
Mechanism Design: Single Agent, Continuous Types

Dilip Mookherjee

Boston University

Ec 703b Lecture 2 (text: FT Ch 7, 262-268)

DM (BU) Mech Design 703b.2 2019 1 / 14



The Problem

Extension to Single Agent, Continuous Types

Now consider how the analysis extends when there is a continuum of
types for the agent, instead of just two

Most P-A models use a continuum of types, so it is useful to learn
how to handle models with a continuum of types more generally

Non-standard from the standpoint of classic optimization
(Kuhn-Tucker) methods, for reasons that will become apparent

DM (BU) Mech Design 703b.2 2019 2 / 14



The Problem

The Problem

Customer of type θ has utility θV (q)− T , where θ ∈ [θ, θ̄]

Distribution of types given by a cdf F over [θ, θ̄], assume this has a
positive density f

P does not know the type of any customer, knows only the
distribution F

P’s profit ∫ θ̄

θ
[T (θ)− cq(θ)]dF (θ)

The Revelation Principle continues to apply, hence we can confine
attention to revelation mechanisms (T (θ), q(θ)) which satisfy:

θV (q(θ))− T (θ) ≥ θV (q(θ′))− T (θ′), ∀θ, θ′ ∈ [θ, θ̄] (IC )

θV (q(θ))− T (θ) ≥ 0,∀θ ∈ [θ, θ̄] (PC )
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The Problem

Problem with a Kuhn-Tucker Approach

There are a continuum of constraints!

Can prune some of them, e.g., observe that PC for all types θ > θ are
redundant, owing to the ICs (Check!)

But we still have ICs for all possible pairs of types

Maximization problem (for P) with optimization constraints (A’s best
responses)

Could try to use calculus first order conditions for the optimization
constraint, but:

these are necessary but may not be sufficient (depending on curvature
of T (.) and q(.))
apply only if T (.) and q(.) are differentiable
may be too restrictive to confine attention to smooth functions of
suitable curvature
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Mirrlees-Myerson Approach

The Mirrlees-Myerson Approach

Use an alternative approach based on indirect utility function of the
consumer:

U(θ) = max
θ′∈[θ,θ̄]

[θV (q(θ′))− T (θ′)]

Recall the Envelope Theorem, which states that U is differentiable
with U ′(θ) = V (q(θ)), for almost all values of θ (without imposing
any conditions on the T (.), q(.) functions at all!)

Integrate this condition to obtain

U(θ) =

∫ θ

θ
V (q(θ̃))d θ̃ + U(θ),∀θ ∈ [θ, θ̄]

IC states that U(θ) = θV (q(θ))− T (θ) for all θ, hence:

θV (q(θ))− T (θ) =

∫ θ

θ
V (q(θ̃))d θ̃ + [θV (q(θ))− T (θ)], ∀θ ∈ [θ, θ̄]
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Mirrlees-Myerson Approach

Mirrlees-Myerson Approach, contd.

So Envelope Theorem yields an expression for the revenue function
that must accompany any chosen q(.):

T (θ) = θV (q(θ))−
∫ θ

θ
V (q(θ̃))d θ̃ − [θV (q(θ))− T (θ)], ∀θ ∈ [θ, θ̄]

Restriction on what P can extract from type θ: type θ must be left
with an ‘informational rent’ (IR(θ)):

IR(θ) =

∫ θ

θ
V (q(θ̃))d θ̃ + IR(θ)

This is a necessary condition; what about sufficiency?
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Mirrlees-Myerson Approach

Mirrlees-Myerson Approach: Representation of IC

Proposition

T (.), q(.) satisfies IC if and only if the following two conditions are
satisfied:

(a)

T (θ) = θV (q(θ))−
∫ θ

θ
V (q(θ̃))d θ̃−[θV (q(θ))−T (θ)], ∀θ ∈ [θ, θ̄]

(b) q(.) is nondecreasing.

