Elementary Statistical Methods & Tips on Group Project

EC320

September 5, 2014

Roadmap

- **1.** Regression Analysis
 - Understanding the Concept of Regression
 - Interpretation
 - Example
 - Common Problems
- 2. Tips on Group Project
 - Literature
 - Data
 - Statistical Software
 - Examples

1. Regression Analysis

Regression Analysis

- A statistical tool for the investigation of relationships between two or more variables
- Examples (bivariate):
 - Is poverty headcount ratio for a country (y) negatively related to years of education (x)?
 - What is the relationship between children mortality rate (*y*) and accessibility to clean water (*x*)?
 - $y = \alpha + \beta x + e$
 - *e* is all random factors that affect *y* other than *x*
- We will focus on linear regression (additive form)

Interpreting the regression coefficient

• After running a regression, an estimate for β , $\hat{\beta}$, is obtained.

- $\hat{\beta}$ is the size of influence of *x* on *y*
 - The expected change in y given a unit change in x
- Multivariate case
 - $y = \alpha + \beta x + \gamma z + e$
 - $\hat{\beta}$ is the expected change in y given a unit change in x with all values of z constant

Example

Consider the factors that contribute to poverty alleviation

- poverty headcount ratio = $\alpha_1 + \beta_1 *$ years of schooling + e
- poverty headcount ratio = $\alpha_2 + \beta_2 *$ years of schooling + $\gamma *$ per capita income + u

• What is the difference between β_1 and β_2 ?

Fitting a Line

- We want to explain *y* with *x*
- Set up the model: $y = \alpha + \beta x$
- What is the best line?
- OLS (Ordinary Least Squares)
 - We choose α and β that minimize $\sum_{i=1}^{N} (y \alpha \beta x)^2$
 - $y = \hat{y} + e = \hat{\alpha} + \hat{\beta}x + e$

Fitting a Line

- Adding one explanatory variable
 - = Adding one dimension
- What is a reasonable linear combination of x and z that best represents y?
- Set up the model: $y = \beta_1 x + \beta_2 z + e$
- Again, we choose β_1 and β_2 that minimize $\sum_{i=1}^{N} (y_i \beta_1 x_i \beta_2 z_i)^2$

Goodness of fit (R^2)

• $R^2 = \frac{\sum_{i=1}^{N} (\widehat{y_t} - \overline{y})^2}{\sum_{i=1}^{N} (y_t - \overline{y})^2} = \frac{Explained Sum of Squares}{Total Sum of Squares}$

 $\blacksquare R^2$ is a measure of the explanatory power of the regression

Valid only when there is a constant among regressors

Is a high R² always a good sign?

Inference

- Sample vs. population
- The value of $\hat{\beta}$ varies depending on the sample

 We cannot assert that we have found the true value of β by running a regression no matter how large the sample is

$$t-ratio$$

- $t = \frac{\widehat{\beta}}{s.e.}$
- The *t* − *ratio* tests whether the estimated coefficient is significantly different from zero
- It follows *t*-distribution with *N*-k degrees of freedom

(*k* is the number of independent variables)

Asymptotically (with a large enough set of observations) it follows *normal distribution*

Significance

- Assuming that the sample is large, we will refer to the normal distribution
- Two-tailed test
- Critical values: 1.645 for 90% significance level 1.96 for 95% significance level 2.58 for 99% significance level
- Interpretation
 - Suppose the t-value is 1.79 and the sample is large enough.

Then the probability that the null ($\beta = 0$) is rejected in favor of the alternative ($\beta \neq 0$) is between 0.9 and 0.95.

p - value

- The smallest significance level at which the null (that $\beta = 0$) can be rejected
- If p-value is 0.01, it means that the null can be rejected whenever the size of test is greater than or equal to 0.01

Example

Imai et al., "Microfinance and Poverty – A Macro Perspective," World Development, 2012, pp. 1675–1689

The model

 $pov_{i} = \beta_{0} + \beta_{1}GLP_{i} + \beta_{2}GDPPC_{i} + \beta_{3}DomesticCrd_{i} + \beta_{4}REG_{i} + u_{i}$

- *pov_i*: poverty head count ratio
- *GLP_i*: gross loan portfolio
- *GDPPC_i*: gross domestic product per capita at 2000 constant USD prices
- DomesticCrd_i: domestic credit of banks as a proportion of GDP
- *REG_i*: regional dummies with Latin America and Caribbean being the reference region

Example

Imai et al., "Microfinance and Poverty – A Macro Perspective," *World Development*, 2012, pp. 1675–1689

Explanatory Variables	Pooled OLS
Log of GLP per capita	-1.31 [-2.53]*
Log of GDP per capita	-9.43 [-5.45]**
Domestic Credit	-0.07 [-2.40]*
2007 Year Dummy	-1.28 [-0.64]
MENA	-10.25 [-3.22]**
EAP	3.74 [0.78]
ECA	-10.96 [-5.32]
SA	14.19 [1.75]
SSA	22.56 [3.73]**
Constant	92.16 [6.67]**
Ν	99
Adjusted R square	0.851
F-statistic	51.81

- Reported in the parenthesis are *t*values
- * Significant at 5%
- ** Significant at 1%

Common Problems

- Omitted Variables
 - Omitted variable bias
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$
- Multicollinearity
 - Size of standard error increases
 - If two or more variables are highly correlated, it becomes difficult to separate their explanatory power
- Endogeneity
 - IV (Instrumental Variables)
- Developing countries
 - Missing/unavailable/inaccurate Data

2. Tips on Group Project

How to build a model?

- Thought experiment
- Existing literature
- Plot scatter diagrams
- Make a summary statistics table

Search for Journals and Articles

- BU Library (<u>http://www.bu.edu/library</u>)
 - Access to most published articles with BU ID
- Google Scholar (<u>http://scholar.google.com</u>)
 - Alternative source
 - If an article is not free (even via BU library), try checking 'All versions' of the article
- UNDP and World Bank both publish their own reports.
 - <u>http://www.worldbank.org/en/research</u>
 - <u>http://www.worldbank.org/reference/?lang=en</u>
 - http://www.undp.org/content/undp/en/home/librarypage.html

Search for Data

World Bank

<u>http://data.worldbank.org/</u>

UN

- <u>http://data.un.org/</u>
- IMF
 - <u>http://www.imf.org/external/data.htm</u>
- PWT (Penn World Table)
 - <u>https://pwt.sas.upenn.edu/</u>

Types of Data

- Cross-sectional Data
 - Observations at the same point in time but across different units
 - eg., GDP of 60 countries in 2012 (*y*_{*i*})
- Time-series Data
 - Observations for the same unit but across horizon
 - eg., GDP of the US from 1960 to 2010 (*y*_t)
- Panel Data
 - Observations across different units and time
 - eg., GDP of G20 from 1960 to 2010 (y_{it})

Types of Variables

- Numerical Variables
 - Continuous variables
 - GDP, stock prices, precipitation, temperature
 - Discrete variables
 - Population, number of hospitals in a town (count variables)
- Categorical Variables
 - Dummy variables
 - Male/female, smoker/non-smoker, employed/unemployed
 - Nominal variables
 - Africa/America/Antarctica/Asia/Australia/Europe

Statistical Software

Microsoft Excel

- Cross-sectional or Time-series data
- Panel data (dummy variables required to capture the fixed effects)
- SPSS
 - Available in the library
- Stata
 - BU students get discount
 - Click-based
- R, Matlab
 - Available in the library
 - Coding needed

Examples

- Cross-sectional
- <u>Time-series</u>
- <u>Two-period panel</u>