
Brown Dog: Leveraging Everything
Towards Autocuration

Smruti Padhy, Greg Jansen, Jay Alameda, Edgar Black, Liana Diesendruck, Mike Dietze, Praveen Kumar,
Rob Kooper, Jong Lee, Rui Liu, Richard Marciano, Luigi Marini, Dave Mattson, Barbara Minsker,

Chris Navarro, Marcus Slavenas, William Sullivan, Jason Votava, Kenton McHenry
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Email: {spadhy, mchenry}@illinois.edu

Abstract—We present Brown Dog, two highly extensible ser-
vices that aim to leverage any existing pieces of code, libraries,
services, or standalone software (past or present) towards pro-
viding users with a simple to use and programmable means of
automated aid in the curation and indexing of distributed col-
lections of uncurated and/or unstructured data. Data collections
such as these encompassing large varieties of data, in addition to
large amounts of data, pose a significant challenge within modern
day “Big Data” efforts. The two services, the Data Access Proxy
(DAP) and the Data Tilling Service (DTS), focusing on format
conversions and content based analysis/extraction respectively,
wrap relevant conversion and extraction operations within arbi-
trary software, manages their deployment in an elastic manner,
and manages job execution from behind a deliberately compact
REST API. We describe both the motivation and need/scientific
drivers for such services, the constituent components that allow
for arbitrary software/code to be used and managed, and lastly
an evaluation of the systems capabilities and scalability.

Index Terms—digital preservation, unstructured data, web ser-
vices

I. INTRODUCTION

Over the past decades we have seen exponential growth in
the amount of digital data [1] with the growth only increasing
as it continues to become cheaper and easier to create data
digitally. This continuing shift away from physical/analogue
representations of information to digital forms has created a
number of social, policy, and practical problems that must be
addressed in order to ensure the availability of these digital
assets [2, 3, 4]. One aspect of these problems are that of the
storage, movement, and computation on large datasets, what
most think of when one hears the term Big Data, i.e. problems
involving large quantities of data. A significant amount of
research and development has gone into addressing these
issues from computation [5, 6, 7], to data repositories and
replication [8, 9], data transfer [10, 11], visualization [12, 13],
to commercial as well as academic [14] storage solutions.

Another aspect involves that of indexing and finding data
as well as accessing the contents of data long term, a problem
involving large amounts of data but further hindered by
problems involving large varieties of data. This latter problem
is a significant issue for several reasons including the rapid
evolution of technology, relatively short lifespans of software,
commercial interests, and the ease and reward towards creating

data versus curating data. As digital software and digital data
have become key elements in just about every domain of
science the preservability of data has become a major concern
within the scientific community with regards to ensuring the
reproducibility of results. This has become a particular concern
for what is often referred to as the “Long-Tail” of science,
spanning the vast majority of grants involving one or more
graduate students and little funds for a significant data man-
agement effort (most especially post-award) [15]. Research
and development addressing this second aspect has focused
on preserving the execution provenance trail [16, 17], building
repositories for scientific code/tools [18, 19], developing user
friendly content management systems [20, 21, 22], dealing
with format conversions and information loss [23, 24, 25, 26],
building test suites [27], as well as efforts within the artifi-
cial intelligence and machine learning communities such as
computer vision [28, 29, 30] and natural language processing
[31, 32].

We focus on two of the lower level problems involved with
this latter category, a lack of appropriate metadata describing
the contents of files, needed to find information of interest
within large collections of data, and the lack of format
specifications describing how the data is laid out within a file
so that one can get at its contents (e.g. 3D/depth data, pixels,
text, waveforms, etc.) independent of how it is represented
on the storage medium/file system. With regards to each of
these there are a number of efforts, tools, and frameworks
that have been built to help users curate their own data [8, 33]
and access file contents or convert to a format that can then be
accessed1,2,3. More accurately subsets of functionality towards
this exists across a wide variety of software. For example with
regards to file formats, conversion capabilities exists across a
heterogeneous set of libraries and software (from command
line tools such as the popular ImageMagick to the GUI driven
software that we use every day). With regards to metadata a
similar argument can be made if we for the moment relax the
typical use of the term to be solely that of data describing
data, data useful for searching/indexing collections of data

1http://www.opendocumentformat.org/
2https://cloudconvert.com/
3https://www.ps2pdf.com/



and its contents. In this context a wide variety of tools exist
that take data and analyze it for some higher level piece
of derived information that is then produced (e.g. machine
learning classifiers, models of all kinds, statistical software,
and actual metadata extractors).

