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Abstract
Models of forest ecosystems are needed to understand how climate
and land-use change can impact biodiversity. In this paper we de-
scribe an individual-based, spatially-explicit forest simulator with
full accounting of both landscape context and the fine-scale pro-
cesses that influence forest dynamics. Unfortunately, performing
realistic forest simulations of such models is computationally infea-
sible. We design efficient algorithms for computing seed dispersal
and light, using a plethora of techniques. These include hierarchi-
cal spatial decomposition, monopole approximation and utilizing
the graphics hardware for fast geometric computations. These al-
gorithms allow us to simulate large landscapes for long periods of
time.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algo-
rithms and Problems]: Geometrical problems and computations

General Terms: Algorithms, Experimentation

Keywords: Forest models, Simulator, Ecological forecasting, Graph-
ics hardware, Geometric data structures, Approximation algorithms

1. Introduction
Forests cover approximately one-third of the Earth’s land surface
and account for 80% of terrestrial biomass [22]. Models of forest
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ecosystems are needed to understand how climate and land-use-
change can impact biodiversity (i.e., the number and relative abun-
dance of species), storage of carbon and forest resources at scales of
decades to centuries. To be useful to scientists and managers, forest
models must be sufficiently detailed to capture fine scale processes,
such as establishment of seedlings in the forest understory, yet suf-
ficiently broad to admit landscape and atmospheric processes.

Competitionand dispersal, the two important spatio-temporal
components of forest dynamics, have long frustrated efforts to sim-
ulate responses to global change. Competition for resources at fine
spatial scales determines the species composition of forests. For
example, light availability determines the growth rate of trees and
their ability to survive. Species that can tolerate deep shade pro-
liferate beneath dense forest canopies, whereas light demanding
species exploit recently disturbed sites, which can be caused by
fire, hurricanes, or land clearance. Intermediate light levels occur
in “gaps”, where death of one or a few large trees can create small
openings in the forest canopy. Moreover, the light available to an
individual depends on it’s size – tall individuals experience a differ-
ent light environment than do seedlings. Spatio-temporal variabil-
ity, from small transient “sun flecks” to full canopy removal, makes
computation expensive.

Seed production and dispersal determine local abundance and
population spread across landscapes. The combination of large
disturbances and changing climate means that species with abun-
dant, well-dispersed seed can benefit when others may be threat-
ened. Most seed falls close to the parent tree [6, 19], thus pro-
moting aggregation. A fraction of seed that disperses long distance
determines migration potential [7, 9]. Models cannot ignore tree
size, as large individuals produce more seed than do small individ-
uals. Moreover, species differences or “trade-offs” between long-
distance dispersal capacity and competitive ability determine bio-
diversity [13, 15].

In this paper we describe an individual-based, spatially-explicit
forest simulator with full accounting of both landscape context
(1 sq. km.) and fine-scale processes that influence competition and
dispersal. Individual-based models represent trees in terms of loca-
tion, size, crown shape, species, age, growth rate, mortality risk,
and reproductive ability. The landscape, in which the individu-
als are located, is heterogeneous with respect to the factors (e.g.
light) that affect demographic rates. Our approach involves both a
clarification of the computational issues and development of new
algorithms that rely on approximation. The approximations make
use of a comprehensive statistical treatment of variability and un-
certainty that is parameterized from field data as basis for efficient
simulation.

Related work. Models of forest dynamics, termed “stand simu-
lators” or “gap models”, have influenced ecological research for
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over 30 years [3, 17, 23, 24]. Early models focussed on light avail-
ability at intermediate spatial scales (100m2). These models were
individual-based, but not spatially explicit [3, 23]. While allow-
ing analysis of relatively fine scale processes, such models miss the
sub-grid variability that determines competitive interactions and the
landscape ‘connections’ critical for understanding dispersal. More
recent efforts treat the landscape as a uniform grid, modeling the
dynamics within grid cells in a similar way as previous models,
with the addition of neighbor-to-neighbor interactions [24]. SOR-
TIE [17], the first spatially-explicit forest model, added spatially
explicit light and dispersal. This approach allowed for spatial re-
lationships at relevant scales, with limitations set by computational
constraints to 9ha (300m � 300m). Due to the range of spatio-
temporal scales involved, all effects have been limited by capacity
to estimate parameters [17].

Our approach. Dispersal and light submodels form vital compo-
nents of forest dynamics. They are spatial in nature, i.e, seed den-
sity and light availability at every point on the landscape depends
on the location and geometric characteristics of all the trees in the
forest. In fact, they are the primary limitation on simulating spatial
models — the light calculation accounted for more than 90% of
the runtime in the forest model of Pacala et al. [17]. Furthermore,
this computational demand increases significantly with increasing
landscape size.

