\underline{\Pi}_{b}+\int_{\underline{\theta}_{b}}^{\theta_{b}} F_{s}\left(\tilde{\theta}_{b}\right) d \tilde{\theta}_{b}
$$

$\left(\right.$ where $\left.\underline{\Pi}_{b} \equiv U_{b}\left(\underline{\theta}_{b} ; \underline{\theta}_{b}\right)\right)$

M-S Proof, contd.

BIC implies:

$$
\begin{gathered}
T_{b}\left(\theta_{b}\right)=\theta_{b} F_{s}\left(\theta_{b}\right)-\int_{\underline{\theta}_{b}}^{\theta_{b}} F_{s}\left(\tilde{\theta}_{b}\right) d \tilde{\theta}_{b}-\underline{\Pi}_{b} \\
T_{s}\left(\theta_{s}\right)=\theta_{s}\left[1-F_{b}\left(\theta_{s}\right)\right]+\int_{\theta_{s}}^{\bar{\theta}_{s}}\left[1-F_{b}\left(\tilde{\theta}_{s}\right)\right] d \tilde{\theta}_{s}+\bar{\Pi}_{s}
\end{gathered}
$$

(where $\bar{\Pi}_{b}$ denotes exp payoff of seller of type $\bar{\theta}_{s}$) BB requires $E_{\theta_{b}} T_{b}\left(\theta_{b}\right)=E_{\theta_{s}} T_{s}\left(\theta_{s}\right)$, or

$$
\begin{aligned}
E_{\theta_{b}}\left[\theta_{b} F_{s}\left(\theta_{b}\right)\right. & \left.-\int_{\underline{\theta}_{b}}^{\theta_{b}} F_{s}\left(\tilde{\theta}_{b}\right) d \tilde{\theta}_{b}\right]-\underline{\Pi}_{b} \\
& =E_{\theta_{s}}\left[\theta_{s}\left[1-F_{b}\left(\theta_{s}\right)\right]+\int_{\theta_{s}}^{\bar{\theta}_{s}}\left[1-F_{b}\left(\tilde{\theta}_{s}\right)\right] d \tilde{\theta}_{s}\right]+\bar{\Pi}_{s}
\end{aligned}
$$

M-S Proof, contd.

$$
\begin{aligned}
E_{\theta_{b}}\left[\theta_{b} F_{s}\left(\theta_{b}\right)\right. & \left.-\int_{\underline{\theta}_{b}}^{\theta_{b}} F_{s}\left(\tilde{\theta}_{b}\right) d \tilde{\theta}_{b}\right] \\
& -E_{\theta_{s}}\left[\theta_{s}\left[1-F_{b}\left(\theta_{s}\right)\right]+\int_{\theta_{s}}^{\bar{\theta}_{s}}\left[1-F_{b}\left(\tilde{\theta}_{s}\right)\right] d \tilde{\theta}_{s}\right] \\
& =\underline{\Pi}_{b}+\bar{\Pi}_{s} \geq 0
\end{aligned}
$$

(since PC requires $\underline{\Pi}_{b}, \bar{\Pi}_{s} \geq 0$)
On the other hand, Integrating LHS by parts, it equals (Check!)

$$
-\int_{\underline{\theta}_{b}}^{\bar{\theta}_{s}} F_{s}(\theta)\left[1-F_{b}(\theta)\right] d \theta
$$

which is negative since $\bar{\theta}_{s}>\underline{\theta}_{b}$.