Needs for such tools permeate the day to day workflows
of just about everyone. Use cases span ecology, biology, civil
environmental engineering, hydrology, oceanography, material
science, library & information science, social science, and
so forth to including the public at large. For example many
communities utilize a wide variety of models to predict/sim-
ulate events, e.g. plant growth at various areas over different
time frames. These models typically support data in unique
formats. Efforts such as PEcAn [34], one of our use cases,
aims to make it easier to connect data sources to models by
providing these conversion capabilities for an extensible num-
ber of data sources (e.g. Ameriflux4, NARR). Similarly with
navigating large collections of unstructured data. For example
in biology automatically classifying microscopy images of
fossilized pollen [35] (in addition to converting out of propri-
etary microscopy formats), in entymology the tracking of bees
within a colony, identifying plant phenology [36], deriving
data from digitized handwritten documents, in medicine clas-
sifying/tracking cells in microscopy images, extracting data
from publications (i.e. tables, figures) as no other source of the
data may be available, extracting data from spreadsheets of all
kinds (with different internal layouts and naming conventions),
labelling land coverage in satellite and Lidar data, in material
science identifying failed fabrication experiments in SEM data,
finding and tracking people in social science experiments [37],
and so on. This applies to the public at large as well with the
format conversion needs we deal with regularly (e.g. between
document formats, image formats, video formats, etc.) and
indexing needs such as finding desired files in our photo/video
collections, or smarter ways of searching a folder of documents
(e.g. via NLP techniques, etc). Tools to help with portions of
these are everywhere. We aim to leverage all of them whether
they exists as libraries, command line tools, GUI applications,
or web services, and make these capabilities as trivial to
users/applications as possible while simultaneously combining
their abilities, and perhaps preserving these tools at the same
time.

In the sections below we outline the Data Access Proxy
(DAP) for file format conversions and the Data Tilling Service
(DTS) for metadata extraction which make up the Brown Dog5

effort. Both exist as services/frameworks that aim to make it
as easy as possible to incorporate arbitrary conversion and
extraction capabilities from 3rd party software and services,
connect them to obtain the union of their capabilities, scale
them dynamically to meet the demands of the service, and
manage them towards a robust service. Both the DAP and DTS
are modeled so as to fit a role within the internet analogous to a
DNS service in terms of setup and usage by other applications.

4http://ameriflux.lbl.gov/
5Playing on the notion of a mutt.

Figure 1. Architecture of the Brown Dog services. Both the DAP and
DTS exist as web services behind a load balancer coordinating between a
potentially distributed number of Clowder or Polyglot instances respectively.
Each Clowder or Polyglot instance in turn manages a number of distributed
extractors and/or Software Servers respectively which handle elements of a
job.

In the sections below we describe the architecture of the
two services, how they interact with arbitrary software, their
scalability and extensibility, an evaluation of the two services,
and a number of prototype client applications.

II. ARCHITECTURE

The DAP built off of the Polyglot framework [23, 38] and
the DTS built on top of the Clowder framework [22, 33]
are architected to manage a number of heterogeneous tools,
specifically conversion and extraction tools respectively, dis-
tributed across the web and provide access to the union of their
capabilities via a fairly compact REST interface (Figure 1).
These tools, essentially black boxes of code/functionality, are
tracked and managed by the head node services and elastically
grown/shrunk to accommodate user demands. Both emphasize
extensibility in the sense of allowing new converters/extractors
to be added and deployed across a DAP/DTS instance as
trivially as possible. A typical workflow might involve calling
the DTS to index and find relevant data according to some
criteria within a collection of data and using the DAP to
convert the files in that collection to a format that can be
processed.