Our forest model allows for many sources of variability and un-
certainty that characterize processes and data. To compute all the
processes exactly, we require O(nA) calculations at each time step
where n is the number of trees in the forest and A, the number
of grid cells into which the landscape is partitioned. To perform
efficient simulation, we balance accuracy against the stochasticity
inherent in data and process. For example, uncertainty in light esti-
mation is proportionately high at the lowest light levels. This means
that precise computation at such light levels is unnecessary. In gen-
eral, knowledge of uncertainty and error associated with parame-
terization guides the development of efficient algorithms.

Our contributions. We exploit spatial coherence to design effi-
cient algorithms for dispersal calculations. We use quad tree [10,
21] to represent the forest at various spatial scales. Using the multi-
resolution nature of the quad tree, we make spatial approximations,
depending on the required accuracy. To compute dispersal, we use
the monopole approximation [2] to aggregate seed dispersal from
distant trees. This yields an efficiency-accuracy tradeoff scheme to
compute dispersal. Experimental results show a speedup of about
an order of magnitude for reasonable error. The graphics hardware
is very efficient in performing certain basic primitives, simultane-
ously on all pixels. Recently, there has been some work on using
the graphics hardware to solve geometric problems [14, 16, 18]. We
exploit this parallelism of graphics hardware to obtain a hardware-
based algorithm to calculate light. Our algorithm is at least two
orders of magnitude faster than the naive algorithm.

All our experiments are performed on a 2.2 GHz Intel PC with 4
GB memory, nVidia Quadro4 XGL 900 graphic card running Linux
OS.

Organization. We first describe our model and its components in
Section 2. Section 3 describes briefly the various components of
our model simulator. Then, in Section 4 and 5, we describe the al-
gorithms that perform dispersal and light calculations and analyze
their efficiency and accuracy. Finally, in Section 6, we present pre-
liminary simulation results that indicate that the error in the com-
putations have minimal impact on the dynamics of the model as a
whole.
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Figure 1: Landscape L and the underlying mesh M .

2. Forest Growth Model

The forest model consists of a landscape L and a population of
trees. The landscape remains fixed, but the population changes with
time. We first present an overview of the forest model. Then, we
describe in detail the dispersal and light submodels.

2.1 Overview of the Model

Landscape. Our model considers the landscape L of the forest as
a planar polygonal region. The area of the landscape varies from
a few hectares to few hundreds of hectares. We discretize L by
enclosing it with a square and overlaying a uniform grid (mesh) M.
Each grid cell Mij of M is a square with side length �; we refer
to � as the resolutionof M . We use Cij to denote the center of
Mij , and we associate an elevation (height) zij 2 R with Cij . By
interpolating the heights at other points of L, we can view L as a
terrain. We can also associate various geological and urban features
such as rivers, lakes, roads, etc. with L. Figure 1 shows an example
of a landscape alongwith the underlying mesh.

Population. Our model uses a hybrid representation of individual
trees, depending on their size. The early stages of trees are modeled
as densities, and after some growth, they are modeled as individuals
with unique physical attributes. More precisely, we classify the
population into five stages: seed, yearling, seedling, sapling,and
adult (see Figure 2). We further refine the stage seed into seed
rain and seed bank— the former representing the seeds that are
dispersed by trees in the current year and the latter representing
the ones that were dispersed in previous years and are dormant in
the soil. The seeds that have germinated are called yearlings. We
model seed rain, seed bank, and yearling as densities, as they do not
have any geometric attributes and all of them of the same species
are identical. We assume that the density is uniform within each
grid cell.

We model the next three stages — seedling, sapling, adult — as
families of individuals. Each individual X has a physical location
`(X) 2 R

2 and various physical attributes. Currently, we model
each individual as a cylindrical trunk and a cylindrical canopy sit-
ting on the trunk; see Figure 4. Let Dt(X); Ht(X) denote the
diameter and height of the trunk at time t. The diameter and the
height of the canopy of X depend on Dt(X) of X . We define two
“threshold” parameters: �D and �P . An individual X is a seedling
if Ht(X) � �D, a sapling if �D � Ht(X) � �P , and an adult
if Ht(X) � �P . Figure 3 shows the landscape with individuals at
Duke Forest site.
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Figure 2: Evolution of densities of stages seed and yearling and growth of
an individual from a seedling to an adult.

            

Figure 3: Landscape and individuals in Duke Forest site. Locations and
trunk attributes (diameter and height) correspond to actual trees measured
in meters.

Dynamics. The dynamics of our forest model consists of three
parts — establishment of individuals, growth, and mortality. Indi-
viduals are established by dispersal of seeds. The adult trees pro-
duce seeds depending on Dt(X) (also known as diameter at breast
height) and these seeds are dispersed based on a dispersal kernel.
The dispersal kernel accounts for both short and long distance dis-
persal. Growth of each of the stages is calculated based on resource
availability and local density. Individuals are promoted from one
stage to next based on the growth thresholds. An individual dies at
the current time based on its mortality probability. The mortality
probability is calculated based on the individual’s growth suppres-
sion and natural disturbances.

