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Abstract

Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide

critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have
been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassula-

cean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass

(ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane

(APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations

of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional

scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environ-

mental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and

Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology,
radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A

few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assess-

ing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deploy-

ment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging;

however, detailed information on the influence of climate, soils, and crop management practices on biomass pro-

duction is scarce. Thus considerable work remains regarding the parameterization and validation of process-

based models for bioenergy crops; generation and distribution of high-quality field data for model development

and validation; and implementation of an integrated framework for efficient, high-resolution simulations of
biomass production for use in planning sustainable bioenergy systems.
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Introduction

Substitution of liquid transportation fuels derived from

petroleum with a renewable source of bioethanol has

prompted a worldwide interest in determining how

much lignocellulosic biomass can be grown for the

production of biofuels (McLaughlin et al., 2006;

Ragauskas et al., 2006; Heaton et al., 2010). Current

estimates of local and regional supplies of biomass,

however, are limited by the availability of data that

quantify harvestable yield for herbaceous and woody

energy crops across a variety of site conditions. Fortu-

nately, field trials promise to provide such information

(Heaton et al., 2004; Aylott et al., 2008; Christian et al.,

2008; Wang et al., 2010; Wullschleger et al., 2010) and

therein improve our agronomic understanding of how

soils, climate, genetics, and crop management prac-

tices like fertilization influence potential biomass

production.
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Insights gained from field trials will also be critical

as we develop and evaluate bioenergy crop models

(Miguez et al., 2009; VanLoocke et al., 2010; Cuadra

et al., 2012). Kiniry et al. (1996) were among the first to

apply crop models to the analysis of biomass produc-

tion for switchgrass (Panicum virgatum) using the

ALMANAC (Agricultural Land Management Alterna-

tives with Numerical Assessment Criteria) model. Later,

ALAMANC-based predictions for switchgrass were val-

idated against field data for multiple sites across the

southern US (Kiniry et al., 2005). Since the initial adapta-

tion of the ALMANAC model for switchgrass, there has

been a surge in the adaptation of other existing models

or the development of a few new models specific for

perennial herbaceous and woody bioenergy crops

including miscanthus (Clifton-Brown et al., 2000; Has-

tings et al., 2009; Miguez et al., 2009), poplar and willow

(Lasch et al., 2010; Amichev et al., 2011), and sugarcane

(Lisson et al., 2005; Thorburn et al., 2005; Bondeau et al.,

2007; Lapola et al., 2009). These models have been used

to forecast biomass yields at field to regional scales, and

to associate production of biomass with possible envi-

ronmental consequences including soil erosion and

water quality.

Our objective in this article is to review crop models

that have been developed or adapted for simulating bio-

energy crops. The bioenergy crops considered for this

study are herbaceous energy crops (switchgrass, mi-

scanthus, and sugarcane [Saccharum officinarum] or

energy cane [Saccharum spp.]), perennial woody crops

(hybrid poplar [Populus spp.] and willow [Salix spp.]),

and crassulacean acid metabolism (CAM) crops adapted

to arid lands (Agave and Opuntia). Current models can

be classified as either empirical or mechanistic. Empiri-

cal models use data from field trials to develop relation-

ships between yield and independent climatic, soil, and

crop management variables. In contrast, mechanistic

models specifically describe underlying physiological

and morphological processes that determine crop

growth. Although a number of empirical models exist

for bioenergy crops (Heaton et al., 2004; Aylott et al.,

2008; Richter et al., 2008; Grassini et al., 2009; Jager et al.,

2010; Wullschleger et al., 2010), we focus on more pro-

cess-based models that simulate the production of bio-

mass for important energy crops. We provide a

description of each model; discuss approaches used to

simulate crop growth, phenology, and water, carbon,

and nitrogen dynamics; and consider how abiotic stres-

ses are represented in these models. Special attention is

given to how models describe dry matter production

and distribution of dry matter to harvested yield.

Finally, we highlight a unique bioenergy yield dataset

that can be used in the calibration and validation of

these models and comment on the future challenges

likely to be encountered given the current state of mod-

eling bioenergy crops.

Categories of bioenergy crop models

A literature survey revealed that 14 models have been

used to simulate the production of biomass for biofuels,

this includes models that are exclusively developed for

bioenergy crops or adapted existing models for bioener-

gy crop (Table 1). Eleven models are used to estimate

yield of herbaceous energy crops (Table 1). EPIC, which

is able to simulate both herbaceous and woody crops

such as switchgrass, miscanthus, sugarcane, and poplar

is a process-based model capable of simulating a wide

array of ecosystem processes including plant growth,

crop yield, water and nutrient balances, and soil erosion

(Williams et al., 1984). ALMANAC and AUSCANE

models are related to EPIC in many ways: ALMANAC

uses biophysical subroutines and process descriptions

from EPIC with additional details for plant growth pro-

cesses and is capable of simulating several crops includ-

ing switchgrass (Kiniry et al., 1996), ALMANAC is also

capable of simulating multiple species competing for

light, nutrients, and water such as in native prairie

mixes or with intercropping. AUSCANE is an adapta-

tion of EPIC for simulation of sugarcane yield for Aus-

tralian environments (Jones et al., 1989). MISCANMOD

is a spreadsheet-based model that has been widely

applied in Europe to predict biomass production of mi-

scanthus (Clifton-Brown et al., 2000). MISCANFOR is an

updated FORTRAN version of MISCANMOD with

additional descriptions of soil water subroutines (Has-

tings et al., 2009). APSIM and CANEGRO are two sug-

arcane models (Lisson et al., 2005; Thorburn et al., 2005).

WIMOVAC is a generic plant production model

(Humphries & Long, 1995) that has recently been used

for simulating biomass yield of miscanthus and

switchgrass (Miguez et al., 2009, 2012). Agro-BGC is a

variation of Biome-BGC, a well-known terrestrial bio-

geochemistry model with added processes to simulate

biomass production of C4 herbaceous energy crops

(Di Vittorio et al., 2010). LPJmL is an adaptation of

Lund–Potsdam–Jena dynamic global vegetation model

(DGVM) for managed lands that is capable of simulat-

ing several crops including sugarcane grown in rainfed

or irrigated environments (Bondeau et al., 2007; Lapola

et al., 2009). Likewise, Agro-IBIS is an agroecological

version of the Integrated Biosphere Simulator model,

also a DGVM (Kucharik, 2003) that has been used to

simulate production of biomass by miscanthus (VanLoocke

et al., 2010) and sugarcane (Cuadra et al., 2012).

SECRETS and 3PG are two models used for simulat-

ing woody perennial bioenergy crops (Table 1).

