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Abstract. Quantitative predictions are ubiquitous in ecology, yet there is limited discussion
on the nature of prediction in this field. Herein I derive a general quantitative framework for
analyzing and partitioning the sources of uncertainty that control predictability. The implica-
tions of this framework are assessed conceptually and linked to classic questions in ecology,
such as the relative importance of endogenous (density-dependent) vs. exogenous factors, sta-
bility vs. drift, and the spatial scaling of processes. The framework is used to make a number of
novel predictions and reframe approaches to experimental design, model selection, and
hypothesis testing. Next, the quantitative application of the framework to partitioning uncer-
tainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate
for a new comparative approach to studying predictability across different ecological systems
and processes and lay out a number of hypotheses about what limits predictability and how
these limits should scale in space and time.
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INTRODUCTION

How predictable is nature? This question is central to
ecology, regardless of whether the goal is to comprehend
nature from an empirical perspective, to seek a more
general theoretical understanding, or to provide practi-
cal insight into the management of natural systems. Any
ecologist making measurements in the field or the lab
seeks to find patterns in the natural world. In doing so,
they rely on observations and experiments to test
hypotheses about what processes lead to consistent, pre-
dictable outcomes and to distinguish these from patterns
that arise by chance. Generations of ecologists have filled
journals, books, and dissertations with examples of pre-
dictable patterns in nature. Theorists and modelers have
aimed to synthesize and abstract this understanding to
better understand the general principles underlying
processes. The best of these theories and models make
explicit predictions, which can lead both to new testable
hypotheses under novel conditions and allow applied
ecologists to better manage and conserve the natural
world.
However, while questions about predictability cross all

disciplines of ecology, there has been comparatively little
discussion on the nature of prediction in ecology, from
either a theoretical or practical perspective (Evans et al.
2013, Mouquet et al. 2015, Petchey et al. 2015, Houla-
han et al. 2017). The importance of ecological pre-
dictability for practical applications is clear: to make

ecology more relevant to policy, management, and deci-
sion making, we need a better understanding of what we
can forecast and how those forecasts can be improved
(Clark et al. 2001, Dietze 2017, Dietze et al. 2017). Fur-
thermore, understanding what factors affect predictabil-
ity directly impacts what data we collect, how models are
structured, and the statistical tools we use to link models
to data. However, the need to understand predictability
also has tremendous importance for advancing basic
research. Prediction embodies the core principles of the
scientific method, allowing us to make a specific, quanti-
tative, and testable prediction about the future, to
observe the outcome, and to refine our hypotheses. Fur-
thermore, the lack of a general framework for prediction
in ecology impedes both the analysis of specific prob-
lems and the search for generality across systems.
The goal of this paper is to present a general first-prin-

ciples framework to understanding the predictability of
dynamic ecological systems. Assessing predictability
requires explicit metrics for measuring predictability,
and herein I focus on prediction uncertainty, the rate at
which prediction uncertainty increases into the future,
and how prediction uncertainty scales in space and time.
In the first section, a general framework is derived and
linked to broad conceptual themes in ecology, as well as
to practical challenges in data collection, statistical anal-
ysis, modeling, and forecasting. Qualitatively, this frame-
work facilitates discussion of the factors that determine
predictability, links these factors to classic debates in
ecology, and makes a number of explicit predictions and
recommendations. Quantitatively, it enables comparison
of the absolute and relative contributions of different
sources of uncertainty, both within a given problem and
across different ecological processes. In the second
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section, as an example, this approach is applied to the
prediction of short-term forest carbon fluxes. In the
third section, I end with a discussion of new questions
and research directions in predictability across ecology.
Specifically, I advocate for a comparative approach to
assessing the factors that determine predictability across
systems, which allows us to look for patterns and gener-
alities that span all subdisciplines. Given limited time
and resources, this knowledge would likewise be emi-
nently practical, as it would allow us to better target
resources at understanding the dominant sources of
variability for a particular class of problem, rather than
having to tackle all sources of uncertainty equally. Fur-
thermore, this framework has the potential to stimulate
new basic research and accelerate progress across a wide
range of fields, especially when applied through an
iterative cycle of near-term prediction and hypothesis
refinement.

A FIRST-PRINCIPLES APPROACH

Consider the general problem of trying to predict a
specific ecological quantity of interest, Y, that describes
the state of the system (e.g., population size, presence/ab-
sence at a specific location, species composition, number
of infected individuals, biomass, nutrient pools) at some
specific point in time, t. In this context, Yt is known as a
state variable. For most ecological processes the state of
the system in the future, YtþDt, will depend, in part, on
the current state of the system, Yt. This dependency of
the future state on the current state defines what is
known as a dynamic system. The relationship between
these two states in time is driven by both the internal, or
endogenous, dynamics and by external, or exogenous,
drivers/covariates, which I’ll denote here as Xt. Both Yt

and Xt may be either single values (scalars) or vectors
describing multiple states and/or drivers. Let’s next
assume that there’s some function, f, that describes our
current understanding about how Yt and Xt affect YtþDt

and that this function requires a set of parameters h.
Because there will always be some difference between the
predicted state of the system and its true state, we will
also include a process error, et. This process error is not
the residual observation error, but the dynamical error in
the predicted transition from one point in time to
another. Finally, for most ecological predictions, the
parameters h are not physical constants, but empirically
estimated coefficients. Because ecological processes can
be quite variable across space, time, and taxa, let’s split h
into two components, �hþ a, where �h describes the mean
of the parameters and a is the deviation from that mean
experienced at a particular time, location, species, etc. In
statistics, a is known as a random effect and is used to
accommodate systematic variability in processes across
multiple scales that is observed but not (yet) explained
by the internal dynamics or external covariates.
Putting together the factors described above gives us

the following general model of ecological dynamics

Ytþ1 ¼ f ðYt;Xtj�hþ aÞ þ et (1)

