Ec 703b: Problem Set 5

Mookherjee; Spring 2019
Due: Wednesday May 1

1. Consider the moral hazard model covered in class, but now the Principal is risk-averse, with a payoff function $y(\pi-w)$ which is strictly increasing and strictly concave. The Agent A is also risk-averse with a payoff function $v(w)-g(e)$ where v and g are both strictly increasing and v is strictly concave. All other assumptions are the same, i.e., (LLN) holds
(a) Set up the first-best problem where e is contractible. Characterize the optimal contract using Kuhn-Tucker conditions. Show that P and A must share risk: A's payment $w_{i}^{*}\left(e^{F}\right)$ is strictly increasing in i (where $\pi_{i}>\pi_{i-1}$ and e^{F} denotes the first best effort).
(b) Now consider the second-best problem where e is not contractible. As in class, assume there are two possible effort levels $e_{L}<e_{H}$, and $v(\underline{w})$ is low enough that (LL) does not bind. Suppose the second-best effort is e_{H}. Characterize the optimal contract using Kuhn-Tucker conditions. Does the (IC) constraint bind? If it always does, provide a proof; otherwise find a condition for (IC) to bind.
(c) Show that in the second-best contract, w_{i} is always strictly increasing in i if MLRP holds.
(d) Does the second-best contract always satisfy the 'Informativeness Principle'?
2. Return now to the case where P is risk-neutral. Consider the moral hazard problem with three possible effort levels $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ and two possible profit levels, $\pi_{H}=10$ and $\pi_{L}=0$. Let the probability of π_{H} given e be:

$$
f\left(\pi_{H} \mid e\right)=\left\{\begin{array}{l}
2 / 3, \text { if } e=e_{1} \\
1 / 2, \text { if } e=e_{2} \\
1 / 3, \text { if } e=e_{3}
\end{array}\right.
$$

The agent's cost function for effort is

$$
g(e)=\left\{\begin{array}{l}
5 / 3, \text { if } e=e_{1} \\
8 / 5, \text { if } e=e_{2} \\
4 / 3, \text { if } e=e_{3}
\end{array}\right.
$$

The agent's utility of wealth function is $v(w)=\sqrt{w}$. His reservation utility \bar{u} is zero.
(a) Show that if effort is not observable, then it is not possible to induce effort level e_{2}. (Notational suggestion: Let $v_{1}=v\left(w\left(\pi_{H}\right)\right)$ and $v_{2}=v\left(w\left(\pi_{L}\right)\right)$.) For what values of $g\left(e_{2}\right)$ can the principal induce effort level e_{2} ?
(b) What is the optimal contract when effort is not observable?