SECRETS is a modular, process-based model developed
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to originally simulate growth and development of

mixed-species forests (Sampson & Ceulemans, 2000).

SECRETS has recently been used to simulate the

biomass production from aspen and poplar (Deckmyn

et al., 2004; Lasch et al., 2010). The 3PG model is a pro-

cess-based model that has been successfully applied to

predicting forest productivity in plantations of fast-

growing trees including poplar and willow (Landsberg

& Waring, 1997; Amichev et al., 2011).

Although it lacks the complexity of other bioenergy

crop models, and is better characterized as an empirical

model, the environmental productivity index (EPI) is

the only model used to estimate biomass production of

CAM plants (Table 1). The EPI is calculated based on

the philosophy that crop production is constrained by

several factors with multiplicative impacts (Garcia de

Cortázar & Nobel, 1990). In this approach, constraints

on crop growth are quantified using simple environ-

mental stress indices (e.g., temperature and water

index), where each index indicates the fraction of maxi-

mal net CO2 uptake expected based on the prevailing

value of that environmental factor.

Bioenergy crop models: general descriptions

Bioenergy crop models vary in complexity and in their

approach to simulating crop growth and other processes

across space and time (Table 1). Most of the models

operate at a daily time step; however, 3PG operates at

monthly time step (Landsberg & Waring, 1997) and

some processes (e.g., carbon assimilation) in WIMOVAC

(Humphries & Long, 1995) and SECRETS (Sampson &

Ceulemans, 2000) operate at hourly or sub-hourly time

steps. In Agro-BGC, most of the processes operate at a

daily time-step, although some pools update at annual

time steps (Thornton, 1998; Golinkoff, 2010). In general

models with shorter time step includes a detailed

description of a process or part of a process. However,

time step is also linked to the approach followed to

explain a single process or several processes in the

model. For example, radiation use efficiency (RUE)

based biomass growth simulation follow daily time

step. But, biomass growth based on a more detailed

process oriented approach for photosynthesis follow

hourly/sub-hourly time step, which is data and compu-

tational intensive. Many of the models simulate biomass

production for site or field-scale application. Agro-IBIS

(Kucharik, 2003), LPJmL (Bondeau et al., 2007), and

Agro-BGC (Di Vittorio et al., 2010) were developed,

however, to operate at much larger spatial scales using

grid-based simulation techniques.

A general crop growth routine is used in many of the

models to represent biomass growth, but approaches

vary across models. APSIM uses a generic cultivar-level

crop sub-model (Wang et al., 2002), but EPIC and

ALMANAC (Williams et al., 1989; Kiniry et al., 1992)

use a more general species-based crop growth routine.

EPIC and ALMANAC are especially flexible and are

currently configured to simulate growth and develop-

ment for over 100 plant species including all major agri-

cultural crops, grasses, legumes, some trees, and several

emerging bioenergy crops. In Agro-BGC (Di Vittorio

et al., 2010; Golinkoff, 2010), Agro-IBIS (Kucharik, 2003),

and LPJmL (Bondeau et al., 2007), a broader generalization

Table 1 General characteristics of selected models

Models Scale Sub-model Bioenergy crops covered Crop model First reference

Herbaceous perennial grass

EPIC Field P, W, N, C Switchgrass, Miscanthus Generic, dynamic Williams et al. (1984)

ALMANAC Field P, W, N Switchgrass, Miscanthus Generic, dynamic Kiniry et al. (1992)

MISCANMOD Field P Miscanthus Crop specific Clifton-Brown et al. (2000)

MISCANFOR Field P, W Miscanthus Crop genotype specific Hastings et al. (2009)

WIMOVAC Field/ecosystem P, W, N, C Miscanthus, Switchgrass Generic, dynamic Humphries & Long (1995)

Agro-IBIS Ecosystem P, W, N, C Miscanthus, Sugarcane Generic PFT, dynamic Kucharik (2003)

Agro-BGC Ecosystem P, W, N, C Switchgrass Generic PFT, dynamic Di Vittorio et al. (2010)

APSIM Field P, W, N, C Sugarcane Generic, dynamic Keating et al. (1999)

AUSCANE Field P, W, N Sugarcane Specific, dynamic Jones et al. (1989)

LPJmL Ecosystem P, W Sugarcane Generic CFT Bondeau et al. (2007)

CANEGRO Field P, W, N Sugarcane Specific, dynamic Inman-Bamber (1991)

Woody perennials

3PG Stand level P, W Hybrid poplar, Willow Generic growth model Landsberg & Waring (1997)

SECRETS Stand-Ecosystem P, W, N, C Poplar, Miscanthus Generic growth model Sampson & Ceulemans (2000)

CAM

EPI Field-global P, W, N Opuntia, Agave Index based* Garcia de Cortázar & Nobel (1990)

P, Plant growth; W, water; N, nitrogen; C, soil carbon dynamics (soil organic matter is included).

*Water and nutrient index.
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of vegetation is incorporated based on crop/plant func-

tional types (CFT/PFT). WIMOVAC is a general vegeta-

tion model in which photosynthesis can be switched

between C3 and C4, and individual crops need to be

parameterized by adjusting parameters specific to pho-

tosynthesis, leaf area index, canopy architecture, and

carbon allocation (Humphries & Long, 1995). Some

models simulate other processes such as water, nitro-

gen, and carbon cycling in an agroecosystem.

MISCANFOR (Hastings et al., 2009), LPJmL (Bondeau

et al., 2007), and 3PG (Landsberg & Waring, 1997)

explicitly represent crop response to soil water relation-

ships. AUSCANE (Jones et al., 1989) and CANEGRO

(Lisson et al., 2005) include a soil nitrogen component

along with crop and soil water relationships. EPIC (Iza-

urralde et al., 2006), WIMOVAC (Long et al., 1998),

Agro-IBIS (Kucharik et al., 2000), Agro-BGC (Golinkoff,

2010), APSIM (Probert et al., 1998), and SECRETS

(Sampson et al., 2001) have a soil organic carbon sub-

model in addition to soil nitrogen and soil water

components.

Given the complexity of processes represented, some

of these models are especially useful for generating

information to understand sustainability issues related

to bioenergy production. EPIC in particular can be cou-

pled with the Soil and Water Assessment Tool (SWAT)

to quantify the impact of land management practices on

hydrologic processes in large watersheds. EPIC and

SWAT in combination simulate crop growth, soil water

and groundwater movement, and transport of sediment

and nutrients (Luo et al., 2008). In addition, the land-

scape and watershed version of EPIC, called APEX

(Gassman et al., 2010), contains algorithms that make it

possible to conduct environmental analyses at different

spatial scales, from small to large watersheds with vari-

able land cover or land use. APEX simulates routing of

water, sediment, nutrients, and pesticides across com-

plex landscapes and channel systems to the watershed

outlet.