Resources. The forest contains several resources like light, mois-
ture, nitrogen, etc which are vital for the growth of an individual.
We model each resource as a separate submodel. Light is consid-
ered as one of the main resources in our model. We have developed

Ht(X)

Dt(X)

`(X)

Figure 4: Geometric model of an individual.

a sophisticated light model, based on Canham’s [4] light model, to
calculate the availability of understory light at each grid cell.

2.2 Dispersal Submodel
The dispersal model determines the number of seeds that disperse
into each grid cell of M . This quantity depends on:

� the number of seeds produced by each individual, denoted as
fecundity.

� spatial distribution of seeds, which is defined by the dispersal
kernel.

Fecundity. The reproductive output of an individual is nonzero
only if it is a female and reproductively mature. The functional
form of the fecundity, chosen from [8], is composed of factors that
depend on the species to which that individual belongs and the size
of the individual. The chosen form also includes a factor that cap-
tures the temporal variability. More precisely, �t(X), the fecundity
of individual X at time t, has the following form:

�t(X) = �(X) ��t(X) � 10a0+b(X)+�t(X) � (Dt(X))a1 ; (1)

where a0 and a1 are species-specific scaling parameters andDt(X)
is the diameter of the trunk of individual X at time t. The functions
�(X) and �t(X) are indicator functions, indicating the gender and
reproductive maturity of X , respectively.

�(X) =

�
1 if X is female,
0 if X is male.

�t(X) =

�
1 if Dt(X) > (X);
0 if Dt(X) � (X):

(X) � Gamma(m0;m1):

Here Gamma(m0;m1) is the Gamma distribution with species-
specific maturity parameters m0;m1. Next, b(X) is an individual
scaling parameter defined as:

b(X) � Normal(0; �2):

Normal(0; �2) is the Normal distribution with species-specific
parameter � . Finally, �t(X) is a temporally autocorrelated Gaus-
sian stochastic process, defined as:

�t(X) � Normal(� � �t�1(X); �2);

where � and � are species-specific parameters.

Dispersal kernel. The dispersal kernel describes the spatial distri-
bution of the scattering of seeds in the vicinity of the parent plant, as
a function of distance r. We use a bivariate Student’s t-distribution
for the dispersal kernel, which has the following form:

f(r;u) =
1

�u [1 + r2=u]2
; (2)

where u is a species specific parameter. Figure 5 shows the graph of
the dispersal kernel for the parameters of two species: Acer rubrum
and Liriodendron tulipifera.

Clark et al. [6] show that this kernel fits the dispersal data bet-
ter than other kernels for most species. The kernel has a convex
shape under the canopy of the individual which is responsible for
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Figure 5: Dispersal kernel for parameters of species Acer rubrumu=101.3;
Liriodendron tulipiferau=719.8. Parameter values are from Clark et al [8].

short distance dispersal, and a fat tail which is responsible for long
distance dispersal.

The actual number of seeds dispersed into the grid cell Mij , de-
noted as sijt, is drawn from a Poisson distribution

sijt � Poisson(qt(Cij) � �
2);

where � is the side length of grid cell Mij and qt(y) is the expected
seed density in location y at time t.

qt(y) =
X
X

�t(X) � f(ky � `(X)k; u); (3)

where the sum is taken over all the individuals in the forest.

2.3 Light Submodel
We now describe how we model the amount of light received by
each individual, which in turn controls its growth. The amount of
light received by a sapling or an adult is proportional to its exposed
canopy area. A point p on the canopy of an individual is called
exposedif the ray in (+z)-direction emanating from p does not
intersect any other individual. The exposed canopy area(ECA) of
an individual X , denoted by A(X), is the area of the xy-projection
of the exposed points on the canopy of X . The growth of a sapling
or an adult X , denoted by G(X), is measured by the change in its
trunk diameter Dt(X). It is calculated as follows:

G(X) = G0 +G1 �
A(X)

KA �Dt(X)KB +A(X)
;

where G0, G1 are the intercept and the asymptote of growth rate
respectively, and KA; KB are light saturation coefficients.

The amount of light received by a yearling or a seedling is pro-
portional to the understory light at the grid cell that contains it. The
understory lightat a grid cell Mij , denoted by Lij , is the average
annual intensity of sunlight that reaches Mij , and is modeled as
follows:

The spatial scale of our forest is sufficiently small, so we can as-
sume that at any point of time, all points in the landscape receive
the same intensity of light from any given direction. We model the
sky as a positive hemisphere at infinity. We discretize this hemi-
sphere into a uniform grid H by drawing latitude and longitude
arcs. We refer to this grid as the solar grid. For a cell Hkl 2 H ,
let dkl be the direction of the center of Hkl and Ikl be the annual
sunlight intensity that emanates from Hkl. Ikl is computed using
solar geometry calculations [5, 20, 4]. Let I= [Ikl]k;l be the in-
tensity matrix, which will be computed in the preprocessing step.