A. Data Tilling Service

Clowder is an open source web based content management
system which allows users to upload files, create datasets and
collections, socially curate data by assigning tags, metadata,
and leaving comments, then publishing their data to a long
term archive for preservation once work with the data has
been completed [33]. In addition to the social curation ca-
pabilities Clowder provides it also emphasizes an element of
aided auto-curation through a suite of extensible extractors
that are automatically triggered and executed when files of
an appropriate type are uploaded into a given instance of
the system. These extractors can do anything from pulling
metadata within the file, analyzing the file’s contents and
tagging it according to some specific classification or criteria,
towards the generation new data such as metadata, previews,



Figure 2. An example of the type of metadata returned by the DTS, in this
case given an image file. The DTS returns a breadth of extracted information
in JSON such as EXIF metadata associated with the image; computer vision
derived data from the image contents such as faces, eyes, and OCR text; as
well as more domain specific information available within the instance such as
the green index and human preference score used by our Green Infrastructure
use case.

sections (i.e. areas of interest), etc. Typically triggered by a
file’s mime type, Clowder’s extractors exist within a cloud
environment distributed across any number of physical or
virtual machines and listen to a distributed messaging bus
for new files to the system. The Brown Dog Data Tilling
Service (DTS)6 builds on top of Clowder, emphasizing its
REST interface towards allowing other applications to leverage
its extraction capabilities, making it easier to create and deploy
new extractors, building up an extensive catalogue of extrac-
tors, hardening the representation of derived data/metadata,
enhancing the scalability and adding an elastic component
to grow and shrink capabilities intelligently and dynamically
based on user demand.

The DTS serves as a web based service where client
applications or users can pass in one or more files or URLs and
get back JSON or JSON-LD containing a number of derived
products from tags, metadata, or other derived files that are
typically higher level than the original data and/or holding
some semantic information. Given this derived information
applications can then use it to index, compare, and/or further
analyze collections of data, in particular uncurated and/or un-
structured data collections (Figure 2). As stated previously the
main interface to the DTS is its REST API (Table 1). Through
the REST interface a user/application can upload/point to a
file for processing, list available extractors, check the status
of extractors that are running on it, and download derived
metadata produced thus far.

At the heart of the DTS is a distributed messaging bus
(Figure 1), specifically RabbitMQ7. A widely used and hard-
ened framework, RabbitMQ can be used to reliably distribute

6We use data tilling, like in farming, to emphasize a notion of churning data
in various ways towards enhancing its usability via the uncovering of various
higher level data products useful for indexing or otherwise using the data.

7https://www.rabbitmq.com/

GET /api/extractions/inputs Lists the input file format supported
by currently running extractors

POST /api/extractions/upload Uploads a file for extraction of meta-
data and returns file id

GET /api/extractions/upload Uploads a file for extraction using the
file’s URL

GET /api/extractions/{id}/status Checks for the status of all extractors
processing the file with id

GET /api/files/{id}/metadata Gets tags, technical metadata, and
content based signatures extracted for
the specified file

GET /api/extractions/servers Lists servers IPs running the extrac-
tors

GET /api/extractions/extractors Lists the currently running extractors
GET /api/extractions/extractors/

details
Lists the currently details running ex-
tractors

Table 1. The DTS REST API for metadata, tags, and signature extraction.