This modeling framework describes a large fraction of
the statistical and process-based models used across
many ecological subdisciplines, such as most models of
population and community dynamics and ecosystem
and biogeochemical pools and fluxes. The model also
encompasses important special cases, such as
Ytþ1 ¼ f ðXtj�hÞ þ et , which includes linear and nonlinear
regression models, and Ytþ1 ¼ f ðXtj�hþ aÞ þ et, which
includes mixed models. Furthermore, this formulation is
agnostic to whether f takes on a specific parametric
functional form or is represented by more general, flexi-
ble approaches (splines, GAMs, random forests, etc.).
Given this general dynamic model (Eq. 1), we can

assess how different factors in the model affect the pre-
dictability of the system. While there are a number of
different potential measures of predictability, one critical
component is the uncertainty in the prediction, which
we can quantify in terms of the variance in the predic-
tion, Var½Ytþ1�. Predictive variance generally increases
with time, and the limit to predictability is determined
by when the prediction is doing no better than chance
(i.e., uncertainty exceeds natural variability or some
other null model, Fig. 1A). The exact contributions of
each factor in Eq. 1 to the predictive variance will
depend on the specific functional form of f and the prob-
ability density functions for each of the factors consid-
ered, fYt;Xt

�h; a; eg, but a general understanding can be
found from a linear approximation of f. If we assume,
for simplicity, that the covariance across the different
factors is negligible, the predictive variance can be
written as

Var Ytþ1½ �� @f
@Y

� �2

|fflfflfflffl{zfflfflfflffl}
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þ Var½e�|fflffl{zfflffl}
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¼ INTERNALþEXTERNAL

þðPARAMETERSþRANDOMEFFECTSÞ
þPROCESSERROR

(2)

This equation follows a simple and intuitive pattern; the
contribution of each factor can be expressed in terms of
the sensitivity of f to that factor and the factor’s uncer-
tainty. In general terms, this means that the most impor-
tant factors affecting the predictability of any particular
ecological process are those that are both highly sensitive
and highly uncertain. More broadly, any of the factors
can be important if they have high sensitivity or are
highly uncertain, and knowing about sensitivity or
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uncertainty alone is not sufficient to understand pre-
dictability (LeBauer et al. 2013).
In the sections that follow, I discuss some general

insights that can be gleaned by considering each factor
in turn. However, the power of Eq. 2 in any specific
application comes from its ability to quantitatively break
down an overall prediction into its components. There is
much to be learned about the predictability of ecologi-
cal systems by comparing the relative contributions of
these factors to the predictability of different ecological
processes.

ENDOGENOUS STABILITY AND INITIAL CONDITION

UNCERTAINTY

The first term in Eq. 2 describes the contribution of
the internal dynamics of an ecological system to its pre-
dictability. This term can be broken down into the uncer-
tainty about the current state of the system, also known
as initial condition (IC) uncertainty, and the internal sen-
sitivity, also known as the endogenous stability. The

stability in this context is the exact same concept of sta-
bility taught in general ecology textbooks when dis-
cussing classic ecological models (Lotka 1910, Volterra
1926), and frequently accompanied by pictures of balls
rolling off hilltops (unstable equilibria) and into valleys
(stable equilibria). That classic theoretical concepts show
up prominently in Eq. 2 is heartening, as it means dec-
ades of ecological research and teaching are directly rele-
vant to questions of predictability.
As with classic theory, the threshold between stable and

unstable dynamics is important for understanding pre-
dictability. From the perspective of Yt, Eq. 2 is a recursive
model (Var½Ytþ1� is a function of Var½Yt�) directly analo-
gous to the recursive model for exponential growth.
Therefore, if j@f =dY j[ 1 the system is unstable and the
initial condition uncertainty, Var½Yt�, will grow exponen-
tially with time and quickly dominate all other terms
(Fig. 1B). This situation occurs in another familiar predic-
tion problem, weather forecasting. Since the atmosphere is
inherently unstable, any uncertainty about the current
state of the atmosphere grows rapidly through time.
Because of this, meteorological forecasting is generally
considered an initial condition problem (Lorenz 1963).
This is not just a theoretical curiosity. Massive amounts of
atmospheric data are collected every day globally (ground
measurements, radar and other upward-looking sensors,
weather balloons, airborne measurements, and a wide
range of weather satellites), most of which is collected pri-
marily so that it can be fed into model-data assimilation
systems to minimize initial condition uncertainty (Kalnay
2002, Lewis et al. 2006, Evensen 2009).
By contrast to unstable systems, where initial condition

uncertainty dominates, when j@f =dY j\1 a system is said
to have stabilizing feedbacks and the initial condition
uncertainty will decay exponentially over time (Fig. 1B).
This exponential decay does not guarantee that the initial
condition uncertainty will be small, indeed it may still
drive near-term forecasts, but it does suggest that other
sources of uncertainty will eventually become dominant.
Some ecological systems, such as epidemic diseases, do
appear to be chaotic or to exhibit critical periods of inher-
ent instability (Bjørnstad et al. 2002, Ferrari et al. 2008).
That said, research on chaos more generally in ecology
has met with mixed results (Ellner and Turchin 1995,
2005, Pastor and Cohen 1997, Schimel et al. 2005, Bjørn-
stad 2015) and there are many examples of stabilizing
feedbacks in ecology. Furthermore, truly chaotic popula-
tions would fluctuate wildly, resulting in frequent popula-
tion crashes, genetic bottlenecks, and high risk of
stochastic extinction. Therefore, as a working hypothesis,
I posit that for most ecological forecasting problems we
cannot ignore the other terms in Eq. 2.
Another important insight from Eq. 2 is that the first

term is the only one that has a recursive feedback, and
thus the only term that will grow or decay exponentially.
By contrast, all other terms will respond linearly through
time. Because variances and squared sensitivities are
always positive, this implies that all other terms will