            

Figure 6: Canopy photo of adult individuals (as seen from the ground) at
Duke forest site.

Figure 6 shows a photo taken at the Duke Forest site using wide
angle lens. The photo was taken from the ground with the lens
pointing in the (+z)-direction. The elevation and azimuth lines su-
perimposed over the photo correspond to the regions of the solar
grid that have high light intensity.

Let r = r(i; j; k; l) be the ray emanating from Cij , the center of
the grid cell Mij , in direction dkl. Since, the solar grid is drawn
on a hemisphere at infinity, r passes through the center of Hkl. Let
Tr denote the set of saplings or adults individuals whose canopy
intercepts r. Then the fraction of light that reaches grid cell Mij is
defined as

pklij =

�
0 if r intercepts trunk of any individual;Q

�2Tr
(1� �� ) otherwise:

The amount of light in a tiny area dA in the neighborhood of Cij
and normal to dkl is Ikl �pklij �dA. Therefore the light in a small area
dA on the ground in the neighborhood of Cij is Ikl � pklij � cos(�k) �
dA, where �k is the elevation angle of dkl. The understory light
Lij is now defined as

Lij =
X
k;l

Ikl � p
kl
ij � cos(�k): (4)

The growth of a yearling or seedling X , denoted by G(X), is
measured by the change in its height Ht(X). It is calculated as
follows:

GX = G0 +G1
Lij

K + Lij
� e�(�Dcon+�hDhetero):

Here, Lij is the understory light in the grid cell containing the
individual X . G0, G1 are the intercept and asymptotes of growth
rate, K is the light saturation coefficient, Dcon (resp. Dhetero) is
the number of individuals of same (resp. different) species present
in the grid cell containing X , and �, �h are density dependent co-
efficients.

3. Our Model Simulator
We have developed a forest simulator based on the model outlined
in Section 2. Submodels include dispersal, light, germination and
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Figure 7: Flow chart of the sequence of operations performed by the simulator.

            

Figure 8: Snapshot image of the forest simulated by our model.

mortality. The simulator takes as input an initial configuration of
the forest and landscape. It simulates dynamics at annual time
steps. Figure 7 shows the flowchart of operations.

Since dispersal and light calculations are computationally inten-
sive, and ecological experiments need to be performed on large
landscapes (at least 1 sq. km.) and for long durations (up to several
thousand years), performing exact calculations to simulate dynam-
ics would take months (e.g. a time step on 512 � 512 landscape
took 5 hours). We therefore expedite the simulation by perform-
ing calculations approximately — the approximation error can be
controlled by the user (the approximation error is fixed such that
it is within the inherent stochasticity of the model). We main-
tain a hierarchical (multi-resolution) representation of the forest us-
ing a quad-tree data structure and calculate dispersal approximat-
ing at spatial resolutions depending on the required accuracy. A
hardware-based algorithm is used to calculate light. The dispersal
and light algorithms are explained in Section 4 and 5, respectively.

The simulator outputs the densities of seed banks and yearlings
for each grid cell and the locations and characteristics of all the in-
dividuals. We have developed a visualization package using
OpenGL/GLUT, which allows the user to view forest dynamics and
to navigate through the forest interactively. The user can zoom-
in/zoom-out, controlling both view point and viewing direction.
Figure 8 shows a snapshot image of the visualization of the for-
est simulated by our model. We also implemented another visual-
ization package to view density data (seed bank and yearlings) to-
gether with summary statistics, using Amira [1], a volume-rendering
package.

4. Computing Dispersal

In this section, we describe our dispersal algorithm. We first de-
scribe the quad-tree based data structure and then we describe the
approximation algorithm to calculate dispersal. In our descriptions,
we assume, for sake of simplicity, that all individuals in the forest
belong to the same species. The data structure and algorithm can
be extended to the case of multiple species in an obvious manner.

(ii)(i)

�(Rv)

Mij

Cv

d

Rv

Mij

MM

d

�(Rv)

Figure 9: Monopole approximation for dispersal. (i) A 8� 8 meshM , grid
cell Mij (shaded) and a 4 � 4 region containing 5 individuals (shown as
small circles). (ii) The mesh after monopole approximation. The “super
individual” (shown as a large circle) is located at the center of the 4 � 4
region.

Finally, we present experimental results that show the performance
of our algorithm.

Quad-tree data structure. For simplicity, we assume that L is
enclosed in a square of side-length 2l and discretized into a 2l� 2l

mesh M , where l � 0 is an integer; we assume that � = 1. Let A
denote the area of L, which is also the number of grid cells of M .
Let I be the set of all the individuals (saplings, adults) in the forest
and let P = f`(X) j X 2 Ig be the set of their locations.