and manage job execution in a cloud environment by placing
messages in a queue for each extractor, taking them off when
jobs are completed, and automatically resubmitting messages
should a job fail. A cloud setup is particularly well suited for
our application, versus other high performance oriented infras-
tructures, as we are building a framework that can leverage
potentially any other code/tool as extractors, essentially black
boxes, which typically can’t be optimized further internally.
Towards further reliability the RabbitMQ service itself can
further be distributed should one instance of it fail as well. The
DTS Clowder head node handles all messages to and from the
distributed queue and further manages the moving and storing
of intermediary files. Files uploaded to the DTS for processing
are either stored or referenced and given a unique ID. At this
time a message is put on the bus with the file ID along with
a key based off of the files mime-type. Any extractor capable
of handling that type of file takes the message off of the
queue, uses the ID to obtain the file for further processing,
processes the job, then returns any derived data back to
Clowder associating it with the file’s ID. Data and metadata
stored within Clowder can be placed into one of a number
of extensible storage options such as MongoDB, iRODs [9],
or the local filesystem. By default we use MongoDB which
is convenient in that all communication between the various
Clowder components uses JSON and MongoDB is JSON
document based. The underlying mongo database can further
be sharded for added capacity, performance, and reliability.
Lastly, the DTS Clowder head node itself is designed so as to
be stateless itself allowing it to be replicated and placed behind
a load balancer, e.g. NGINX, in order to increase performance
and reliability.

Extractors can be written in any language so long as it
is capable of interacting RabbitMQ and HTTP in order to
access the Clowder REST interface (e.g. Java, C/C++, Scala,
Python, Ruby, etc). In addition to carrying out some sort of
analysis of the data, often times by wrapping some external
piece of code/software, an extractor requires a relatively small
amount of code in order to interact with the rest of the
system. Specifically, it must register itself with the RabbitMQ
bus and specify what keys it will respond too, listen for
incoming messages and pick up those that it can process,
and lastly return derived tags, metadata, etc. to Clowder. To
further simplify the creation of extractors we have written a



Figure 3. Creating an extractor for deployment within the DTS is simplified
through the use of various language specific libraries. For example the
pyClowder library allows one to create python extractors with essentially the
three pieces of code shown here which: connects to the distributed queue,
carries out or calls the analysis code, then lastly returns the derived data.

library, pyClowder8, that reduces this setup to a handful of
boilerplate lines of code (Figure 3). Additional libraries are in
development for commonly used languages in research such
as R9 and Matlab10.

Three types of metadata are differentiated by the system:
technical metadata, versus metadata, and previews. Technical
metadata is automatically generated, derived data, by the
extractors, e.g. obtaining text contents within an image, clas-
sification of an object, a Greeness Index, coordinates of the
specific sections of a file, etc. Versus metadata, obtained from
an extractor leveraging the Versus framework [39], are the
signatures extracted from a file’s contents. These signatures,
effectively a hash for the data, are typically numerical vectors,
which capture some semantically meaningful aspect of the
content so that two such signatures can then be compared
using some distance measure (capturing either similarity or
dissimilarity). These signatures along with Versus allow con-
tent based retrieval [30] tools to be included and produced by
the DTS towards yet another means of comparing and sifting
through data. The final type, previews, as well as other types
of derived file products, are also generated by the extractors.
These can include things such as thumbnails, image pyramids,
sections/clips, maps, spreadsheets, etc. These derived products
again aid in the navigation of data, this time in the manual
human sense, perhaps providing a visualization of the data or
collection of data. This may also be used as an intermediary
in a chained extraction process where some other extractor
will then be triggered to extract something more meaningful
from this new data (e.g. generating a signature from a key
frame extracted from a video). For each type of metadata the
system also keeps track of the source extractor that created it
for provenance purposes.