Specific crop growth subroutines

Phenology, leaf area dynamics, radiation interception

and utilization, and crop growth and carbon partition-

ing are major processes that determine harvestable bio-

mass. Thus, a comparison of these key physiological

and morphological processes is warranted.

Phenological stages of development

In all the bioenergy crop models summarized here, phe-

nological stages are linked in some manner to cumula-

tive growing degree days (GDD). This measure of

thermal period is computed as an average of daily max-

imum and minimum temperature above the base tem-

perature of a specific crop (Williams et al., 1989). Some

models explicitly simulate different phenological stages

of bioenergy crops (e.g., flowering), while other models

dispense with simulations of specific developmental

stages and instead use developmental curves to capture

important temporal dynamics (e.g., canopy leaf area as

a function of GDD). APSIM, MISCANMOD, MISCAN-

FOR, WIMOVAC, Agro-IBIS, Agro-BGC, 3PG, and

SECRETS belong to the first category, and EPIC, ALMA-

NAC, AUSCANE, and LPJmL belong to the second cat-

egory (Table 2). In some models, growing season length

spans the last frost in the spring to the first frost in the

fall (e.g., WIMOVAC), while in other models the sum of

heat units from planting or tiller emergence to maturity

is used to determine growing season duration (e.g.,

ALMANAC).

Leaf area dynamics

In general, leaf area development in crop growth mod-

els is simulated using two approaches – a functional

approach and a mechanistic approach (Adam et al.,

2011). The majority of bioenergy crop models follow a

functional approach in simulating leaf area dynamics

(Table 2). The form of that function, however, does vary

across models. A linear function is used in MISCAN-

MOD and MISCANFOR (Clifton-Brown et al., 2000;

Hastings et al., 2009) and a sigmoid function is used in

ALMANAC, EPIC, and LPJmL to represent pre-senes-

cence growth of leaf area index (LAI). A decline in LAI

during the post-senescence period is represented by a

power function in EPIC, ALMANAC, and LPJmL (Ki-

niry et al., 1996; Bondeau et al., 2007; Williams et al.,

2008).

In contrast to the functional approach, leaf area

dynamics is calculated internally in a mechanistic

approach by using total accumulated biomass, a crop-

specific leaf partitioning coefficient, and developmental

stage of the crop (Adam et al., 2011). A mechanistic

approach is applied in crop models in two ways – spe-

cific leaf area method (SLA) and individual leaf area

method (ILA) (Keating et al., 1999; Adam et al., 2011). In

the SLA approach, leaf area is estimated by using dry

mass of leaf and unit weight of leaf, whereas in the ILA

approach leaf area is calculated as a function of leaves

per stalk and unit leaf area. Some models treat SLA as a

constant value (e.g., Agro-IBIS, Agro-BGC, WIMOVAC,

SECRETS), while others treat SLA as a variable over

developmental stages (e.g., 3PG) (Amichev et al., 2011).

APSIM and CANEGRO simulate LAI using ILA

(Inman-Bamber, 1994a, b; Keating et al., 1999) (Table 2).

LAI in APSIM is calculated by simulating the green leaf

area per stalk, number of leaves per stalk (maximum
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of 13 leaves), and area of a single leaf, which is deter-

mined by the genotype coefficients of the crop (Keating

et al., 1999). CANEGRO allows variation in number of

leaves per stalk with GDD and cultivar (Inman-Bamber,

1994a, b).

Biomass production and partitioning

In general, biomass production and partitioning in bio-

energy crop models is represented as a three step pro-

cess. In the first step, the processes involved in light

interception and estimation of the amount of solar radi-

ation captured by crop canopy are addressed. The sec-

ond step converts intercepted light energy into biomass,

and then in the third step, biomass is partitioned into

different plant parts. In the bioenergy crop models

described here, the representation of theses three

processes varies considerably.

Light interception. Beer’s law (Monsi & Saeki, 1953), or

some variation, is commonly used in bioenergy crop

models to estimate the amount of light intercepted by a

crop. However, representation of the light extinction

coefficient (k) varies across models. As per Beer’s law

for a given LAI, a higher value for k would result in

higher fraction of light intercepted by the crop. EPIC

uses k value of 0.65 (Williams et al., 1989) while

ALMANAC uses a species-specific value for k (Kiniry

et al., 1996). The LPJmL model uses a value of 0.5 to

estimate intercepted radiation (Bondeau et al., 2007). MI-

SCANMOD and MISCANFOR use measured values of

light interception and LAI to estimate k (i.e., 0.68) using

Beer’s law (Clifton-Brown et al., 2000; Hastings et al.,

2009). APSIM uses a fixed k value of 0.38 and CANE-

GRO accounts for tiller density while estimating the

final light interception (Keating et al., 1999; Bezuidenh-

out et al., 2003). 3PG also employs Beer’s law to calcu-

late interception using total incoming radiation and

canopy leaf area index (Landsberg & Waring, 1997).

Some bioenergy crop models calculate k as a function

of orientation and position of leaves, solar zenith angle,

and soil albedo. WIMOVAC, Agro-IBIS, and SECRETS

considered one or more of the above mentioned factors

in modeling light interception by crop canopy (Sampson

et al., 2001; Miguez et al., 2009; Cuadra et al., 2012). In

WIMOVAC, an ellipsoid distribution of leaves is

assumed, and thus a single-shape parameter is used to

account for the position and orientation of leaves while

estimating k (Norman, 1980; Miguez et al., 2009). Agro-

IBIS calculates k using the functions of leaf orientation,

transmittance, soil albedo, SLA, and LAI (Cuadra et al.,

2012). In contrast, SECRETS uses a modified version of

the Beer-Lambert method for calculating a light inter-

ception reduction factor by using solar zenith angle and

Table 2 Crop growth components in selected models

Models

Phenological

development

Leaf

growth

Radiation

interception Biomass Partitioning

Herbaceous perennial grass

EPIC PDC FA EC RUE 2 pools

ALMANAC PDC FA EC RUE 2 pools

MISCANMOD PDC FA EC RUE 1 pool

MISCANFOR 5 stages FA EC RUE 2 pools

WIMOVAC 6 stages SLA EC FVC 5 pools

Agro-IBIS 3 stages SLA EC FVC 3 pools

Agro-BGC 6 stages SLA EC DFC 6 pools

APSIM 5 stages ILA EC RUE 5 pools

AUSCANE PDC FA EC RUE 2 pools

LPJmL PDC FA EC HP 3 pools

CANEGRO PDC ILA EC PR 4 pools

Woody perennials

3PG 4 Stage FA EC PR 3 pools

SECRETS 4 Stage FA Diffuse/direct radiation DF 3 pools

CAM

EPI NA NA PAR Index Multiple

Indices

PDC, phenological development curve; FA, functional approach; SLA, Specific Leaf Area; ILA, Individual Leaf Approach; EC, Extinc-

tion Coefficient; RUE, Radiation Use Efficiency; PR, Photosynthesis and Respiration approach; FVC, Farquhar-von Caemmerer –