A quad-treeT on L is a 4-way tree that represents a hierarchical
subdivision of L. Each node v of T is associated with a square
Rv � L, a subset Pv = Rv \ P of points, and a set Iv = fX j
`(X) 2 Rvg of individuals. For the root u of T , Ru = L, Pu =
P and Iu = I . If Rv is a grid cell of M or jPvj = 1, v is a
leaf. Otherwise, we partition Rv into four congruent squares by
bisecting its two sides, and assigning the four squares to the four
children of v. If the depth of a node v is d, then the side-length of
Rv is 2l�d. The maximum depth of T is log4A.1

In each node v, we store jPv j, the total number of individuals and
bt(v) =

P
X2Iv

�t(X), the total fecundity of all the individuals
in Iv . (If we have multiple species, we store this information for
each species separately). We use this information to develop an
approximation scheme to compute dispersal. At each leaf v of T ,
we store the sets Iv and Pv in a list.

Approximation scheme. The dispersal algorithm computes the
expected number of seeds qt(Cij), from all the individuals of the
forest, that fall into each grid cell Mij at time t using (3). The exact
computation takes O(nA) time since we iterate over all grid cells
and individuals. This is too expensive even for a moderately sized
forest. For example, it takes about four hours to compute dispersal
exactly on a 1024� 1024 landscape with 500,000 individuals.

We rely on an approximation scheme to expedite the computa-
tion at a slight loss in accuracy. We first describe the intuition and
1In general, a node v of a quad-tree is a leaf only if jPvj = 1, but in our
application it suffices to stop the subdivision as soon as we reach a grid cell.
This ensures that the depth of T is log4 A.

110



Algorithm 1 Monopole Approximation(v, Mij )

Cv: center of square Rv

if (�(Rv)=kCv �Cijk � �) then
return �t(Xv) � f(kCij � Cvk;u)

else
if v is a leaf then

return
P

X2Iv
�t(X) � f(kCij � `(X)k; u)

else
for each child w of v do

return Monopole Approximation(w;Mij)

then give a formal description. It is clear from (2) and (3) that if
an individual is far away from a grid cell Mij , then the expected
number of seeds falling into Mij is almost the same if we vary the
location of X a little; see Figure 9. We therefore cluster the grid
cells that are far away from Mij and move all individuals in a sin-
gle cluster to a canonical location. We regard all these individuals
as a single “super individual” Xv , whose fecundity �t(Xv) is the
sum of the fecundity of all the individuals in the cluster. The quad
tree provides a natural way of computing this clustering. We refer
to this approximation as monopole approximation.

For a node v of T , let Cv (resp. �(Rv)) denote the center (resp.
side-length) of Rv . See Figure 9. We set a threshold parameter �
called the monopole coefficient. If

�(Rv)=kCv � Cijk � �;

i.e., grid cellMij is far away fromRv as compared to side length of
Rv , we perform the monopole approximation, i.e., replace all the
individuals Iv with the “super individual” Xv located at Cv . The
seeds falling into Mij due to individuals Iv is approximated by the
seeds falling into Mij due to Xv .

We now describe the algorithm formally. It is a recursive pro-
cedure, starting at the root of the quad tree. We perform the fol-
lowing at each node v of T : we check whether the monopole ap-
proximation can be performed at v i.e. �(Rv)=kCv � Cijk �
�. If so, we approximate the expected number of seeds falling
into Mij due to individuals Iv by calculating the expected num-
ber of seeds falling into Mij due to the “super individual” Xv . If
�(Rv)=kCv�Cijk > �, and v is a leaf, we calculate the expected
number of seeds falling into Mij due to individuals in Iv by sum-
ming the contribution from each individual in Iv . Else, we recurse
on the children w of v. Algorithm 1 gives the pseudo code for the
algorithm.

We perform the procedure Monopole Approximation at
each grid cell Mij . It can be shown that the time complexity of the
above algorithm is O(A logA+ n).

Experimental results. We report the results of a set of experiments
performed on our forest simulator. Here we emphasize the perfor-
mance of the approximation algorithm for forests of different areas
A and different monopole coefficients �. We measure the perfor-
mance in terms of running time and RMS value of relative error in
dispersed seeds. For a more detailed study on the performance of
our dispersal algorithm, see [11]. Let sij denote the actual seed rain
that falls in grid cell Mij , as computed by the exact algorithm and
~sij denote the seed rain in Mij as computed by the approximation
algorithm. We define the relative error "ij to be

"ij =

����1� ~sij
sij
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Figure 10: Running time of dispersal algorithm with monopole coefficient
0.1 for varying forest area sizes.
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Figure 11: RMS relative error of approximation algorithm with monopole
coefficient 0.1 for varying forest area sizes.