FIG. 1. Conceptual relationship between predictive error
(square root of predictive variance) and predictability. (A) The
limit to predictability (arrows) occur when forecast uncertainty
exceeds our null expectation (typically determined by natural
variability). (B) The internal stability of the system, df/dy, deter-
mines whether initial condition uncertainty grows or decays
exponentially.
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strictly increase with time. Therefore a general expecta-
tion is that forecast uncertainty will increase with time.
More specifically, uncertainty will increase whenever

@f
@Y

� �2

[ 1�

@f
@X

� �
Var½X �2

þ @f
@h

� �2

ðVar½�h� þVar½a�Þ þVar½e�

Var½Yt �
(3)

Because the ratio on the right-hand side (RHS) is posi-
tive, uncertainty will always increase for unstable systems.
For stable systems, if uncertainty is initially increasing
then the denominator will increase through time, reduc-
ing the ratio, and vice versa. In either case, the uncer-
tainty will converge to a steady state (Fig. 1 Top). A
useful corollary to this analysis is that care should be
taken when interpreting the predictability of models that
only include internal dynamics (e.g., most classic popula-
tion models), both because they lack all the terms in the
numerator of Eq. 3 and because IC uncertainty should
decline over time in most ecological systems.
Finally, many classic ecological debates have centered

around the stability and predictability of system dynam-
ics, such as arguments about climax communities (Cle-
ments 1936) vs. individualistic responses (Gleason 1926)
vs. neutral processes (Hubbell 2001). In practice, the
observed predictability of these dynamics can be very
scale dependent (Levin 1992), in a way that is consistent
with the expectations set in Eqs. 2 and 3. For example,
when looking at vegetation dynamics at larger spatial
and temporal scales, a lot of external and process vari-
ability is averaged over (Turner et al. 1993), reducing
these terms in the numerator. This leads to a steady-state
variance, as opposed to the increasing variance predicted
for neutral systems j@f =dY j ¼ 1 that lack intrinsic sta-
bility (Clark and McLachlan 2003). By contrast, at finer
spatial and temporal scales, these same terms are larger,
and thus the predictability of the dynamics would be
lower (Norden et al. 2015), even if the intrinsic stability
were to remain the same.

EXOGENOUS STABILITY AND UNCERTAINTY

If the first term in Eq. 2 describes a system’s endoge-
nous (internal) stability, then the second term describes
its exogenous (external) sensitivity, its sensitivity to exter-
nal forcing. Consider first Var[X], the uncertainty in the
model’s covariates or drivers. Eq. 2 demonstrates that
systems that are sensitive to unpredictable drivers will
themselves be unpredictable. On the flip side, higher pre-
dictability (lower variance) occurs either when the sys-
tem is insensitive to environmental variability (e.g., a
resilient life-history stage, such as a seed bank, that buf-
fers a population) or sensitive to drivers that are highly
predictable (e.g., synchrony of an ecological process to
diurnal, tidal, or annual cycles; Luo et al. 2015).

Predictability can likewise be context and scale depen-
dent. For example, a process that is sensitive to spatial
variability in some input (e.g., soils) may be highly pre-
dictable at a given location but hard to predict across
space due to higher input uncertainty. Likewise, as noted
earlier, spatial and temporal variability in drivers may
average out at larger scales, especially if drivers at differ-
ent locations or times are decoupled. This illustrates
another important point: in deriving Eq. 2 we assumed
that the covariances among the terms was negligible, but
this is unlikely to be true when assessing the contribu-
tions within a term. The more general form, when con-
sidering multiple drivers, is

XX @f
@Xi

@f
@Xj

COV½Xi;Xj � (4)

from which we can see that the covariance between
drivers can either increase the overall uncertainty
(positive covariance and derivatives the same sign OR
negative covariance and derivatives opposite sign) or
decrease the uncertainty (vice versa) depending on the
signs of the covariances and the derivatives. When con-
sidering the same driver at different times or locations,
as in the above example, such drivers will typically be
autocorrelated (Cohen and Pastor 1991). This implies
that the uncertainty will be higher, and variability will be
slower to average out, than if sites were independent.
For any particular problem, the autocorrelation in time
or space can be quantified (e.g., via a correlogram) to
make a specific numerical (and potentially falsifiable)
prediction about the rate at which uncertainties should
average out when scaling up.
By contrast, if Xi and Xj are two different drivers, we

will have little a priori expectation for whether their
covariance will be positive or negative. At first glance
our expectations for the signs of the sensitivities may
likewise seem unknown as well, but all else being equal
these responses to environmental variables often repre-
sent ecological and physiological trade-offs, in which
case we might expect their slopes to be aligned in the
way to reduce variability. That said, making strong
assumptions here could easily lead us astray, and thus
the more important recommendation is a reminder of
the need to consider such interactions when making
measurements and building models.
The other important observation about the exogenous

term in Eq. 2 is that if a forecast of Ydepends on X, then
we must be able to forecast X as well. While the exoge-
nous term is not itself recursive, the forecast of X gener-
ally will be. Therefore the same conclusions we reached in
the previous section about the increase in forecast uncer-
tainty for Y will likewise apply to X. Specifically, Var[X] is
expected to increase with time, at a rate depending on the
strength of its own stabilizing feedbacks and the uncer-
tainties involved in its prediction. All else being equal,
this implies that the relative importance of Var[X] will
increase with time. That said, some drivers will increase in
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uncertainty quickly (e.g., weather) while others may be so
slow to change as to be essentially constant for many
forecasts (e.g., topography, soils).
Because driver uncertainty tends to increase with time,

the covariates useful for making predictions may be dif-
ferent from those used for explaining the same process.
Consider two possible explanatory variables X1 and X2.
Let’s assume that, when using past data, X1 is found to
be a better predictor of Y than X2. All else being equal,
this implies that we should use X1 to forecast Y into the
future, but what if the future uncertainty in X1, Var[X1], is
larger than that for X2. How do we decide whether to use
X1 or X2 when forecasting Y? Eq. 2 gives us a precise pre-
diction on this matter. If Var[e1] and Var[e1] are the pro-
cess errors associated with the models containing X1 and
X2 respectively, then X1 will produce a lower uncertainty
prediction than X2 if ð@f =@X1Þ2Var½X1� þ Var½e1�\
ð@f =@X2Þ2Var½X2� þ Var½e2�. Conceptually, this implies
that we favor X1 if its explanatory power (lower process
error) is sufficient to offset its higher uncertainty, but the
exact threshold depends on the relative sensitivities of X1