Again the metadata returned from the extraction process
is in the JSON (JavaScript Object Notation) format which is
popular in REST clients within web applications. The technical

8https://opensource.ncsa.illinois.edu/stash/projects/CATS/repos/pyclowder/
9http://www.r-project.org/
10http://www.mathworks.com/products/matlab/

GET /api/conversions/outputs Lists all output formats that can be
reached

GET /api/conversions/inputs List all input formats that can be ac-
cepted

GET /api/conversions/inputs/
input format

List all output formats that can reach
the specified input format

GET /api/conversions/outputs/
output format

List all input formats that can reach
the specified output format

GET /api/conversions/convert/
output format/file URL

Convert the specified file to the re-
quested output format

POST /api/conversions/convert/
output format

Convert the uploaded file to the re-
quested output format

GET /api/conversions/software List all available conversion software
GET /api/conversions/servers List all currently available Software

Servers

Table 2. The DAP REST API for format conversions.

and versus metadata are represented in JSON format and often
have a nested structure with more arbitrary content. Previews
are represented also in JSON as well with just the URL to
the preview, file to which they are associated with and the
extractors that generated it. To provide more structure to the
metadata extracted and making it easier for external clients
to consume the metadata produced by the DTS, we added
initial support for linked data and JSON-LD11. This is also
an important step towards making the information extracted
by the Brown Dog services more easily accessible to the
other information sources using core standards for structured
data developed by the World Wide Web consortium12. Even
for cases where the client of the Brown Dog service is not
particularly interested in the need for such standards, the linked
data approach provides best practices for data on the Web
that help make the services easier to access. More specifically,
the use of JSON-LD provides a lightweight overlay onto the
raw JSON that can be safely ignored by clients that are not
interested in the semantic web aspects of linked data.

B. Data Access Proxy

The Brown Dog Data Access Proxy (DAP) handles con-
versions between formats, ideally to one that is more readily
accessible for the user. Unlike the DTS which takes no
parameters but triggers any extractor that will fire based on
the file type, the DAP takes a single parameter specifying
the desired output format. Like the DTS, the DAP provides
a compact REST interface allowing users and applications to
call its capabilities (Table 2).

Built on top of the the Polyglot framework the DAP is
designed to support the inclusion of any piece of code, library,
software, or service into its ecosystem of conversion tools. A
component tool called a Software Server [38] utilizes one or
more very light weight wrapper scripts to automate specific
capabilities within arbitrary code and then provide access to
it via a consistent REST interface:
https://<host>/software/:application/:output/:file

Applications can then call, program against, these capabilities
within the software as easily as they would a library. When
GUI applications are involved scripting languages such as Au-
toHotKey13 or Sikuli [40] are used to wrap needed open/save

11http://json-ld.org/
12http://www.w3.org/
13http://www.autohotkey.com/



Figure 4. Adding converters to the DAP is done by simply annotating
a wrapper script for the software in the scripts comments. The first few
comments tell the DAP what the software is, what types of data it works
on, and what inputs and outputs it supports. This is sufficient for the DAP to
manage and delegate conversion jobs to that software. The remainder of the
script either carries out or calls another application to do the conversion.

functionality. Any text based scripting language may be used
for these scripts so long as it follows certain conventions in its
comments indicating the name and version of the software, the
types of data it handles (e.g. documents, 3D), and possesses
a list of accepted input and output formats (Figure 4). This is
similar to the idea in the YesWorkflow system [41] where the
comments are used to annotate parts of the code. The DAP also
supports the use of Data Format Definition Language (DFDL)
schemas [42], a relatively recently standardization of a ma-
chine readable language for format specifications, through the
use of a specialized wrapper script for Daffodil, an open source
implementation of DFDL. New schemas can be incorporated
into the DAP by making a minor modification to this template
script. DFDL schemas, generating XML representations from
data contents for a given format, possibly mapping elements
to standardized ontologies, provide a long term/preservable
means of capturing the layout of file contents, particularly
important for the many ad hoc formats scientists/graduate
students utilize in their work (e.g. for tabular, spreadsheet like
data, or other representations for data).