The RMS value of "ij is defined as:

E =

 
1

A

X
i;j

�
1 �

~sij
sij

�2
!1=2

:

We performed experiments on a forest initialized with the output
of a 100 year simulation involving a single species. In our exper-
iment, we varied the side length of the forest from 32 meters to
1024 meters. Figure 10 compares the running time of the exact
algorithm with the approximation algorithm (for monopole coef-
ficient 0.1). The exact algorithm is the monopole algorithm with
monopole coefficient set to 0. For a 512 � 512 sq.m forest, the
monopole achieves speedup of two orders of magnitude. Figure 11
plots the value of E, for monopole coefficient 0.1. Note that E, the
RMS error in seeds dispersed, is less than 2% for the landscapes
simulated.
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Figure 12: Running time of approximation algorithm on a 512� 512 land-
scape as a function of monopole coefficient.

Next we performed experiments on a forest with side length 512
meters, with monopole coefficient ranging from 0.1 to 1.0. Fig-
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Figure 13: RMS error of the approximation algorithm on a 512 � 512
landscape as a function of monopole coefficient.

ures 12 and 13 show the running time and the value of E for dif-
ferent monopole coefficient. As anticipated, the run time decrease
with the increase in the monopole coefficient. Similarly, the RMS
error increases with increase in the monopole coefficient.                        

Caca Pita            

Figure 14: Spatial map of coefficient of variation in the number of seeds
dispersed for species Cacaand Pita.

The next experiment compares the inherent variability of the dis-
persal process with the relative error incurred by the approximation
algorithm. First, we quantify the inherent variability (stochastic-
ity) of the dispersal model using statistical methods. We perform
N = 1000 iterations of dispersal computation on the Duke For-
est stand, located in the Blackwood Division of the Duke Forest in
Chapel Hill, NC. In the Duke Forest stand, every individual over
2m tall was identified to species, mapped, and its diameter was
measured at 1.45m high, a common metric in forestry and ecology
referred to as Diameter Breast Height (DBH). In total there were
52 species observed in the stand, but in this paper we will focus on
two species: Carpinus caroliniana(CAca) and Pinus taeda(PIta).
The Duke forest stand was approximately centered in a 512 � 512
landscape at 1m� 1m resolution. We set the monopole coefficient
to 0:125 so that the error in computation is negligible (� 2%).

For each iteration, the simulator outputs the spatial map of seed
rain, number of seeds dispersed, in the forest. Let sijt denote the
seed rain at grid cellMij in iteration t, 1 � i; j � 512, 1 � t � N .
From the N replicate dispersal maps, we calculate the mean seed
rain ŝij at grid cell Mij using the formula:

ŝij =
1

N

NX
t=1

sijt:

We also calculate the coefficient of variationof seed rain CVij ,
using the following formula:

CVij =

 
1

N

NX
t=1

�
sijt
ŝij

� 1

�2
!1=2

:

Figure 14 shows the spatial pattern of the temporal variability
(CV) in seed rain for species Cacaand Pita. For each species, the
RMS value ofCVij , denoted byCV , captures the inherent variabil-
ity of the dispersal process for that species. The following formula
expresses CV in terms of seed rain sijt and mean seed rain ŝij :

CV =

 
1

N � A

X
i;j;t

�
sijt
ŝij

� 1

�2
!1=2

:

The CV value for species Cacaand Pita are 65.12 and 1.45 re-
spectively. This indicates that species Caca has high inherent vari-
ability as compared to species Pita.                        

Caca Pita            

Figure 15: Spatial map of relative error for species Caca and Pita.
Monopole coefficient is set to 0.5.

Next, we study how the relative error �ij varies with the monopole
coefficient. Figure 15 shows the spatial distribution of "ij with
� = 0:5 for species Cacaand Pita. The circular arc patterns in the
figures is an artifact of our algorithm — the portion of the forest in
which we perform the monopole approximation at the same level
of the quad-tree is bounded by a circle.

The RMS relative error for species Cacaand Pita for � = 0:5
are 0.25 and 0.05 respectively. The RMS relative error is at least an
order of magnitude smaller than the inherent variability, implying
that the error incurred by the approximation is quite tolerable.

5. Computing Light
In this section we describe our algorithm to calculate light. First,
we briefly describe our algorithm to compute the exposed canopy
area (ECA) of each individual X 2 I . Then we describe the graph-
ics hardware-based algorithm to compute understory light. Finally,
we provide experimental results to demonstrate the efficiency of
our algorithm.