Necessity of (a) already sketched above, of (b) is the same as in the two
type case (check!)
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Mirrlees-Myerson Approach

Proof of Sufficiency

Take any θ, θ′ > θ. (Similar argument, reversed, works for < case).
To show that (a) and (b) imply

U(θ′) ≡ θ′V (q(θ′))− T (θ′) ≥ θ′V (q(θ))− T (θ)

Using (a) and then (b):

U(θ′) =

∫ θ′

θ
V (q(θ̃))d θ̃ + U(θ)

≥
∫ θ′

θ
V (q(θ))d θ̃ + U(θ)

= [θ′ − θ]V (q(θ)) + [θV (q(θ))− T (θ)]

= θ′V (q(θ))− T (θ)
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Mirrlees-Myerson Approach

Problem Restatement

Observing from condition (a) that PC for all types θ > θ are redundant,
the problem can be restated as:

Select T (.), q(.) to maximize∫ θ̄

θ
[T (θ)− cq(θ)]dF (θ)

subject to conditions (a), (b), and PC only for the lowest type θ:

T (θ) = θV (q(θ))−
∫ θ

θ
V (q(θ̃))d θ̃ − [θV (q(θ))− T (θ)], ∀θ ∈ [θ, θ̄]

q(.) is nondecreasing

θV (q(θ))− T (θ) ≥ 0.
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Solution

Two Stage Approach

As in the two type case, we proceed in two stages: (1) fix a
non-decreasing q(.) and find optimal transfers and resulting
maximized revenue, then (2) select optimal q(.)

Stage One Problem: Observe that it is optimal to set surplus of the
lowest type to zero: T (θ) = θV (q(θ)).

Then (a) tells you how to set the transfers for all other types:

T (θ) = θV (q(θ))−
∫ θ

θ
V (q(θ̃))d θ̃

Hence given arbitrary non-decreasing q(.), resulting profit is∫ θ̄

θ
[θV (q(θ))−

∫ θ

θ
V (q(θ̃))d θ̃ − cq(θ)]dθ
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Solution

Second Stage Analysis

Expression for expected profit reduces to first-best profit, minus
expected information rents:∫ θ̄

θ
[θV (q(θ))− cq(θ)]dF (θ)−

∫ θ̄

θ
{
∫ θ

θ
V (q(θ̃))d θ̃}dF (θ)

Integrate by parts the expression for expected informational rents:

E [IR] = IR(θ̄)F (θ̄)− IR(θ)F (θ)−
∫ θ̄

θ
F (θ)IR ′(θ)dθ

= IR(θ̄)−
∫ θ̄

θ
F (θ)V (q(θ))dθ

=

∫ θ̄

θ
[1− F (θ)]V (q(θ))dθ

=

∫ θ̄

θ
[
1− F (θ)

f (θ)
]V (q(θ))dF (θ)
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Solution

Second Stage Analysis

Expression for expected ‘second-best’ profit reduces to∫ θ̄

θ
[θ − 1− F (θ)

f (θ)
]V (q(θ)− cq(θ)dθ

Interpret [ 1−F (θ)
f (θ) ]V (q(θ)) as the revenue lost by P owing to lack of

information of true type of each customer

Second-best problem is just like the first-best problem, except that
the customers type θ is replaced by her ‘virtual’ type θ − 1−F (θ)

f (θ)

Virtual type of the agent depends only on the cdf F , specifically on
the ‘hazard rate’ 1−F (θ)

f (θ) of this distribution
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Solution

Second Stage Analysis, contd.

Second stage problem reduces to choosing q(.) to maximize expected
second-best profit∫ θ̄

θ
[θ − 1− F (θ)

f (θ)
]V (q(θ)− cq(θ)dθ

subject to q(.) is non-decreasing

Ignore the monotonicity constraint to start with, then check whether
it will be binding: choose q(.) to point-wise maximize second -best
profit:

[θ − 1− F (θ)

f (θ)
]V ′(q∗(θ)) = c
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Solution

Second Stage Analysis, contd.

q∗ will be non-decreasing if and only if virtual type v(θ) ≡ θ − 1−F (θ)
f (θ)

is non-decreasing

Sufficient condition for this: hazard rate 1−F (θ)
f (θ) is non-increasing

Holds for uniform distribution, and many others (normal, logistic,
chi-squared, exponential, Laplace...) where density is not falling ‘too
fast’ anywhere

While Myerson shows what to do when the monotonicity constraint
does bind, we shall ignore this complication and focus hereafter on
distributions with a monotone hazard rate
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Solution

Properties of the Solution

Second best solution: equate marginal utility of the ‘virtual’ type to
cost c ; closed form solution!!

Virtual type equals true type only for highest type θ̄: second-best
quantity equals first-best

For all other types, second-best quantity is smaller

Just like the two-type case

Inefficiency takes the form of underproduction, for all but the highest
type

Payoff implications: lowest type gets zero surplus as before, all others
with positive quantity get positive surplus/IR
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