When a Software Server comes online, each potentially
hosting one or more applications, it will attempt to connect
to a specified RabbitMQ bus and then listen to one queue
per software that it controls. The DAP Polyglot head node
instance monitors the RabbitMQ bus, specifically the queues
and the consumers of the queues, leveraging it as a discovery
service for new Software Servers, software, and conversion
capabilities. For each Software Server found, it queries it for
the applications provided and the input and output formats
each in turn supports. From this a graph is constructed, referred
to as an input/output graph or I/O-graph, with formats as the
vertices and applications as directed edges between vertices
indicating conversions they are capable of carrying out. Given
an input format and a desired output format the DAP will
search this graph for a shortest path between the source and
target format, allowing conversions to occur that would require
multiple applications, possibly running on different machines.
The constructed job is stored in a MongoDB instance, where
one or more DAP Polyglot instances will monitor it and move
it across the path, placing portions of the job on the appropriate
application queues as need be. Since all information about
the job is stored in a shared MongoDB instance the Polyglot
head nodes are also stateless as in the case of the DTS and

can be placed behind a load balancer for added performance
and reliability. Software Servers, essentially pilots [43], will
monitor the relevant software queues, pull off jobs, execute
them on the local hardware, and return a link to the resulting
output file back to the DAP head node. All files are preferably
passed between the DAP, each Software Server, and even the
external source, as URLs in order to minimize file transfers.
This saves transfers in a number of instances, e.g. returning the
output of the last Software Server called to the DAP head node
which then returns it to the user, or should a Software Server
possess the needed applications for two parts of a conversion
path.

As a cloud based service it is expected that the applications
and Software Servers are elastic, i.e. new ones will come on
line on occasion, and current ones will go offline on occasion.
As such the I/O-graph must be updated continuously so that
all currently valid conversion paths are represented. A thread
within each DAP Polyglot instance will continuously poll the
consumers on the RabbitMQ bus. When new Software Servers
are found their vertices and edges are simply added to the
graph, which represents the union of capabilities among all
discovered Software Servers. When a found Software Server
no longer responds, for whatever reason, the constituent edges
for its applications are pruned from the graph. In order to make
the traversal and the appending of new applications to the
graph efficient the I/O-graph is represented as an adjacency
list in memory. This however, makes the removal of edges
and vertices somewhat costly, especially for large graphs, thus
pruning is done sparingly and limited only to the edges which
is sufficient to eliminate invalid conversion paths.

C. Elasticity

The two building blocks of Brown Dog, the DTS and
DAP, which are built to utilize arbitrary code/software as
extractors/converters, need to have the ability to handle heavy
loads, adapt to spikes in requests, handle a mix of long
running and short running jobs, and support heterogeneous
architectures. Specifically, the two services need to be able to
auto scale based on the demand of the system.

There are two approaches [44] to scale a system: vertical
scaling, i.e. increasing the resources allocated to the nodes
in the system such as CPU, memory, storage; and horizontal
scaling, i.e. by adding nodes to the system. Cloud computing
services modeled as Infrastructure-as-a-Service (IaaS)14 [11]
provide features such as elasticity, i.e., automatic resource
provisioning and de-provisioning and allows horizontal scaling
through an inherent ease at starting new VMs during variable
workloads. We aim to leverage cloud computing IaaS for
achieving the autoscaling of the Brown Dog services. We
designed and implemented a Brown Dog Virtual Machine
(VM) elasticity module that focuses on auto-scaling the DTS’s
extractors and DAP’s Software Servers. Specifically, the mod-
ule starts or uses more extractors when certain criteria are
met, such as the number of outstanding requests exceeding a

14http://aws.amazon.com/



certain threshold - this is called scaling up, and suspends or
stops extractors when other criteria are met - this is called
scaling down. Based on extractor types, the module needs
to support multiple operating system (OS) types, including
both Linux and Windows, for its proper execution. Further we
wish to support a variety of VM/container frameworks to allow
extractors and Software Servers to be deployed on a variety
of different resources.