and X2. Another way of looking at this is that the sensi-
tivities are required to express Var[X] and Var[e] on the
same scale so that they can be compared.
Another important conclusion implied by Eq. 2 is that

the experimental or observational design for prediction is
often different from that used for hypothesis testing. In
the classic hypothesis testing framework, the question
being asked is “does X affect Y.” By contrast, Eq. 2
implies that for prediction the central question is “how
much does X affect Y,” which is a question about the slope
of the relationship between the two variables, @Y=@X .
More generally, we are interested in the shape of this rela-
tionship. The answer to these questions cannot be
reached with an ANOVA experimental design but rather
requires a regression design, whereby X is varied along a
continuum that spans its expected range of variability.
Finally, the first and second terms of Eq. 2 relate to a

long-standing debate in ecology about the importance of
endogenous (density-dependent) factors vs. exogenous
factors in controlling the dynamics of ecological systems
(Davidson and Andrewartha 1948). Eq. 2 does not pro-
vide any a priori expectations about the relative magni-
tudes of these terms, but it does provide a means of
expressing different factors in the same terms (predictive
variance), which allows us to make direct comparisons
both across and within terms (e.g., relative importance
of different drivers).

PARAMETERUNCERTAINTY

The third term in Eq. 2, @f =@hð Þ2Var½�h�, addresses the
effects of parameter sensitivity and uncertainty. Unlike
the previous two terms, which are closely tied to our
understanding of the underlying ecological dynamics,
this term captures statistical calibration and the weight
of evidence in hand. In other words, do we have enough
data to make a confident prediction? To address this

question, we need to understand the difference between
parameter sensitivity and parameter uncertainty and
how each contributes to predictive uncertainty in a fore-
cast. Parameter uncertainty centers around a basic statis-
tical question: how well do we know the mean of h? Basic
statistics tells us that the uncertainty about the parameter
mean, Var½�h�, is largely a question of sample size.
When data are sparse, parameter uncertainty will be

large and can often dominate ecological forecasts. This
is particularly likely to occur for chronically data-limited
problems, such as new invasive species and emerging dis-
eases, where the system being forecast has not been
observed before. A Bayesian perspective is particularly
valuable in these cases, as it allows the formal incorpora-
tion of prior information, for example from meta-ana-
lyses (Koricheva et al. 2013, LeBauer et al. 2013) or
expert elicitation (Morgan 2014).
The other situation where parameter uncertainty dom-

inates is with models that are over-parameterized (i.e.,
have too many parameters relative to the amount of data
used to calibrate them). Over-parameterization (also
known as over-fitting) is typically addressed via some
form of model selection, where alternative models are
considered that vary in complexity and data are used to
choose the most parsimonious fit (Hooten and Hobbs
2014). Most forms of model selection are trying, either
explicitly or implicitly, to strike a balance between resid-
ual error and parameter uncertainty. Typically, as the
number of parameters in a model is increased, the model
is able to better fit the data, which causes the residual
error to decrease. However, as the number of parameters
increases, the parameter uncertainty likewise increases.
Therefore, for a fixed amount of data, there is some inter-
mediate model complexity that minimizes the total
uncertainty (Gelfand and Ghosh 1998). When working
with parametric statistical models (e.g., linear regression),
most ecologists are familiar with the problem of over-fit-
ting and are aware of how to avoid it. Where over-fitting
is much more problematic is with both data mining and
process-based models. The data mining community is
likewise keenly aware of the over-fitting problem
(Hawkins 2004, Radosavljevic and Anderson 2014), but
over-fitting remains very easy to do when working with
flexible semi-parametric models. The process-based mod-
eling community, on the other hand, is prone to building
models with hundreds of parameters without quantifying
parameter uncertainty explicitly, and then failing to prop-
agate parameter uncertainty into forecasts (Dietze et al.
2013). When parameter uncertainty is added to such
models, forecasts that span or exceed the full range of
biologically plausible outputs are not uncommon.
While forecasts may start out with high parameter

uncertainty, classic sampling theory also tells us that
Var½�h� will asymptotically decline to 0 as the amount of
data increases, typically in proportion to 1=

ffiffiffi
n

p
. There-

fore, provided any forecasting problem takes an iterative
approach of incorporating new data as it becomes avail-
able, parameter uncertainty will tend to decline with time.
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That said, in most models, parameter values tend to be
constant in any given model run. Therefore, parameter
error behaves like a bias: it does not average out and thus
will tend to be more important when aggregating predic-
tions to scale up in space or time. Thankfully, Eq. 2 pro-
vides important guidance for how to reduce this
uncertainty most efficiently. Specifically, @f =@hð Þ2Var½�h�
implies that parameter uncertainty and parameter sensi-
tivity contribute equally to predictive uncertainty. The
value of this product, calculated for each parameter, can
thus be used to determine the relative contributions of
different parameters to the overall parameter uncertainty
(LeBauer et al. 2013, Dietze et al. 2014). Once key
parameters have been identified, additional data collec-
tion and synthesis can be directed specifically at the pro-
cesses involved. Furthermore, @f =@hð Þ2Var½�h� illustrates
that a parameter can be important either because it is
highly sensitive, or because it’s poorly constrained, and
that simply knowing one of these two components (uncer-
tainty or sensitivity) is insufficient to determine which
parameters are driving a model. However, once a parame-
ter has been identified as important, the partitioning
between uncertainty and sensitivity can be very helpful
when prioritizing data collection. Specifically, parameters
that are poorly constrained but less sensitive provide a
faster return on investment because they are in the initial
steep part of 1=

ffiffiffi
n

p
. By contrast, parameters that are well

constrained (high n) but still important because of high
sensitivity are in the region of diminishing returns where
further reductions in uncertainty require ever greater
investments of time and energy.

