Mechanism Design: Bargaining

Dilip Mookherjee

Boston University

Ec 703b Lecture 5 (text: FT Ch 7, pp 275-279)

DM (BU)

703b.5 2019 1 / 1

3 > < 3
 3
</p>

The Bargaining Problem

- Two agents: S, seller and B, a prospective buyer, of an indivisible good
- They know their own valuations of the good: $\theta_s \in [\underline{\theta}_s, \overline{\theta}_s], \theta_b \in [\underline{\theta}_b, \overline{\theta}_b]$
- Common knowledge that θ_b, θ_s are drawn independently according to cdf's F_s, F_b
- x: probability of sale, p price in the event of a sale
- Payoffs $U_S \equiv (p \theta_s)x, U_B \equiv (\theta_b p)x$
- Trade must be voluntary: each agent has the option not to participate (attain 0 payoff from x = 0)

イロト 不得下 イヨト イヨト 二日

Negotiations and Haggling

- Most actual bargaining situations involve a dynamic negotiation game
- E.g. the seller offers to sell at an asking price, the buyer responds by saying yes, or refuses and makes a counteroffer, to which the seller responds...
- Suppose game ends at each round with a fixed probability q
- Can study the outcome of a perfect Bayesian equilibrium of this game
- Each agent will tend to keep negotiating for a 'better' price, so the game may end without any sale occurring, despite the existence of gains from trade $(\theta_b > \theta_s)$

イロト イポト イヨト イヨト

Chatterjee-Samuelson Bargaining Game (F-T Chapter 6, Example 6.4)

- Chatterjee-Samuelson (1983) studied a 'double auction' game with one round of simultaneous offers, where both valuations are uniform on [0, 1]
- Buyer submits a bid $\tilde{\theta}_b$, seller asks for $\tilde{\theta}_s$; trade occurs iff the bid exceeds the asking price, at a price equal to their average $\left(p = \frac{\tilde{\theta}_b + \tilde{\theta}_s}{2}\right)$
- A Bayesian equilibrium where bids and asks are linear in the true valuations: $\tilde{\theta}_b = \frac{1}{12} + \frac{2}{3}\theta_b$; $\tilde{\theta}_s = \frac{1}{4} + \frac{2}{3}\theta_s$
- Trade occurs iff $\theta_b \theta_s \geq \frac{1}{4}$
- If $\frac{1}{4} > \theta_b \theta_s > 0$, there is no sale despite the existence of gains from trade

イロト イポト イヨト イヨト

Scope for Designing the Bargaining Game

- Maybe there is scope for reducing the inefficiency, by adding more rounds, or going to a sequential procedure...?
- Could a negotiation game be designed which always generates efficient outcomes in all possible states?
- Difficult to use a trial and error process to answer this question, there are infinite number of possible negotiation games
- Can cut through this problem, using the Revelation Principle!
- RP states that if there exists an efficient negotiation protocol, there must also exist a static revelation mechanism which results in efficient trade and satisfies the Partiicipation Constraint (PC)

(4回) (4回) (4回)

Bargaining Revelation Mechanisms

- In a revelation mechanism, buyer and seller simultaneously report $\tilde{\theta}_s, \tilde{\theta}_b$, which determines $x(\tilde{\theta}_s, \tilde{\theta}_b), t_s(\tilde{\theta}_s, \tilde{\theta}_b), t_b(\tilde{\theta}_s, \tilde{\theta}_b)$, where t_s, t_b denote expected transfers to (from) the seller (buyer)
- (if trade probability is $x^* \equiv x(\tilde{\theta}_s, \tilde{\theta}_b)$, price in event of trade is $p^* \equiv p(\tilde{\theta}_b, \tilde{\theta}_s)$ and there is no broker commission or entry fee, then $t_s(\tilde{\theta}_s, \tilde{\theta}_b) = p^* x^* = -t_b(\tilde{\theta}_s, \tilde{\theta}_b)$)
- (Interim) Payoffs:

$$U_{s}(\tilde{\theta}_{s};\theta_{s}) \equiv E_{\theta_{b}}[t_{s}(\tilde{\theta}_{s},\theta_{b}) - \theta_{s}x(\tilde{\theta}_{s},\theta_{b})]$$
$$U_{b}(\tilde{\theta}_{b};\theta_{b}) \equiv E_{\theta_{s}}[\theta_{b}x(\theta_{s},\tilde{\theta}_{b}) - t_{b}(\theta_{s},\tilde{\theta}_{b})]$$

Bargaining Revelation Mechanisms, contd.

- BB: $t_s(\theta_s, \theta_b) + t_b(\theta_s, \theta_b) = 0$ for all θ_b, θ_s
- PE: Sale occurs (does not occur) (x = 1(0)) if $\theta_b > (<) \theta_s$
- PC: $U_b(\theta_b; \theta_b) \ge 0, U_s(\theta_s; \theta_s) \ge 0$ for all θ_b, θ_s
- BIC: θ̃_b = θ_b maximizes U_b(θ̃_b; θ_b), θ̃_s = θ_s maximizes U_s(θ̃_s; θ_s), for all θ_b, θ_s
- **The Problem:** Does there exist a mechanism satisfying BB, PE, PC and BIC?