Collatz approach; HP, Haxeltine & Prentice approach; DF, de Pury & Farquhar approach; DFC, de Pury & Farquhar – Chen

approach.
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canopy gap fraction for randomly distributed and for

clumped foliage (Sampson et al., 2001). WIMOVAC

adopted a multilayer canopy formulation by dividing

the canopy into 10 discrete layers and using a sunlit/

shade procedure to account for interception of diffused

and direct radiation separately (Miguez et al., 2009).

SECRETS applied the ‘big leaf’ canopy concept along

with the sunlit/shade approach to quantify intercep-

tion of diffuse and direct radiation (Spitters et al.,

1986; Sampson et al., 2001). In Agro-IBIS, a two-stream

approximation method is used for quantifying the inci-

dence of direct and diffuse radiation for both the visible

and near-infrared wavelength bands (Foley et al., 1996;

Kucharik et al., 2000).

Biomass production. Simulation of biomass in almost all

bioenergy crop models can be grouped into three main

approaches: (1) radiation use efficiency (RUE) approach,

(2) photosynthesis and respiration (PR) approach, and

(3) biochemical approach. RUE is a simple, robust, and

straightforward approach for simulating crop biomass

growth that can be implemented by directly linking

measured incident radiation to total biomass produced

over a crop growth period (Monteith, 1977). In the PR

approach, an empirical description of both photosynthe-

sis and respiration of the plant is included, while in the

biochemical approach a mechanistic formulation of car-

bon uptake and assimilation is achieved by representing

key biochemical processes of photosynthesis. Daily

plant growth is estimated based on the RUE approach

in EPIC, ALMANAC, and APSIM (Williams et al., 1989;

Kiniry et al., 1992; Keating et al.,1999), the PR approach

in CANEGRO and 3PG (Inman-Bamber & Thompson,

1989; Landsberg & Waring, 1997), and the biochemical

approach in SECRETS, WIMOVAC, LPJmL, Agro-BGC,

and Agro-IBIS (Humphries & Long, 1995; Sampson

et al., 2001; Kucharik, 2003; Bondeau et al., 2007; Di Vit-

torio et al., 2010) (Table 2). However, there are varia-

tions among specific models within each broad category

of approach.

Monteith (1977) provided a strong and convincing

theoretical foundation for the RUE approach based on

experimental evidence of a robust functional relation-

ship between seasonal light interception and stress-free

biomass production for several crops. RUE is defined as

biomass produced per unit of intercepted photosynthet-

ically active radiation (IPAR) (g MJ�1). This definition

has been considered as the most preferred concept for

crop growth modeling because of its simplicity in fac-

tors needed for modeling and straight forward imple-

mentation. In MISCANMOD, RUE is considered as a

fixed value of 3.3 g MJ�1 (Clifton-Brown et al., 2000).

MISCANFOR uses a variable RUE by reducing maxi-

mum potential RUE value of 3.9 g MJ�1 to a lower

value whenever crop experiences extremes of tempera-

ture, water, and nutrient stresses (Hastings et al., 2009).

APSIM uses two different fixed values for RUE for

ratoon (1.65 g MJ�1) and plant crops (1.80 g MJ�1) and

also a RUE reduction factor under temperature, water,

and nutrient stresses conditions: RUE is reduced if the

mean daily temperature is below 15 °C or above 35 °C,
and RUE = 0 (no biomass production) when mean tem-

perature reaches 5 °C or 50 °C (Keating et al., 1999). In

ALMANAC, RUE value of 3.9 g MJ�1 is used, which is

further reduced for each 1 kPa increase in vapor pres-

sure deficit (VPD) above 1 kPa (Kiniry et al., 2008). It is

important to note that in ALMANAC, RUE in later

growth stages declines with a decline function similar

to LAI (Kiniry et al., 1996). EPIC treats RUE as a

function of VPD and atmospheric CO2 concentration

(Stockle et al., 1992).

In the PR–based approach, a separate function or set

of fixed coefficients are used for representing photosyn-

thesis and respiration. In general, the PR approach uses

conversion efficiency or quantum efficiency for deriving

gross photosynthesis per unit IPAR. CANEGRO and

3PG both use the PR approach to simulate biomass

growth. The CANEGRO model calculates daily dry

matter production using photosynthetically active radia-

tion conversion efficiency (PARCE in g MJ�1) and IPAR

(MJ ha�1) (Singels & Bezuidenhout, 2002). In 3PG,

monthly potential biomass production is calculated

from maximum possible canopy quantum efficiency,

IPAR, and a constant respiration coefficient (Waring

et al., 1998).

The biochemical approach is closely linked to the

seminal work by Farquhar et al. (1980) on biochemical

leaf photosynthesis model for C3 crops. The model was

later extended by Collatz et al. (1991) to a comprehen-

sive biochemical model for C3 plants (FVC). Based

on this model, the potential rate of fixing carbon dur-

ing CO2 assimilation processes in C3 plants can be

expressed by three limiting factors – light-limited

photosynthesis, Rubisco-limited photosynthesis, and

photosynthesis limited by transportation or utilization

capacity of photosynthetic products. Collatz et al. (1992)

adapted the FVC modeling approach to describe a cou-

pled photosynthesis-stomatal conductance model for C4

plants. Thus, gross photosynthesis is calculated as a

function of incident solar radiation, intercellular CO2

partial pressure, and leaf temperature. WIMOVAC and

Agro-IBIS use the Collatz et al. (1992) approach to calcu-

late gross carbon assimilation (Kucharik, 2003; Miguez

et al., 2009), whereas LPJmL follows an adapted version

of the FVC method proposed by Haxeltine & Prentice

(1996). In Agro-BGC, the sun/shade model proposed by

De Pury & Farquhar (1997) with enzyme-driven bundle

sheath CO2 concentration (Chen et al., 1994) was used to
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simulate C4 photosynthesis (Di Vittorio et al., 2010).