PROCESS ERROR

The final two terms in Eq. 2, @f =@hð Þ2Var½a� þ Var½e�
represent different aspects of the same phenomenon:
process error. Specifically, Var[a] refers to the unex-
plained variability in model parameters (differences from
site-to-site, year-to-year, etc.) and et refer to errors in the
model, not observation error. While the previous sec-
tions all considered different aspects of the variability
that was explained by the model (internal dynamics, ini-
tial conditions, external drivers, and parameters), these
two terms capture the unexplained variability. Unlike
parameter uncertainty, which declines asymptotically
with sampling, neither parameter variability or model
error converge asymptotically because they represents
variability in the underlying ecological process itself.
Process error is not a monolithic concept but rather

subsumes within it a number of different sources of vari-
ability, such as model structural uncertainty, heterogene-
ity, and stochasticity. In this view, stochasticity refers to
ecological processes, such as reproduction, mortality, dis-
persal, disturbance, that involve components that are
modeled using random numbers. Like the flip of a coin,
stochastic processes are those where the amount of
knowledge about the physical system, and computation
required to approach the problem deterministically, are

so incredibly vast and detailed, and on a spatial and tem-
poral scale so divorced from the process of interest, that
there’s no conceivable way to distinguishing the problem
from true randomness, nor any practical reason to do so.
Model structural uncertainty captures that all models

are approximations of reality and no model is perfect.
While part of this error comes from computational
approximations (e.g., discretizing time), in ecology, most
of this error arises from the choice of equations. Most of
the equations in ecological models are not deterministic
physical laws, but empirical calibrations (e.g., regressions)
and variations on a few simple equations for population
growth and mass and energy fluxes. In practical terms,
partitioning out model structural error often requires
working with multiple models and making predictions
based on model averaging (Hoeting et al. 1999). While
beyond the scope of the current analysis, Eq. 2 could be
extended explicitly to a multi-model context, for example
using the probability of different functional forms to
weight their different sensitivities, or in a nested model by
including the probability of including any particular
covariate in the exogenous term along with a matching
probability for any coefficients in the parameter term.
Even when the equations in a model are reasonable,

because the parameters in those models reflect biology
rather than physical constants, there can be variability in
the parameters themselves, Var[a]. Parameter variability
thus reflects the considerable heterogeneity in ecological
processes over a wide range of spatial, temporal, and phy-
logenetic scales. The unexplained differences among eco-
logically meaningful units, such as individuals, locations,
years, and species, are often persistent, meaning that the
differences are either permanent or slowly changing rela-
tive to the process of interest. For the purposes of predic-
tion, it is important that we quantify this variability, even
if we can’t explain it, since we want to avoid falsely over-
confident forecasts. That said, as we learn more about a
system, we can often chip away at this process error and
attribute more and more of the observed variability to the
deterministic components of our models. Doing so
requires that we know the source of variability and that
the added complexity involved explicitly results in a net
reduction in the total predictive uncertainty (Eq. 2).
Even when we can’t explain parameter variability, we

can improve our predictions by being able to partition
this variability to different sources or scales (e.g., popu-
lation, watershed, or individual; year; species). Statisti-
cally, we do this using random or hierarchical effects
(Clark 2005). The amount of variability partitioned to
different scales can help identify the processes responsi-
ble for such process error and prioritize additional data
collection.
Consider two alternative scenarios for a study follow-

ing 10 sites over the course of 10 years (Fig. 2). In both
studies, the total amount of variability is the same, but
in the first scenario, 75% of the variability is site-to-site,
while in the second scenario, 75% of the variability is
year-to-year. Each of these cases would point to very
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different sets of potential explanatory variables and
would imply very different future research directions.
Furthermore, even if we don’t know the causal agent
behind this variability, how the variability is partitioned
has direct impacts on forecasts. For example, a predic-
tion for a known site in the following year would be
more constrained under the first scenario (persistent site
differences, low year-to-year variability) than under the
second scenario (high synchrony among sites; Fig. 2,
Year). By contrast, an out-of-sample forecast to a new
site in the current year would be more constrained under
the second scenario (Fig. 2, Site). Finally, the case of an
out-of-sample prediction for a new year produces the
same prediction under both scenarios. Overall, the esti-
mation and partitioning of parameter variability repre-
sents an important mechanism for using measurements
from one unit of measure (e.g., population, watershed,
or individual; year; species) to make inferences about
another in a way that accounts for both the potential dif-
ferences and larger uncertainty when doing so.
Returning to our first-principles consideration of

uncertainty propagation, it is challenging to determine
whether process error and parameter variability will
increase, decrease, or stay the same over time. If process
errors are independent, they should stay the same
through time; this is the case when process error is domi-
nated by memory-less stochastic processes (e.g., back-
ground rates of recruitment and mortality). Other
stochastic processes, such as disturbance, have memory

(e.g., the probability of fire depends on fuel, and thus on
time since last fire) so the variance would not be constant,
and generally increases with time. At large spatial and
long temporal scales, such processes typically converge to
a steady-state distribution (e.g., a disturbance regime
rather than an individual disturbance event). For most
forms of model structural error and parameter variability
our a priori expectation is that these process errors are
autocorrelated. If the autocorrelation is a simple first-
order autoregressive (AR[1]) process, as is commonly
assumed in time-series models, then the process error will
initially increase but asymptotically approach a steady
state, Var½e�=ð1� jq2Þ, where q is the correlation coeffi-
cient. It is worth noting that the same expectation applies
in space (e.g., spatially correlated disturbances), as well as
to integrating over driver variability in space and time,
and in all cases cause variability at larger scales to average
out more slowly. Taken as a whole, and integrating over
multiple sources of process error, the arguments above
imply that our general expectation is for process error to
increase asymptotically to some steady-state, but the rate
of increase and asymptote will be problem specific.
When forecasting is viewed as an iterative process,

then our expectation is that process error will tend to
decline to some non-zero asymptote. Specifically, as we
make more measurements through time we expect not
just for parameter estimates to converge asymptotically,
but for models to be continually refined and improved.
As the functional representations and computational