・ロン ・四 ・ ・ ヨン ・ ヨン

Connection with the Public Good Problem

- We can reformulate it as a 'public decision' problem: $d \equiv x$; $V_S = -x\theta_S + t_S$, $V_B = x\theta_B + t_B$
- The ADAV Theorem states that there does exist a set of balanced budget transfers that implement the PO allocation (where truthful reporting of valuations by both agents constitutes a Bayesian equilibrium)
- But what about the Participation Constraint?
- There is no PC in the public goods problem payment of taxes is not voluntary for most people!

・ロン ・四 ・ ・ ヨン ・ ヨン

Cases where Efficient Bargaining Mechanisms Exist

- Suppose there are gains from trade with probability one $(\bar{\theta}_s < \underline{\theta}_b)$: set $x \equiv 1$ and $p = \frac{\bar{\theta}_s + \underline{\theta}_b}{2}$, $t_s = p - \bar{\theta}_s$, $t_b = -t_s$
- Suppose there are gains from trade with probability zero $(\bar{\theta}_b < \underline{\theta}_s)$: set $x \equiv 0 \equiv t_s \equiv t_b$

Myerson-Satterthwaite Theorem

Theorem

Suppose there are gains from trade with positive probability less than one $(\bar{\theta}_s > \underline{\theta}_b, \bar{\theta}_b > \underline{\theta}_s)$, and F_s, F_b have positive densities f_s, f_b at every interior state (θ_s, θ_b) . Then there does not exist any bargaining mechanism satisfying BB, BIC, PE and PC.

Proof of M-S Theorem

In an efficient mechanism, $x(\theta_b, \theta_s) = 1$ iff $\theta_b > \theta_s$ (ignoring measure zero states where $\theta_b = \theta_s$), hence:

$$U_{b}(\tilde{\theta}_{b};\theta_{b}) = \theta_{b}F_{s}(\tilde{\theta}_{b}) - T_{b}(\tilde{\theta}_{b}), U_{s}(\tilde{\theta}_{s};\theta_{s}) = T_{s}(\tilde{\theta}_{s}) - \theta_{s}[1 - F_{b}(\tilde{\theta}_{s})]$$

(where $T_{s}(\theta_{s}) \equiv E_{\theta_{b}}t_{s}(\theta_{s},\theta_{b}); T_{b}(\theta_{b}) \equiv E_{\theta_{s}}t_{b}(\theta_{s},\theta_{b}))$

BIC for buyer requires (using Mirrlees-Myerson characterization of IC constraint in single agent problems from L2):

$$U_b(\theta_b;\theta_b) \equiv \theta_b F_s(\theta_b) - T_b(\theta_b) = \underline{\Pi}_b + \int_{\underline{\theta}_b}^{\theta_b} F_s(\tilde{\theta}_b) d\tilde{\theta}_b$$

(where $\underline{\Pi}_b \equiv U_b(\underline{\theta}_b; \underline{\theta}_b)$)

イロト イ理ト イヨト イヨト 二日

M-S Proof, contd.

BIC implies:

$$egin{aligned} T_b(heta_b) &= heta_b F_s(heta_b) - \int_{ heta_b}^{ heta_b} F_s(heta_b) d heta_b - \underline{\Pi}_b \ T_s(heta_s) &= heta_s [1 - F_b(heta_s)] + \int_{ heta_s}^{ heta_s} [1 - F_b(heta_s)] d heta_s + ar{\Pi}_s \end{aligned}$$

(where $\bar{\Pi}_b$ denotes exp payoff of seller of type $\bar{\theta}_s$)

BB requires $E_{\theta_b}T_b(\theta_b) = E_{\theta_s}T_s(\theta_s)$, or

$$\begin{split} E_{\theta_b}[\theta_b F_s(\theta_b) &- \int_{\underline{\theta}_b}^{\theta_b} F_s(\tilde{\theta}_b) d\tilde{\theta}_b] - \underline{\Pi}_b \\ &= E_{\theta_s}[\theta_s[1 - F_b(\theta_s)] + \int_{\theta_s}^{\bar{\theta}_s} [1 - F_b(\tilde{\theta}_s)] d\tilde{\theta}_s] + \bar{\Pi}_s \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

M-S Proof, contd.

$$\begin{split} E_{\theta_b}[\theta_b F_s(\theta_b) &- \int_{\underline{\theta}_b}^{\theta_b} F_s(\tilde{\theta}_b) d\tilde{\theta}_b] \\ &- E_{\theta_s}[\theta_s[1 - F_b(\theta_s)] + \int_{\theta_s}^{\bar{\theta}_s} [1 - F_b(\tilde{\theta}_s)] d\tilde{\theta}_s] \\ &= \underline{\Pi}_b + \bar{\Pi}_s \ge 0 \end{split}$$

(since PC requires $\underline{\Pi}_b, \overline{\Pi}_s \ge 0$)

On the other hand, Integrating LHS by parts, it equals (Check!)

$$-\int_{{ar heta}_b}^{ar heta_s} {\sf F}_s(heta) [1-{\sf F}_b(heta)] d heta$$

which is negative since $\bar{\theta}_s > \underline{\theta}_b$.