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Multiple Agent Problems

Now consider mechanism design problems with multiple agents and
one Principal

Applications include public good provision, efficient bilateral trade,
and auction design

Start with a canonical general model that includes all these as special
cases, then consider each context separately

Agents type: continuous
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The Canonical Model

n agents, one P who selects a decision x ∈ X , and transfers t1, . . . , tn
to the agents

Agent i ’s (quasi-linear) utility Vi (x ; θi ) + ti , where θi ∈ [θi , θ̄i ] is
known privately by i

Bayesian (private values) formulation: common knowledge that θi is
drawn (independently) according to cdf Fi on [θi , θ̄i ]

P can be a profit-maximizing monopolist, with profit
Π ≡ V0(x)−

∑
i ti

Or P is a planner with utilitarian welfare objective W ≡
∑

i Vi (x ; θi ),
and subject to a budget balance (BB) constraint V0(x) ≥

∑
i ti
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Application 1: Public Goods/Policy and Free-Rider
Problem

x ≥ 0 (or x ∈ {0, 1}) is a decision regarding a public good (indivisible
public good, or a policy alternative x = 1 to the status quo x = 0)

Cost of the public good is C (x), financed by taxes paid T1, . . . ,Tn by
the n citizens

Citizen i utility Ui (x ; θi )− Ti

Define ti ≡ −[Ti − 1
nC (x)], and Vi (x ; θi ) ≡ Ui (x ; θi )− 1

nC (x)

So i ’s utility is Ui (x ; θi )− 1
nC (x) + ti = Vi (x ; θi ) + ti
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Application 1: Public Goods/Policy and Free-Rider
Problem, contd.

P’s welfare objective
∑

i Vi (x ; θi ) ≡
∑

i Ui (x ; θi )− C (x); budget
constraint:

∑
i ti ≤ 0

Notation: θ ≡ (θ1, . . . , θn), the state of the world

Free-rider problem: first-best efficient policy xF (θ) and ti = 0
(equal cost-sharing) requires P to know the realization of
θ ≡ (θ1, . . . , θn)

P will have to elicit this information from citizens through a ‘political
economy’ process — voting, referendums, Congressional procedures
etc

Citizens ( or their elected representatives) will typically have
incentives to lie about their true type

Is it possible to design a mechanism of transfers that will induce
citizens to reveal their true valuations?
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Application 2: Cooperative (Team) Production and
Free-Rider Problem

A cooperative firm has n worker-members, with member i supplying
effort/input xi ≥ 0 at personal cost Ci (xi , θi ) which is privately known
to i

Production/revenue function V0(x) where x ≡ (x1, . . . , xn) is the
effort vector

Member i is distributed dividend or reward ti , budget constraint∑
i ti ≤ V0(x)
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Application 2: Cooperative (Team) Production and
Free-Rider Problem, contd.

(First-best) efficient allocation xF (θ) maximizes
∑

i [ti − Ci (xi , θi )]
subject to the budget constraint

Free-rider problem: first-best efficient policy xF (θ) and equal
division of revenue will induce members to pretend to have higher
private effort cost than the actual cost

Is it possible to design an incentive system which deviates from equal
sharing of revenues, to implement the efficient allocation?

If not, what is the second-best incentive system?
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Application 3: Bilateral Trade

There are two agents: a seller S of an indivisible asset (e.g., house,
painting) and a single potential buyer B

Seller’s valuation of the asset is θS , buyer’s valuation is θB

They are privately informed about their own valuation

Payoffs: UB = (θB − p)x ,US = (p − θS)x , where x is probability of
sale, and p is the price paid in the event of a sale

Efficiency requires x = 1(0) if θB > (<)θS

Participation Constraint (PC): sale is voluntary, each side is free to
walk away and realize payoff zero associated with no sale
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Application 3: Bilateral Trade, contd.