SECRETS uses a simpler version of sunlit/shade model

proposed by De Pury & Farquhar (1997). In this

approach, carboxylation capacity (Vcmax) and potential

electron transport capacity (Jmax) are represented as

input variables in the model and assumed as constants

for all canopy foliage.

In models that use a biochemical approach to estimate

photosynthesis, autotrophic respiration consists of two

components, growth respiration, which is a fixed frac-

tion of carbon produced, and maintenance respiration

(MR). In WIMOVAC and Agro-IBIS, MR is treated as

plant structure-specific constants (Foley et al., 1996;

Kucharik, 2003; Miguez et al., 2009). In Agro-BGC and

LPJmL, MR is calculated based on fixed C:N ratios fol-

lowing the method described by Ryan (1991) and Spru-

gel et al. (1995). SECRETS uses routines from the

BIOMASS model for simulating MR (Sampson et al.,

2001).

Partitioning of biomass. Allometry is a common empirical

approach to describe the distribution of biomass into

different structural components in a crop growth model

(Marcelis et al., 1998). Biomass partition coefficients in

bioenergy crop models typically vary with GDD except

for MISCANMOD and MISCANFOR, where RUE is

directly linked to aboveground biomass (Clifton-Brown

et al., 2000; Hastings et al., 2009). In EPIC, biomass sim-

ulated in a day is partitioned into aboveground shoot

and belowground root compartments (Steiner et al.,

1987). The LPJmL model distributes biomass carbon to

pools such as leaves, roots, stems, and harvestable unit

(Bondeau et al., 2007), but WIMOVAC uses four and

Agro-BGC uses six carbon pools for distributing incre-

mental biomass growth (Miguez et al., 2009; Di Vittorio

et al., 2010) (Table 2). In Agro-IBIS, different partition-

ing factors are used for different bioenergy crops. In mi-

scanthus, leaves, roots, and stem are considered as

carbon pools. In sugarcane, daily produced biomass is

allocated to roots, leaves, stem sucrose, and structural

stem. APSIM splits aboveground biomass into five

pools: root, leaf, sucrose, structural stalk, and cabbage

(all other areal biomass) (Keating et al., 1999). CANE-

GRO, however, does not simulate daily incremental

changes in biomass but uses a functional equation for

allocating total biomass into leaves, stock, and roots (In-

man-Bamber, 1994a, b; Singels & Bezuidenhout, 2002).

Newly produced biomass in 3PG is partitioned into

leaves, stem, and roots using pool-specific partitioning

coefficients, which are dynamically adjusted for grow-

ing conditions (Landsberg & Waring, 1997). The

SECRETS model uses a modified version of the Frank-

furt Biosphere model for biomass partitioning, where a

species-specific function is used to link non-green bio-

mass pools (stem, branches, and coarse root) with green

biomass pools (leaves and fine roots) (Sampson et al.,

2001; Deckmyn et al., 2004).

Soil water, carbon, and nitrogen dynamics

Soil water components

Soil water availability is a critical parameter in deter-

mining biomass yield of a crop. Therefore, representa-

tion of major water balance components (canopy

interception, runoff, transpiration by vegetation, and

evaporation by soil) are explored in this section. Bioen-

ergy crop models used very simple to detailed descrip-

tions of crop water demand and soil water availability

(Table 3).

Canopy interception. Many bioenergy crop models con-

sider canopy interception (CI) of rainfall in their respec-

tive hydrology sub-models but follow a range of

approaches. 3PG treats CI as a fixed fraction of the rain-

fall (Sands & Landsberg, 2002), whereas in Agro-IBIS,

APSIM, and CANEGRO, CI is estimated as a function

of LAI. Agro-BGC calculates CI using a user-defined

canopy interception coefficient and LAI (Golinkoff,

2010). EPIC estimates CI using LAI, aboveground pro-

duction, and a maximum CI per unit rainfall event

while calculating CI (Williams et al., 2008). LPJmL

adopted an approach proposed by Kergoat (1998) in

which CI is treated as a fraction of potential evapotrans-

piration (ET) (Gerten et al., 2004). The SECRETS model

calculates stem and foliage components of CI separately

while accounting for total interception. In addition,

SECRETS also assumes an instant evaporation from

rainfall intercepted by foliage (Meiresonne et al., 2003).

Runoff. Net precipitation (PN = P – CI) is used by many

models for calculating runoff volume. In WIMOVAC,

Agro-BGC, and 3PG, the runoff process starts when the

soil is saturated with water. In contrast, EPIC, ALMA-

NAC, APSIM, and CANEGRO use a modified version

of the Soil Conservation Service’s (SCS) curve number

(CN) approach to simulate runoff (USDA-SCS, 1972).

Agro-IBIS simulates surface runoff by following the

instant water-retaining capacity concept in the upper

soil layer including soil surface, sum of infiltration rate

in upper soil layer, and maximum surface puddle depth

(Soylu et al., 2010). In LPJmL, runoff is derived from

three components, excess water over field capacity in

upper and lower soil layers, and water percolating

through the lower soil layer.

Evapotranspiration. Most of the selected bioenergy crop

models rely on some variant of the Penman-Monteith
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method for calculating evapotranspiration (ET), but

this varies widely across the models. In EPIC, poten-

tial evapotranspiration (ETp) is calculated based on a

modified Penman-Monteith method taking into

account atmospheric CO2 levels (Stockle et al., 1992).

Evaporation from soil and transpiration from a plant

are separately calculated in EPIC from ETp and LAI

using the method of Ritchie (1972). EPIC calculates

total soil water evaporation (after snow and water col-

lected in litter storage is evaporated) from the depth

distribution of water within the soil profile (Williams

et al., 2008). Agro-BGC uses a modified Penman-Mon-

teith equation for estimating evaporation of canopy

intercepted water, transpiration during photosynthesis,

and soil evaporation (Waring & Running, 2007). In

contrast to the widespread use of the Penman-Mon-

teith approach to estimating ET, Agro-IBIS uses an

approach proposed by Pollard & Thompson (1995) for

calculating evapotranspiration, while MISCANFOR

uses the Thornthwaite equation (Hastings et al., 2009)

and LPJmL uses an approach proposed by Prentice

et al. (1993).