5.1 Computing exposed canopy area
The algorithm computes for each sapling or adult X , the area of the
xy-projection of the exposed points of the canopy of X . Since, we
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model the canopy of X as a cylinder, its xy-projection is a circle
C(X). Let h(X) be the height of the top of the canopy of X from
the ground. The main idea of the algorithm is to assign each grid
cell Mij to the tallest individual X 2 I , such that C(X) contains
Mij completely. If there exists no individuals X 2 I such that
its canopy projection C(X) completely contains Mij , we leave the
grid cell Mij unassigned. Our algorithm performs this assignment
by considering individuals X 2 I in decreasing order of h(X), and
assigning to X , all the grid cells that are completely contained in
C(X) and have not been assigned already. It is easy to see that the
exposed canopy area A(X) of X can be approximated by the sum
of the areas of all the grid cells assigned to X . We can increase
the accuracy of the ECA calculation by using a mesh with finer
resolution.

5.2 Computing understory light
First we describe the exact algorithm to compute understory light
at each grid cell Mij of M . Then we describe an efficient graphics
hardware-based algorithm to compute understory light.

Exact algorithm. We calculate the understory light at grid cellMij

as follows: Let � be a sapling or adult in the forest. For each direc-
tion dkl, we determine the fraction of light, fklij , that reaches Mij

(after attenuation by � ). Let r = r(i; j; k; l) be the ray emanating
from Cij in direction dkl.

fklij =

8<
:

(1� �� ) if r intercepts canopy of � ,
0 if r intercepts trunk of � ,
1 otherwise.

The calculation of this fraction f involves deciding whether the
ray r intersects � . We repeat this calculation for all the saplings
and adults in the forest. Now, pklij = ��2If

kl
ij . We then calculate

the understory light Lij using (4).
The above algorithm took 4 hours to compute understory light

on a 512 � 512 landscape having 50,000 individuals.

A graphics hardware-based algorithm. The light model calcu-
lation, as described in Section 2.3, is similar to the visibility com-
putation in graphics hardware. We are given a view point (grid
cell Mij ) and a collection of geometric objects (individuals). The
light model requires a set of directions dkl that are visible from the
view point. We perform this calculation for all the grid cells. One
of the primary capabilities of the graphics hardwareis to perform
such visibility computations simultaneously for all grid cells in M .
Since the number of grid cells in our forest is large (about 106 grid
cells), the graphics hardware provides an efficient method for light
computation. The main challenge in using the graphics hardware
for calculating light is the representation of the translucence of in-
dividuals. Light intercepting the canopy of an individual � is atten-
uated by a factor of �� . To perform light-object interactions using
hardware requires a simple form of volume rendering.

The algorithm has the following structure:

1. For a given direction, calculate attenuation fraction pklij for
all grid cells Mij using the graphics hardware.

2. Repeat above step for all directions dkl.

3. Calculate Iij for all grid cells Mij using (4).

We observe the forest from infinite distance along angle dkl and
use the hardware color accumulation operation of color blending to
compute the product pklij for all grid cells Mij of M . Because the

(ii)(i)

�kl(�)

�kl(�)

�

dkl

Figure 16: (i) Algorithm renders individual � as a cylinder. Light rays that
come along direction dkl intercepts � and forms a shadow �kl(�). (ii)
Optimized algorithm renders the transformed individual (shadow) �kl(�).
Light rays come from the vertical direction.

only operations allowed in color blending are +;�, min, and max,
we use a simple trick, namely, compute

log pklij =
X
�2I

log(1� �� ):

The graphics hardware calculates log pklij using color blending, from
which we can compute pklij . The following steps are needed to com-
pute pklij :

1. Setting light source and image plane: Fix the light source
at infinity along direction dkl. Set the image plane as a plane
orthogonal to dkl such that all the individuals are in between
the source and image plane.

2. Render individuals: Draw each individual as geometric ob-
jects (canopy and trunk are drawn as cylinders of appropriate
diameter and height). The color of the canopy cylinder is set
to log(1 � �� ) (for blending) and the color of trunk is set
to log �, where � is an arbitrarily small constant. Since � is
small, almost all the light is blocked by the trunk.

3. Read color buffer: The color buffer contains the result of
the color blending operation for all pixels in the image plane.

4. Projection: Our objective is to calculate light at the grid
cells, which lie on a horizontal plane. The color buffer con-
tains light on pixels of the image plane that is oblique to
the horizontal plane. We perform a projection operation to
project each pixel on image plane to the appropriate pixel on
horizontal plane.

From experimental results, it is found that the projection opera-
tion is costly, taking about 25% of the total time.

We optimize the algorithm by eliminating the projection. The
need for projection arises because the image plane is oblique to the
source direction. We can fix the source along the vertical direction
and transform the individuals such that one obtains the same re-
sult. The transformation depends on the direction of light source.
For a given direction dkl and an individual � , the grid cells that re-
ceive attenuated light due to � are those that form the shadow of �
when light comes from direction dkl. Thus, for a given direction,
we compute the shadow of individual � and render the shape of
the shadow. For vertical cylinders, the shadow is a rectangle with
a semi-disk at each end and can be easily computed. Figure 16
(i) shows an individual � rendered as a cylinder by the original al-
gorithm. Light rays along direction dkl, intercept � and form the
shadow �kl(�). Figure 16 (ii) shows the shadow �kl(�) rendered
directly by the optimized algorithm.