FIG. 2. Impact of random effects on forecasts. Both panels show the trajectories of 10 sites (individual lines) over 10 yr and
have the same total variance. In the top panel, 75% of the variability is site-to-site, while in the bottom panel, 75% is year-to-year.
On the right hand side, the violin plots under “Year” depict the prediction for a previously known site for the next new year. In this
case, the top example (low year-to-year variability) is more predictable. “Site” depicts the prediction for a new site in year 10, and in
this case, the bottom example (low site-to-site variability) is more predictable. Finally, S 9 Ydepicts the prediction for a new site in
a new year, which is identical for both panels since they have the same total variability. [Color figure can be viewed at wileyonlineli-
brary.com]
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approximations in models are improved, we expect the
model structural error to decline. Similarly, we also
expect to chip away at the unexplained sources of
parameter variability, shifting this into the explained
endogenous and exogenous components. Nonetheless,
models will always be approximations and there will
always be something we didn’t measure and didn’t
include in the model. Likewise, many models will always
have processes that are best described as stochastic pro-
cesses. Therefore, some portion of process error will
always remain. What is hard to generalize is whether this
asymptotic component will be large (e.g., dominated by
irreducible stochasticity) or small at any particular scale.
In summary, the framework provided by Eq. 2 gener-

ates a number of predictions (Table 1). Some of the indi-
vidual conclusions derived are already known, however
the novelty of this first principles approach isn’t the indi-
vidual expectations, but the unifying framework that links
these different expectations and shows how they arise
from basic concepts. Collectively, the terms in Eq. 2
determine the rate at which the uncertainty increases, and
thus the time horizon over which useful forecasts can be
made, what has been called the ecological forecast hori-
zon (Petchey et al. 2015). The relative magnitudes of
these terms also tell us about the nature of the ecological
forecasting problem. As we saw with meteorology, know-
ing the nature of the problem is important not just for
understanding the theoretical nature of the system, but
also for any practical attempt to make predictions. The
data we collect, the models we develop, and the statistics
we use are all tightly linked to which sources of uncer-
tainty drive the predictability of the system.

While the above discussion has primarily been concep-
tual, the other strength of this framework is that it can
be used quantitatively with real-world data to assess the
absolute and relative magnitudes of the different terms.
Furthermore, once such terms are computed for real
world examples, it provides a framework for a compara-
tive approach. The sections below will first address the
application of this framework to real world data, and
then lay out the future questions and directions for a
comparative approach.

AN EXAMPLE: NET ECOSYSTEM EXCHANGE

To illustrate the application of the analytical concepts
above, consider the example of predicting half-hourly
Net Ecosystem Exchange (NEE). For purposes of illus-
tration, I fit a simple dynamic linear model to 16 d of
data from the Sylvania Wilderness Ameriflux tower and
made predictions for the following 16 d based on the
NOAA weather forecast. Sylvania is an old-growth
northern hardwood–hemlock forest located in the upper
peninsula of Michigan (46.242° N, 89.3476° W). Data
were downloaded from Ankur Desai’s real-time data
server for 2016.2

The dynamic linear model was fit for using days
151–167 using top-of-tower air temperature (Ta) and
photosynthetically active radiation (PAR) as covariates.
PAR and Ta had the highest correlations with observed
fluxes (�0.51 and �0.22, respectively) among the set of
explanatory variables available in both the Ameriflux

TABLE 1. Summary of key concepts and predictions.

Concept Predictions

Endogenous (internal)
stability, Y

Grows or declines exponentially, all other terms are linear
Predictive uncertainty grows without bound or asymptotically
Determined by classic stability thresholds
Relative importance increases with larger scales

Exogenous (external)
stability, X

Predictability increases when drivers are predictable or Dynamics are insensitive to variation
Relative importance increases with time
Covariates useful for prediction may be different from those used for explaining the same process
Experimental design emphasizes how much X affects Y
Autocorrelation slows how Var[X] averages out when scaling
Model selection chooses models that are overly complex for prediction

Parameter uncertainty, �h Dominates data-limited problems and over-parameterized models
Within a forecast, does not necessarily increase or decrease
With sampling, declines asymptotically to zero
Does not average out when aggregating in space or time
Sampling can be targeted though uncertainty analysis

Parameter variability, a, and
process error, e

Encompasses heterogeneity, model structural error, and stochasticity
Does not decline asymptotically with sampling
Like X, declines with scale but rate dependent on autocorrelation
Declines to non-zero asymptote through model improvement
Partitioning of parameter variability important for extrapolation from one unit of measure to
another to account for potential differences and larger uncertainty

2 http://flux.aos.wisc.edu/twiki/bin/view/Main/LabData
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data and weather forecasts. The model was fit in a state-
space framework assuming normal error where NEEo is
the observed NEE values, NEE is the latent (unob-
served) true value of NEE, so is the observation error, so
is the process error, and b are the regression coefficients