In APSIM, actual evaporation estimation is adjusted

for plant residues and growing plants on the soil sur-

face, and transpiration demand is modeled as a function

of the crop growth rate and transpiration-use efficiency

(Monteith, 1986; Sinclair, 1986). ETp is partitioned into

soil and plant components in CANEGRO using LAI and

information on soil moisture. In WIMOVAC, transpira-

tion is linked to soil water content and uses information

about soil water content, user-provided critical soil

water content, and soil water at wilting point to calcu-

late actual ETp with variations in soil water (Humphries

& Long, 1995). ETp in 3PG is calculated using the Pen-

man-Monteith equation with an adjustment factor for

canopy conductance (Dye & Olbrich, 1993; Leuning,

1995; Landsberg & Waring, 1997). Transpiration in

Agro-IBIS is calculated separately for upper and lower

canopy leaves using the model proposed by Pollard &

Thompson (1995) (Foley et al., 1996; Kucharik et al.,

2000). LPJmL uses the approach by Federer (1982) to

simulate transpiration where a minimum of two supply

and demand functions determines rates of plant transpi-

ration (Gerten et al., 2004).

Table 3 Soil carbon, nitrogen, and water dynamics in selected models

Model name

Soil carbon

Nitrogen processes

Water

Carbon loss Carbon pools Processes Soil water modeling

Herbaceous perennial grass

EPIC G, E, L M, S, P M, I, D, N, V, L C, R, E, T, F, S Multiple bucket

ALMANAC NA NA M, I, D, N, V, L C, R, E, T, F, S Multiple bucket

MISCANMOD NA NA NA E, T SM no FC and WP

MISCANFOR NA NA NA E, T SM with FC and WP

WIMOVAC G, L A, S, P M, I R, E, T Multiple bucket

Agro-IBIS G, L A, S, I M, D, N, L C, R, E, T Richard’s equation/Darcy’s law

Agro-BGC G F, Me, S, R M, I, D, N, V, L C, R, E, T, S Single bucket

APSIM G B, H, F M, I, D, N, L R, E, T Multiple bucket/Richard’s equation

AUSCANE NA NA M, I, D, N, V, L C, R, E, T, F, S Multiple bucket

LPJmL G I, S No explicit nutrient cycles C, R, E, T, S Two bucket model

CANEGRO1 NA NA M, I, D, N, V, L C, R, E, T Multiple bucket

Woody perennials

3PG NA NA No explicit subroutines C, R, E, T Single bucket

SECRETS G, L M, C, L M, I, D, N, V C, R, E, T Two bucket model

CAM

EPI NA NA Nutrient index Water index Indexing

Soil Carbon

Carbon loss: G, Gaseous loss; E, Erosion (wind and water); L, Leaching.

Carbon pool: M, Microbial pool; S, Slow pool; P, Passive pool; A, Active pool; B, BIOM pools (soil microbial biomass and microbial

products); H, HUM pool; I, Intermediate pool.

Nitrogen processes

M, Mineralization; I, Immobilization; D, Denitrification; N, Nitrification; V, Ammonium volatilization; L, Leaching.

Water process

C, Canopy interception; R, Infiltration/Runoff; E, Evaporation; T, Transpiration; F, Freezing; S, Snow melt; SM, Soil moisture content;

FC, Field capacity; WP, Wilting point; NA, Not available.
1CANEGRO-N [Van der Lann et al. (2011)].
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Soil carbon and nitrogen components

Some of the selected bioenergy crop models such as

EPIC (Izaurralde et al., 2006), WIMOVAC (Long et al.,

1998), Agro-IBIS (Kucharik et al., 2000), APSIM (Probert

et al., 1998), LPJmL (Sitch et al., 2003), Agro-BGC, and

SECRETS (Sampson et al., 2001) are capable of modeling

soil organic matter (SOM) dynamics (Table 3). Many of

the bioenergy crop models have adopted or adapted

SOM and soil nitrogen modules from the CENTURY

model (Parton et al., 1988). SECRETS uses routines of

the GRASSLAND DYNAMICS model for simulating

SOM (Sampson et al., 2001). In both approaches, SOM is

categorized into different types/pools based on the rate

of decomposition. In EPIC, SOM is divided into three

pools such as microbial biomass and slow and passive

pools, with turnover time increasing from microbial bio-

mass to passive pool (Izaurralde et al., 2006). WIMO-

VAC also uses three SOM pools: active (microbial

biomass and microbial products), slow, and passive

pools (Long et al., 1998). In Agro-IBIS, surface plant

material is categorized into three residue types: decom-

posable plant matter, structural plant matter, and resis-

tant plant matter (Kucharik et al., 2000), and the

belowground soil carbon is divided into four pools:

active (microbial biomass), protected, unprotected, and

stabilized pools. Specific microbial efficiencies are asso-

ciated with the transformation of organic carbon into

different SOM pools. Agro-BGC has four soil carbon

pools, (e.g., fast, medium, slow, and recalcitrant). In

addition, there are three litter pools and a coarse woody

debris pool. Dead coarse roots and stems enter into a

coarse woody debris pool, which then enter into the

various litter pools over time depending on soil mois-

ture and temperature. These litter pools decompose and

enter into the SOM pools. SOM decomposition is con-

strained by soil water and temperature (Thornton, 1998;

Golinkoff, 2010). In APSIM, single fresh organic matter

pool is used to represent surface plant materials, and

belowground SOM is divided into three different pools:

BIOM (microbial biomass), HUM (other belowground

organic matter), and INERT (part of HUM) pools (Prob-

ert et al., 1998; Thorburn et al., 2005). In LPJmL, SOM

dynamics is described through one litter pool and two

SOM pools, such as intermediate and slow pools (Sitch

et al., 2003). Surface/soil litter is partitioned into meta-

bolic, cellulosic, and lignin pools in SECRETS (Sampson

et al. 2001; Thornley, 1998). Depending on the soil clay

content, litter with high lignin content is further divided

into protected and unprotected SOM pools, and unpro-

tected SOM is transformed into stabilized SOM based

on nitrogen concentrations in the mineral pools. Loss of

soil carbon during transformation across different pools

is also addressed in the model (Thornley, 1998). APSIM,

Agro-BGC, and LPJmL allow gaseous loss of carbon,

while Agro-IBIS, WIMOVAC, and SECRETS account for

the gaseous and leaching losses. EPIC considers erosion

loss of soil carbon along with gaseous and leaching loss

(Probert et al., 1998; Sitch et al., 2003; Golinkoff, 2010).

The model EPIC, ALMANAC, Agro-BGC, AGRO-IBIS,

APSIM, and SECRETS represent relevant soil nitrogen

processes (Table 3).

