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Extension to Single Agent, Continuous Types

@ Now consider how the analysis extends when there is a continuum of
types for the agent, instead of just two

@ Most P-A models use a continuum of types, so it is useful to learn
how to handle models with a continuum of types more generally

@ Non-standard from the standpoint of classic optimization
(Kuhn-Tucker) methods, for reasons that will become apparent
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The Problem

o Customer of type 6 has utility 8V (q) — T, where 6 € [0, 4]

e Distribution of types given by a cdf F over [f, 0], assume this has a
positive density f

@ P does not know the type of any customer, knows only the
distribution F

P’'s profit

0
/9 T(0) — cq(0)]dF (0)

The Revelation Principle continues to apply, hence we can confine
attention to revelation mechanisms (T (#), q(#)) which satisfy:

0V (q(0)) — T(0) > 0V (q(0)) — T(0'),v0,6" < [6,0] (1C)
0V(q(0)) — T(0) > 0,V0 < [9,0] (PC)
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Problem with a Kuhn-Tucker Approach

@ There are a continuum of constraints!

@ Can prune some of them, e.g., observe that PC for all types 6 > 6 are
redundant, owing to the ICs (Check!)

@ But we still have ICs for all possible pairs of types

e Maximization problem (for P) with optimization constraints (A’s best
responses)

@ Could try to use calculus first order conditions for the optimization
constraint, but:

o these are necessary but may not be sufficient (depending on curvature
of T(.) and ¢g(.))

o apply only if T(.) and g(.) are differentiable

e may be too restrictive to confine attention to smooth functions of
suitable curvature
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The Mirrlees-Myerson Approach

@ Use an alternative approach based on indirect utility function of the

consumer:
U(o) = max [0V (a(9")) ~ T(¥)]

@ Recall the Envelope Theorem, which states that U is differentiable
with U'(0) = V/(q(0)), for almost all values of 6 (without imposing
any conditions on the T(.), g(.) functions at all!)

o Integrate this condition to obtain
u(o) = /0 V(q(8))dd + U(8), 70 € [6, 5]
o IC states that U(6) = 6V/(q(6)) — T() for all 6, hence:
oV (q(0)) — T(0) = /: V(q(6))dd + [0V (a(8)) — T(8)], V6 € [6,0]
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Mirrlees-Myerson Approach, contd.

@ So Envelope Theorem yields an expression for the revenue function
that must accompany any chosen ¢(.):

0
T(0) = 6V (q(9)) - /9 V(q(6))d — [6V(q(8)) — T(8)].¥6 < [6.4]

@ Restriction on what P can extract from type 0: type 6 must be left
with an ‘informational rent’ (/R(6)):

0
IR©) = [ V(a(@)di+ RE)
0
@ This is a necessary condition; what about sufficiency?
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Mirrlees-Myerson Approach

Mirrlees-Myerson Approach: Representation of I1C

Proposition

T(.), q(.) satisfies IC if and only if the following two conditions are
satisfied:
(a)

T(0) =

0
oV (q(0)) - /9 V(q(8))di-[0V(q(6))—T(6)], V6 € [8

(b) q(.) is nondecreasing.

i

Necessity of (a) already sketched above, of (b) is the same as in the two
type case (check!)
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Proof of Sufficiency

e Take any 6,6' > 6. (Similar argument, reversed, works for < case).

To show that (a) and (b) imply

u(0") = 0'v(q(0") — T(6") = 0'V(q(0)) — T(0)
e Using (a) and then (b):

9’ ~ ~
) = A V(q(@)di + V()

,
> L V(q(0))dd + U(6)
= [0 - 0)V(q(0)) + [9V(a(0)) — T(O)]
oV(q(0)) — T(0)
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Mirrlees-Myerson Approach

Problem Restatement

Observing from condition (a) that PC for all types 6 > 6 are redundant,
the problem can be restated as:

Select T(.), g(.) to maximize
0
1) = caonar(e)
subject to conditions (a), (b), and PC only for the lowest type 6:

0
T(0) = 6V(q(9)) - /0 V(q(6))df — [0V(q(8)) — T(8)).6 < [6. ]

q(.) is nondecreasing

0V (q(9)) — T(8) > 0.
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Two Stage Approach
@ As in the two type case, we proceed in two stages: (1) fix a

non-decreasing g(.) and find optimal transfers and resulting
maximized revenue, then (2) select optimal q(.)

o Stage One Problem: Observe that it is optimal to set surplus of the
lowest type to zero: T(6) = 0V/(q(0)).

@ Then (a) tells you how to set the transfers for all other types:

0 ~ ~
T(0) = 6V(q(9)) - /9 V(q(F))dd

@ Hence given arbitrary non-decreasing q(.), resulting profit is

/ 0V/(a(9)) - /9 V(q(8))dd — cq(6)]d6
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Second Stage Analysis

@ Expression for expected profit reduces to first-best profit, minus
expected information rents:

/ [0V(q(6)) — ca(0)]dF(0) / { / (a(@))dB}dF (9)

@ Integrate by parts the expression for expected informational rents:

E[IR] = IR(B)F (@) — IR(O)F () — / 0F(9)IR’(0)d9
0
) j
= RO~ | FOV(ae)0
Tk
= [ n-rFonviaena

[T )
= [ g Avtaendre)
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Second Stage Analysis

@ Expression for expected ‘second-best’ profit reduces to

[0 25 Ovta0) - caren

@ Interpret [ ]V( (0)) as the revenue lost by P owing to lack of
information of true type of each customer

@ Second-best problem is just like the first-best problem, except that
the customers type 6 is replaced by her ‘virtual' type 6 — - (Fe()g)

@ Virtual type of the agent depends only on the cdf F, specifically on

the ‘hazard rate' 1 f(F() ) of this distribution
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Second Stage Analysis, contd.

@ Second stage problem reduces to choosing g(.) to maximize expected
second-best profit

/ 0 ) 1V(a(6) - cale)et
subject to g(.) is non-decreasing

@ Ignore the monotonicity constraint to start with, then check whether
it will be binding: choose g(.) to point-wise maximize second -best
profit:

1—F(0)

= %)

V(g (0)) = c
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Second Stage Analysis, contd.

e g* will be non-decreasing if and only if virtual type v(0) =6 — 1?(,;()0)

is non-decreasing

@ Sufficient condition for this: hazard rate 1?{9()9) iS non-increasing

@ Holds for uniform distribution, and many others (normal, logistic,
chi-squared, exponential, Laplace...) where density is not falling ‘too
fast’ anywhere

@ While Myerson shows what to do when the monotonicity constraint
does bind, we shall ignore this complication and focus hereafter on
distributions with a monotone hazard rate
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Properties of the Solution

@ Second best solution: equate marginal utility of the ‘virtual’ type to
cost c; closed form solution!!

e Virtual type equals true type only for highest type 6: second-best
quantity equals first-best

@ For all other types, second-best quantity is smaller
@ Just like the two-type case

o Inefficiency takes the form of underproduction, for all but the highest
type

@ Payoff implications: lowest type gets zero surplus as before, all others
with positive quantity get positive surplus/IR
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