NEEtþ1 �Nðb0NEEt þ b1 þ b2Taþ b3Taþ b3PAR; spÞ

NEEo;t �NðNEEt; soÞ

Model fits and forecasts were performed in R (version
3.2.2) using the ecoforecastR R package (version 0.1.0;
available online)3 and JAGS (Plummer 2010). Uninfor-
mative normal priors (mean 0, precision 0.001) were
assumed for the bs and uninformative Gamma(0.1,0.1)
priors were assumed for the precisions.
Fig. 3 shows that this simple linear model with two

covariates can capture the diurnal cycle of the flux data,
though with considerable uncertainty during periods of
missing data. Following the atmospheric sign convention
for NEE data (negative values indicate uptake), we
observe large uptakes of carbon during the day and
moderate positive losses at night, with this cycle primar-
ily driven by PAR (Table 2). The slope of the internal
stability term is large (0.80), though stable and different
from 0, indicating significant system memory in NEE.
Observation error had a much higher precision (lower
variance), than the process error, suggesting that much
of the observed NEE variability represents real variation
the model is not capturing. This conclusion is somewhat
at odds with the flux literature, which acknowledges
substantial observation errors in fluxes. A more in-depth
analysis could be improved, for example by using a more
precise observation error with informative priors, such as
the asymmetric heteroscedastic Laplace (Hollinger and
Richardson 2005, Richardson et al. 2006). Nonetheless,
this simple proof-of-concept model represents a useful
baseline for evaluating any nonlinear statistical or
process-based model.
NEE was forecast for the next 16 d using the fit model

and weather forecast data from NOAA’s Global Ensem-
ble Forecast System (GEFS). Driver uncertainty was
captured by the spread of the 21 members of the ensem-
ble forecast. Air temperature data was downscaled to
30 min by fitting a spline through the six-hourly forecast
product while PAR was downscaled based on solar
geometry. Confidence in the drivers was high for the first
few days, but by the end driver forecasts show large
uncertainties and little day-to-day variability (Fig. 4).
Forecasts were made using a 500-member ensemble,

with each ensemble member sampling the set of drivers,
parameters, and initial conditions with replacement.
Forecasts had a clear diurnal cycle, but little day-to-day
variability and high uncertainty. While the forecast
uncertainty appears to be at a steady state, it contains a

slowly increasing trend superimposed on a strong diur-
nal cycle (higher during the day).
The uncertainties in model predictions were parti-

tioned using two different approaches. The first used the
analytical approximation discussed previously. The sec-
ond was generated by running a series of forecasts that
sequentially introduced different sources of uncertainty
(parameter, driver, initial condition, process), and esti-
mating the effect of each as the difference in variance
between pairs of scenarios. The results of these two
approaches were qualitatively similar but differ slightly
because the second approach is sequential and accounts
for nonlinear interactions. Results are summarized by
the mean Table 3 and time series Fig. 5 of the relative
proportion of variance attributable to each term. Over-
all, process error dominates the forecast from early on
and remains relatively constant. Driver uncertainty
shows an increasing trend, while parameter uncertainty
shows a diurnal cycle but no trend and initial condition
uncertainty decays quickly.
The uncertainty partitioning in cumulative NEE over

the entire forecast is noticeably different than the average
partitioning for each 30-min period (Fig. 5, Table 3). The
contribution of process error is considerably smaller, as
much of this variability is random and averages out over

FIG. 3. Dynamical linear model median (solid line) and
95% CI (shaded area) fit to observed flux data (+). NEE, net
ecosystem exchange. [Color figure can be viewed at wileyonline-
library.com]

TABLE 2. Posterior mean, standard deviation, and 95% CI for
fit parameters (bs) and precisions (ss).

Parameter Mean SD 2.5% 97.5%

b0 (NEE) 0.805 0.0288 0.745 0.858
b1 0.962 0.575 �0.175 2.0725
b2 (Ta) �0.0552 0.0422 �0.1367 0.0284
b3 (PAR) �0.00240 0.000454 �0.00333 �0.00154
sp 0.0809 0.00692 0.0683 0.0954
so 7.271 7.028 0.961 26.461

Note: See An example: Net ecosystem exchange for parameter
definitions.

3 https://github.com/EcoForecast/ecoforecastR
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time. As before contribution of driver uncertainty
increases steadily over time, but for cumulative NEE this
constitutes a larger fraction of overall uncertainty. Simi-
larly, the contribution of parameter uncertainty is much
larger and more persistent through time, contributing to

TABLE 3. Mean partitioning of forecast uncertainty in
instantaneous NEE according to both analytical and
simulation approaches.

Approach IC Param Driver Process

Analytical 0.02883 0.042 0.115 0.814
Simulation 0.00269 0.061 0.211 0.726
Cumul. sim. 0.00033 0.566 0.394 0.040

Notes: Both approaches are in general agreement about the
relative importance of the different sources of uncertainty. By
contrast, the uncertainty in the cumulative NEE (Cumul. Sim.)
shows that the contribution of process error (Process) is much
lower, as many errors average out, and parameter uncertainty
(Param) contributes much more to the overall uncertainty.
Driver, driver uncertainty, IC, initial condition uncertainty.

FIG. 4. Input weather forecast drivers and predicted NEE.
Driver data show a noticeable pattern of increasing uncertainty
with time. Forecast shows a clear diurnal pattern, but little varia-
tion in day-to-day predictions. PAR, photosynthetically active
radiation. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Partitioning of forecast uncertainties by source
using both analytical approximation and simulation-based
approaches. Both approaches agree that uncertainty is domi-
nated by process error, initial condition uncertainty decays to
negligible rapidly, parameter uncertainty shows a consistent
diurnal cycle but no trend, and driver uncertainty increases with
time. By contrast, the uncertainty in the forecast cumulative
NEE is dominated by parameter (Param) and driver (Driver)
uncertainties, whose relative contributions start off small but
increase in time, with parameter uncertainty leveling off after
the first 5 d. Process error (Process) and initial condition uncer-
tainty (IC) start large but decay over time, with initial condition
error decaying rapidly. [Color figure can be viewed at wileyonli-
nelibrary.com]
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the forecast uncertainty systematically, and thus increases
in relative importance for cumulative NEE. Overall, the
contrast between instantaneous and cumulative NEE
illustrates the impacts of aggregation across scale in
understanding the contributions of different sources of
uncertainty. A similar phenomena is expected when mov-
ing up spatial or taxonomic/functional scales (e.g., aggre-
gating species into Families or functional types).
The conclusions of this analysis are conditional on the