Abiotic stresses

The impact and accurate representation of environmen-

tal stresses on various plant growth and developmental

processes are critical components that need to be

addressed in a crop model. EPIC and ALMANAC

include stresses due to water, temperature, nutrient, and

aeration on bioenergy crop growth (Table 4). For exam-

ple, water stress is calculated as a ratio of the daily water

uptake to the daily potential transpiration. Thus, the

value of stress factors ranges from 0–1, with 0 indicating

complete stress and 1 indicating no stress. Similarly,

EPIC uses a ratio-based approach to derive stress factor

values for temperature, nutrient availability, and aera-

tion. The daily growth limiting factor (REG) is deter-

mined as the minimum of these stress factors, and daily

potential LAI and biomass production are adjusted

using REG (Williams et al., 2008). In the CANEGRO

model, water stress is quantified using a soil-water stress

factor (Singels & Bezuidenhout, 2002), which is similar

to EPIC’s water stress function. APSIM follows a similar

approach but uses two soil-water deficit factors, one that

reduces RUE and another that reduces the rate of daily

leaf expansion (Keating et al., 1999). In both CANEGRO

and APSIM, carbon assimilation and leaf expansion are

affected when leaf nitrogen concentration is below a crit-

ical level (Lisson et al., 2005). In Agro-IBIS, leaf tempera-

ture and moisture stress functions are applied to modify

the gross primary production (GPP) and stomatal con-

ductance. A soil nitrogen stress function is used to mod-

ify the crop parameters to account for the impact of

nitrogen availability. Additionally, temperature, water

stress, and nitrogen stress determine the leaf respiration

rate (Kucharik & Brye, 2003). In Agro-BGC, water stress

is implemented via the influence of leaf water potential

and vapor pressure deficit on stomatal conductance (Mu

et al., 2007). WIMOVAC uses a simple linear function to

reduce stomatal conductance under water stress condi-

tion and adjusts growth stage-specific biomass partition-

ing factors with changes in water stress conditions.

WIMOVAC uses a simple empirical water stress

response function to monitor changes in average daily

plant water potential against the pre-fixed growth stage-

specific threshold water potential (Long et al., 1998).

Whenever the average daily plant water potential is
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below the corresponding threshold value, more biomass

is allocated to the root by changing the biomass partition

coefficient. In MISCANFOR, RUE is reduced by water,

temperature, and nutrient stresses (Hastings et al., 2009).

In this model, the value of the water stress factor is

increased from 0 to 1 as the soil water content changes

from wilting point to field capacity. Additionally, a tem-

perature variation factor is applied to account for the

impact of temperature impact on RUE. Potential biomass

production in 3PG model is modified by environmental

factors such as temperature, soil water, vapor pressure

deficit, and nutrition. Each factor is calculated as a frac-

tional value ranging between 0 and 1, which is then mul-

tiplied with potential biomass production to calculate

actual biomass production (Landsberg & Waring, 1997).

Databases for calibration and validation of

bioenergy crop models

The Biofuel Ecophysiological Trait and Yield Database

(BETY-db), which is maintained at the University of Illi-

nois, was created in order to compile the available field

data on ‘second-generation’ biofuel crops and provide

information on the productivity and ‘trait’ information

of different species and cultivars at different sites. Glob-

ally, the database currently contains 3950 yield observa-

tions and 20 896 observations on plant traits and

ecosystems services. These data were extracted from 455

publications covering 647 study sites. Uncertainty esti-

mates and sample size are attached to observations

when they are present. The database is fully searchable

by species, trait, and geographic location using an intui-

tive Google Maps based interface, and also provides

interactive maps of model-based yield estimates for

the conterminous US for Miscanthus, switchgrass,

and hybrid poplar. Yield data are focused on temperate

perennial grasses (Panicum n = 1897, Miscanthus n = 624,

Poa n = 209), tropical canes (Saccharum n =244), and tem-

perate trees (Poplulus n = 509, Salix n = 288) with most

observations from North America and Europe, but a few

are from other continents as well. Detailed information

on treatments (e.g., different levels of N addition) and

crop management operations (e.g., dates of planting and

harvest) are also available. Trait and ecosystem service

data span a broad range of properties commonly used

in ecosystem models for calibration and validation, such

as photosynthetic parameters, leaf mass per unit area,

LAI, and tissue-specific stoichiometries, turnover times,

and respiration rates. Trait data also encompass a

broader array of species (39 genera have over 50 obser-

vations) and biomes. Ongoing development within the

database is focused on expanding functionality to serve

as a recognized public repository for biofuel data that

are accepted by funding agencies and journals requiring

data deposition and data management plans. More

information about BETY-db can be found at https://

ebi-forecast.igb.illinois.edu/bety/.

Needs, opportunities, and future challenges of

bioenergy crop simulations

Similar to other process-based models, bioenergy crop

models such as those summarized here require quality

input data (Table 5) and data for parameterization,

Table 4 Stress factors considered in different models

Models Type of stress Adjusted variable

Herbaceous perennial grass

EPIC W, T, N, A Biomass, LAI

ALMANAC W, T, N, A Biomass, LAI

MISCANMOD NA Biomass, LAI

MISCANFOR W, T, N Biomass, LAI,RUE

WIMOVAC W Partitioning, Stomatal conductance

AgroIBIS W, N Gross photosynthesis rate

Agro-BGC W, N Gross photosynthesis rate, leaf growth, allocation

APSIM W, N Biomass, LAI

AUSCANE W, T, N, A Biomass, LAI

LPJmL W, T LAI, Photosynthesis

CANEGRO W, N Leaf Area, Photosynthesis

Woody perennials

3PG W, T, N Leaf Area, Photosynthesis, Root growth

SECRETS W Leaf Area, Photosynthesis

CAM

EPI W, T, N, S Potential growth

W, Water; T, Temperature; N, Nutrient; A, Aeration; S, Solar radiation; LAI, Leaf Area Index; RUE, Radiation Use Efficiency.
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validation, and uncertainty quantification. Research on

bioenergy crops began only recently and thus compared

with other traditional crops, detailed agronomic infor-

mation of growth, development, and management of

bioenergy crops is scarce. This limits effective parame-

terization, model improvement, and efficient application

of bioenergy crop models (Thomson et al., 2009; Heaton

et al., 2010). Fortunately, several databases are being

developed and this will ensure the summarization and

sharing of quality data for model evaluation and model

inter-comparisons.

An integrated framework for the efficient execution of

bioenergy crop models would be useful as the commu-

nity moves from site to larger regional to continental

scale simulations. A computational framework is espe-

cially important for high-resolution modeling, starting

with preparation of spatially explicit input data, execu-

tion of model runs, analysis of results, and visualiza-

tion. Such a framework should have (1) a geographic

information system (GIS) for the preprocessing of spa-

tial datasets, (2) an efficient computational platform for

high-performance simulations, and (3) powerful post-

processing and analysis of model output. Detailed

information about local geographic features and spatial

patterns of land use/land cover, soil, topography, and

climate data, which is critical for accurate assessment of

sustainability of biomass cultivation (Hellmann & Ver-

burg, 2011), can be efficiently processed in support of

Table 5 Input data for the selected models

Model Input data

EPIC Daily minimum and maximum temperature, precipitation, solar radiation, maximum leaf area index, maximum

rooting depth, heat units to maturity, base temperature, radiation use efficiency, and crop management practices.