113



0

1000

2000

3000

4000

5000

6000

7000

8000

0 200000 400000 600000 800000 1e+06 1.2e+06

R
un

ni
ng

 ti
m

e 
(in

 s
ec

.)

Area of the forest (in sq. meters)

approximate
exact

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200000 400000 600000 800000 1e+06 1.2e+06

R
un

ni
ng

 ti
m

e 
(in

 s
ec

.)

Area of the forest (in sq. meters)

approximate
exact

Figure 17: Comparison of running time of exact algorithm and hardware
algorithm for varying forest areas.
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Figure 18: (a) Canopies of adults and saplings (represented by circles) at
the Duke forest site. (b) The light intensity map calculated by our model
for these adults and saplings.

Experimental results. We evaluated the performance of the hard-
ware algorithm with a set of experiments where we varied the side
length of the forest from 32 meters to 1024 meters. Figure 17 com-
pares the running time of the hardware algorithm and the exact al-
gorithm to calculate light. For a 1024 � 1024 landscape, the hard-
ware algorithm is at least two orders of magnitude faster than the
exact algorithm.

Figure 18 (a) shows the top view of the adults and sapling canopy
in Duke Forest site. The canopies are depicted as circles with the
actual canopy radius of the individual. Figure 18 (b) shows the light
intensity map calculated by our model for these adults and saplings.
The light calculation captures quite well, the spatial variability in
understory light that results from variability in individual size and
location.

6. Ecological Experiments

To determine if the approximation algorithms have an impact on
modeled forest dynamics, we present two 1000 runs of the forest
model on a 64�64 landscape. These runs illustrate the competitive
dynamics of two species, Acer rubrumand Liriodendron tulipifera.
In both the runs, the landscape was initialized to identical condi-
tions. One of the runs used the exact dispersal algorithm, and the
other, the approximate algorithm with � = 0:125. Both the runs
used graphics hardware to calculate light. As shown in Figure 19,
when operating within a reasonable error bound (� 2% RMS er-
ror), the impact of approximation of model dynamics is negligible
when compounded over the long term. Furthermore, the runs il-
lustrated in Figure 19 include numerous sources of uncertainty and
stochasticity so any differences between runs is hard to attribute to
computational error alone.
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Figure 19: Comparison of coexistence experiment with 2 species on 64�64
landscape using (a) exact dispersal calculation and (b) approximate disper-
sal calculation (� = 0.125)
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Figure 20: Comparison of coexistence experiment on 512� 512 landscape
using (a) exact dispersal calculation for 300 years and (b) approximate dis-
persal calculation (� = 0.125) for 1000 years.
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In addition to accuracy, it is essential that the forest simulator
provide ecologists with a model that is sufficiently fast to use for
experiments. We performed two runs for the same experiment as
above on a 512 � 512m landscape. In both the runs, the landscape
was initialized to identical conditions. One of the runs performed
exact dispersal calculation, while the other performed approximate
dispersal calculation with � = 0:125. Both the runs used graphics
hardware to calculate light. The exact algorithm took about one
and a half hours to calculate one time step of exact dispersal calcu-
lation. We ran the exact algorithm for two weeks and it could only
complete 300 years of simulation. On the other hand, the approxi-
mation algorithm completed 1000 years of simulation in about two
days.

7. Discussion
We have developed efficient algorithms to simulate an individual
based, spatially explicit forest model. The speed-up of our simu-
lator over a naive calculation was made possible by the following
algorithms:

� Approximation algorithm to calculate dispersal. Experiments
shows a speedup of an order of magnitude for reasonable er-
ror.

� A novel graphics hardware-based algorithm for calculating
understory light. Our algorithm is two orders of magnitude
faster than the naive method.

Work presented in this paper is part of an ongoing inter-disciplinary
project to study forest ecosystems using simulation. We have began
using our simulator to perform experiments that address ecological
issues like coexistence and migration. Some of the interesting al-
gorithmic issues and future direction include the following:

� Our current dispersal algorithm has complexity O(n log n).
We plan to adapt the linear time Multipole algorithmof Green-
gard [12] to calculate the dispersal of seeds.

� We plan to develop a better light model that captures the tem-
poral variability of light intensity. Based on this model, we
plan to design an even more efficient hardware-based algo-
rithms to compute light.

� We plan to include terrain features like roads, lakes, build-
ings, etc., in our model.

� We plan to extend our model to include additional environ-
mental factors such as soil moisture, nitrogen and distur-
bance agents such as fire and wind.
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