current model structure. A model with additional state
variables (soil carbon, biomass, leaf area index [LAI],
etc.) would include longer-term internal stability than
NEE (days to centuries), which would increase the over-
all contribution of intrinsic stability to NEE dynamics
over longer time scales. Next, increasing the number of
covariates would reduce the process error but increase
the parameter and driver uncertainties. Using a more
complex, nonlinear model would similarly decrease pro-
cess error but increase parameter uncertainty. Whether
the overall predictive uncertainty increased or decreased
in these cases would be a model selection question. Tra-
ditional model selection criteria (AIC, DIC, etc.) only
capture the trade-off between process and parameter
uncertainties, and would miss the impact of driver uncer-
tainty. Therefore, from a predictive perspective, tradi-
tional model selection tends to select for models that are
overly complex. Predictive uncertainty can be used
explicitly as a model selection criteria, but results will
depend on the time scale considered.

QUESTIONS AND DIRECTIONS

The strength of a first-principles approach (Eq. 2) is
that it provides a useful general framework. The sections
above illustrate how this framework can be used both
qualitatively, to structure our understanding of pre-
dictability and long-standing conceptual debates in ecol-
ogy, and quantitatively, to make explicit predictions and
recommendations and to enable comparisons of the
absolute and relative contributions of different sources
of uncertainty. The example above illustrated a “within
problem” application, using a simple dynamic linear
model to assess the predictability of NEE at a single site.
This analysis found initial condition uncertainty dissi-
pated rapidly, parameter and driver uncertainties both
contributed moderately, and the forecast was dominated
by process error.
What is currently lacking is a systematic, quantitative

understanding of how and why the relative contributions
of these factors vary from problem to problem. A com-
parative approach, applying this framework to a wide
variety of different ecological processes, would get at the
heart of many key questions in ecology, help to deter-
mine what drives ecological dynamics, and allow us to
look for patterns and generalities that span all subdisci-
plines. For example, the framework provides a common,
cross-system approach to address long-standing debates
about stability vs. drift, quantify the relative importance

of endogenous (density dependent) factors vs. exogenous
drivers, and scale predictions in space and time. A com-
parative synthesis across different systems and problems
would likewise have immediate applications, allowing us
to identify and target the dominant sources of variability
for a particular class of problem, reducing the unproduc-
tive, paralyzing fear that we need to measure everything
everywhere. Below I lay out some initial questions and
hypotheses that emerge with a comparative approach.
The first question is “which sources of uncertainty

drive ecological predictability for different systems?” I
hypothesize (H1) that a partitioning of predictive uncer-
tainties for different ecological processes will exhibit
common patterns after accounting for sample size. The
null hypothesis would be that the relative proportion of
uncertainty attributable to these different sources varies
randomly. Alternative hypotheses would be that certain
sources of uncertainty are consistently more or less
important, or that the relative importance of different
uncertainties varies predictably with system attributes
(terrestrial vs. aquatic; population, community, or
ecosystem; etc.). Answering this question will improve
our understanding of ecological systems, refine how we
direct future research effort, and directly impact our
ability to make predictions.
Next, when looking at any particular process, there is

a general expectation that most ecological processes are
autocorrelated in both space and time. Knowing the
magnitude of that autocorrelation is necessary to make
predictions; spatial and temporal autocorrelation thus
affect the predictability of ecological processes. Further-
more, ecologists frequently attempt to use information
from one of these scales to make inferences about the
other (e.g., space for time substitution). However, when
taking a comparative approach, we lack a general under-
standing of how uncertainty is partitioned across space
and time for different ecological problems.
I hypothesize (H2) that across different ecological pro-

cesses, the parameters describing autocorrelation in
space and time (e.g., q, range) will themselves be corre-
lated. While it is undoubtedly true that different factors
drive ecological dynamics at different spatial and tempo-
ral scales (e.g., local competition vs. regional climate), it
is also true that different processes vary considerably in
their predictability. As noted in Table 1, highly pre-
dictable processes are likely insensitive to drivers that
vary unpredictably over short and fast scales (e.g.,
buffering against variability) and are instead responding
to drivers that are predictable, which can occur when dri-
vers vary on both slow and large scales. Slow, predictable
variation implies a high autocorrelation in drivers that
translates to high autocorrelation in the ecological pro-
cess. H2 posits that the underlying patterns in autocorre-
lation across processes explain more of the variability in
predictability than the identity of the case-specific dri-
vers. Furthermore, it predicts that we are not going to
find ecological processes with high autocorrelation in
time but high variability in space, and vice versa. This
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hypothesis not only addresses a fundamental theoretical
question, but also directly informs the practical forecast-
ing problem of localization: how close do measurements
need to be to a particular location to provide useful
information? Finally, H1 and H2 together imply a fur-
ther hypothesis about the limit of predictability, which
we define here as the horizon in space or time at which a
forecast decays to an appropriate null model: H3, the
limit of predictability in space and time will scale with
the autocorrelation parameters. Put more simply, H3
tests to what extent we can use pattern to make infer-
ences about the predictability of a process.
Overall, these three hypotheses just scratch the surface

at the range of questions raised by considering a com-
parative approach to assessing ecological predictability.
The framework presented here is by no means a general
unified theory of ecology, but it provides an important
opportunity for assessing whether there are common
patterns to ecological predictability. It is also a critical
first step towards making our science more focused on
prediction. A focus on prediction not only makes our
science more relevant to society, at a time when the need
for data-informed policy and management has never
been greater, but it is also a means for accelerating our
scientific understanding. Forecasting is ultimately a
direct expression of the scientific method, whereby we
make quantitative, testable predictions about the future
and then use new observations to refine our understand-
ing, update hypotheses, and iteratively improve our pre-
dictions. An iterative, near-term approach to prediction
(Dietze 2017, Dietze et al. 2017) allows us to repeat this
cycle frequently, and accelerate the pace at which we
confront predictions with new data.
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