ALMANAC Daily minimum and maximum temperature, precipitation, solar radiation, maximum leaf area index, maximum

rooting depth, heat units to maturity, base temperature, and crop management practices.

MISCANMOD Daily or monthly temperatures and precipitation, solar radiation, important soil properties (Soil moisture holding

capacity and plant available water), radiation use efficiency, and cumulative degree days for ending crop season.

MISCANFOR Daily or monthly mean temperature, precipitation, solar radiation, soil data also required including soil water

holding capacity, clay content, wilting point, field capacity, and bulk density. Radiation use efficiency, leaf

expansion index and base temperature, length of growing season for photosynthesis expressed in degree days.

WIMOVAC Temperature, solar radiation, relative humidity, wind speed, precipitation. If daily data are available, hourly data

can be generated internally, maximum rate of carboxylation, quantum efficiency, dark respiration. Dry matter

partitioning coefficients, thermal periods in degree days for six growth stages; soil properties (maximum rooting

depth, field capacity, wilting point, etc.) and photosynthetic parameters including quantum efficiency maximum

rate of assimilation, and dark respiration.

Agro-IBIS Temperature, solar radiation, relative humidity, wind speed, and precipitation. If daily data are available, hourly

data can be generated internally, maximum rate of carboxylation, quantum efficiency, dark respiration, soil

properties, initial carbon pools, and management.

Agro-BGC Requires up to 54 static vegetation parameters, nine location and soil parameters, daily climate data, and annual

atmospheric CO2 concentrations and nitrogen deposition and fixation inputs. The six daily climate variables

required to run Agro-BGC are maximum and minimum temperature, precipitation, vapor pressure deficit,

net downward shortwave radiation, and day length.

APSIM Temperature, solar radiation, relative humidity, wind speed, precipitation, radiation use efficiency, leaf area index,

and thermal time in degree days, soil depth, water holding capacity, and nitrogen status, crop management

practices

AUSCANE Maximum and minimum daily air temperature, leaf area index, biomass portioning, harvest index, soil albedo, bulk

density, texture, nutrient status, organic carbon content, and crop management practices

LPJmL Monthly data for mean temperature, precipitation, number of wet days, and sunshine hours. Soil texture,

atmospheric CO2 concentration, and management practices are also required.

CANEGRO Maximum and minimum temperature, rainfall, solar radiation, maximum relative humidity, wind speed, dew point

temperature, soil water parameter (drained upper limit, lower limit, saturated water capacity, root distribution

weighting) cultivars (23 parameters), crop management practices

3PG Daily or monthly minimum and maximum air temperature, monthly rainfall, number of rain and frost days per

month, and monthly average day-time vapor pressure deficit. Initial biomass in foliage, stems, and roots, estimates

of quantum-use efficiency, soil type parameters.

SECRETS Maximum rates of Rubisco carboxylation and potential electron transport rate are required. Coefficients are

necessary to determine carbon allocation to shoot and roots. Site data on soil texture and rooting depth must

be specified.

EPI Daily global radiation, percent of maximum sunshine hours, maximum and minimum nighttime temperature,

maximum and minimum relative humidity, and total rainfall
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high-resolution biomass simulations using GIS software

(ArcGIS by ESRI, Redlands, CA, USA). While numerous

examples are available that show large scale, spatial

simulations of biomass yields and thus the utility of

GIS, Zhang et al. (2010) used GIS to facilitate prepro-

cessing of terabytes of input data, define homogeneous

spatial modeling units, and extract input information

for use in their biophysical and biogeochemical model

(e.g., EPIC) at regional scales. In addition, the spatially

explicit integrative modeling framework (SEIMF) devel-

oped by Zhang et al. (2010) contains components for (1)

importing millions of text files generated by EPIC into

PostgreSQL relational database for online sharing, post

analysis, and visualization, and (2) optimizing spatial

configurations of biofuel cropping systems by simulta-

neously considering multiple, often conflicting, objec-

tives (e.g., productivity, nitrogen leaching, and GHGs

emission). Such an approach coupled with the high-res-

olution simulations of bioenergy crop yields placed a

heavy computational burden on their analysis. In this

context, high-performance computing systems have

been used to address this challenge. Nichols et al. (2011)

recently described a high performance computing

(HPC)-EPIC application capable of executing in parallel

the millions of simulations required for high-resolution

regional studies. By using 32 CPUs on an SGI Altix clus-

ter system, the parallel computing capacity of HPC-EPIC

allows reducing the total execution wall time from 300 to

8 h for an EPIC execution problem with a total of

1 048 358 simulations (Nichols et al., 2011).

Quantification of uncertainty of bioenergy crop simu-

lations is another challenge as it is seldom systemically

conducted for most crop modeling studies. Like other

process-based models, uncertainty in bioenergy crop

modeling is typically from three major sources – input

uncertainty, model uncertainty (structure and parame-

ter), and observation uncertainty. In the presence of

input and structural uncertainty, traditional calibration,

and validation procedures would fail to guarantee reli-

able parameter estimation. Some of these uncertainties

may be propagated during simulation. Therefore, a

comprehensive uncertainty analysis framework, includ-

ing examination of uncertainties associated with

observed data, model structure, and model parameters

needs to be established to analyze and understand

current modeling variability and limitations.

Conclusions

Fourteen models used to simulate herbaceous and

woody bioenergy crops, as well as crops with CAM

metabolism were reviewed. These models vary in their

degree of sophistication. Field trials that address the

influence of genetic, environmental, and crop manage-

ment on biomass production will provide valuable data

for the development and calibration of bioenergy crop

models. Field data are, however, available for only a

few countries and a few bioenergy crops, which limits

model validation and application. Nonetheless, new

energy crop models continue to be published (Cuadra

et al., 2012; Lee et al., 2012) thus documenting wide-

spread interest in this area. Future research should

address the development of (1) specific models for

emerging bioenergy crops (e.g., energy cane and CAM

crops), (2) platforms that facilitate acquisition and shar-

ing of high-quality field experimental data for model

development and testing, and (3) an integrated

framework for efficient execution of large-scale simula-

tions and processing of input and output data.

Advances in these areas will enable the scientific com-

munity to further evaluate sustainable bioenergy

production systems.
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