Sale at what price? Should be set somewhere between θB and θS to
satisfy PC

Setting p = αθB + (1− α)θS where α ∈ (0, 1) implies the sale price
depends partly on the valuation of both parties

Incentive to manipulate the price by overstatement of valuation by
the seller, and understatement by the buyer (‘haggling’), which might
jeopardize the sale

The Problem: Is it possible to design a trading mechanism which
achieves efficient trades, provides each party with incentives to report
their values truthfully, and participate in the mechanism?

New feature (compared with public goods problem): have to
incorporate participation constraint as well
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Application 4: Competition/Auction Design

P is a seller of an indivisible object, with n > 1 potential buyers

Bidder i payoff is θixi − ti , where xi is the probability of selling to i ,
and ti is payment of i to P (allows all-pay auctions, or auction fees)

Voluntary participation; non-participation (xi = ti = 0) payoff: 0

Constraints:
∑

i xi ≤ 1, and each bidder is willing to participate in the
auction (attain non-negative expected payoff)

P’s personal valuation of the object θ0, payoff is either profit∑
i [ti − θ0xi ], or efficiency

∑
i [θi − θ0]xi
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Bayesian Mechanism Design Problem

Stages:

Mechanism is a game designed by P (who commits to it)

Each agent observes her own θi realization, and decides whether to
participate (if relevant, i.e., in bargaining/auction problem)

Game played by agents that decide to participate

Solution concept: Bayesian Nash equilibrium (or refinement)
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Revelation Principle, once again

Revelation Principle: P can confine attention to revelation
mechanisms x(θ), ti (θ), i = 1, . . . , n where θ ≡ (θ1, . . . , θn) are the
types reported by the agents, which satisfy Bayesian Incentive
Compatibility (BIC):

BIC: Truthful reporting is a Bayesian Nash equilibrium (for all i and
all θi ∈ [θi , θ̄i ]):

θ̃i = θi Max Wi (θ̃i ; θi ) ≡ Eθ−i
[Vi (x(θ̃i ; θ−i ), θi ) + ti (θ̃i ; θ−i )]

(BIC )
where θ−i denotes (θ1, . . . , θi−1, θi+1, . . . , θn)

plus PC (if relevant)

Same construction and logic as in the single agent problem (Check!)
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Revelation Principle with Multiple Agents: Some
Qualifications

However, difference between single and multiple agent case is that
latter notion of ‘implementation’ is more fragile in the following
senses:

Possibility of multiple equilibria: there may exist alternative
non-truthful equilibria that are not payoff-equivalent

If alternative equilibrium generates higher payoffs to all agents in all
states, they may coordinate on that one instead of the truthful one
(tacit collusion)
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Revelation Principle with Multiple Agents: Qualifications,
contd.

Explicit collusion: agents may enter into a side-contract where they
coordinate their reports to P accompanied by hidden side-payments
(bribes)

Even if problems of collusion do not arise, the equilibrium is based on
common knowledge assumptions and may not be robust to small
perturbations of the prior

E.g., suppose agent 1 is not absolutely sure what agent 2’s beliefs are,
may doubt whether latter will report truthfully, motivating 1 to also
deviate from the truth

DM (BU) Mech Design 703b.3 2019 14 / 15



Implementation in Dominant Strategies: An Alternative

A more robust notion of implementation is the requirement that
truth-telling be a dominant strategy for every agent

Dominant Strategy Incentive Compatibility: for all i and θi , θ−i :

θ̃i = θi Max Xi (θ̃i ; θ−i ) ≡ [Vi (x(θ̃i ; θ−i ), θi ) + ti (θ̃i ; θ−i )] (DSIC )

No longer require a common knowledge prior; agents do not have to
worry about what other agents will report

More demanding notion of implementation

(May not, however, eliminate scope for collusion, since truthful
reporting may not be a strongly dominant strategy)

DM (BU) Mech Design 703b.3 2019 15 / 15