We considered a number of cloud computing software
platforms, both open source such as OpenStack, Cloud Stack,
and Eucalyptus; and commercial such as Amazon Web Ser-
vices (AWS), Microsoft Azure, and VMWare; as well as
other related technologies such as Olive [45], OpenVZ15 and
Docker. AWS is relatively mature but can be costly as when
CPU and memory usage go up the cost of using AWS also goes
up. In the open source space, OpenStack is mature, widely
adopted, and supports both Linux and Windows. For our initial
setup we chose OpenStack as the top level VM technology,
Unix system services as the low level technology, and Docker
as an intermediary level technology candidate with regards
to the level of granularity by which we control the elasticity
(e.g. Docker has a smaller resource usage overhead and faster
VM/container startup time compared with OpenStack).

1) Elasticity Module Design: The work here focuses on the
scaling of extractors and converters within Software Servers
(SS) but could be extensible to other services as well with
some modifications. We make the following assumptions in
our design:
• An extractor or a SS is installed as a service on a VM.

Extractors of the same type, i.e. requiring the same execu-
tion environments, can be deployed in the same VM. So
when a VM starts, all the extractors that the VM contain
as services will start automatically and successfully.

• The resource limitation of using extractors/SS to process
input data is CPU processing, not memory, disk I/O, or
network I/O, so the design is only for scaling for CPU
usage. However, in the future we aim to consider other
resource limitations.

• The system uses RabbitMQ as the messaging technology.
There have been several works on elasticity in the cloud com-
puting context [46, 47, 44, 48] and references there in. Lots of
policies discussed in these works, and also the ones provided
by the cloud providers allow scaling based on the VM internal
information such as CPU usage, memory, etc; and based on
prediction of workload pattern. We provide an auto scaling
solution that is based on the queue lengths at the message
queues for extractors and SS. Our web application/service
is a loosely coupled publish/subscribe system. As we use
RabbitMQ as the messaging technology which acts as a broker,
we get the added advantage of getting finer grained details
such as queue lengths, channel activities, connection details,
consumer details etc. using it’s management HTTP API. As
extractors and SS are written such that they could potentially
use any existing tool/software/web service the performance

15http://openvz.org

Algorithm 1 BDMonitor()
1: Read the control parameters’ values from the config file
2: while TRUE do
3: Build OpenStack Server Map
4: Build Run-time Mapping between Services and running VMs,

service2RunningVMMap
5: Obtain VMs usage information, e.g., loadAverage and numvCPU and build

vmInfoMap
6: ScaleUp()
7: ScaleDown()
8: end while

and processing of requests may be limited by the tool being
used under the hood. Thus, each extractor/Software Server
is configured as a service to fetch one message from the
queue at a time which loaded balances the job requests among
the services. We also present scaling at two levels: service-
level and VM-level. At the service-level, an extra instance
of the service is deployed in the VM already running the
same type of services while at the VM-level, a new VM
or a suspended VM containing the service is started. In our
algorithm, the module will monitor the message queue and
take scaling actions accordingly using the Openstack API to
start/suspend/resume/terminate a VM.

Taking a modular approach, we define a separate module
for: i) monitoring the queues for extractors/SS in the message
bus, ii) obtaining information such as load average from the
VMs deployed in the cloud, iii) setting criteria for scaling
up/down decisions, and iv) providing scaling actions using
cloud specific APIs. Algorithm 1 shows the pseudo code for
the auto scaling that we use in our implementation which
periodically checks if scaling up/down is required for the
service. It reads all the parameters needed from a configuration
file. Algorithm 2 and Algorithm 3 show the psuedo code for
scale up and scale down, respectively. In Algorithm 2 Line 1,
the services scale up candidate list is obtained by following
the criteria: i) the length of the RabbitMQ queue for a service
is greater than a pre-defined threshold, such as 100 or 1000,
or ii) the number of consumers (extractors/Software Servers)
for the queue is less than the minimum number configured.
In Line 3-22, the algorithm iterates over the candidate lists,
obtains the VM information of each service type, checks for
the condition in Line 7, i.e. number of virtual CPUs in the
VM is greater than the load average plus the CPU buffer, if
true then start an instance of the service type, else resume
a previously suspended VM that contains the service type or
start a new VM that contains the service type. In Algorithm 3,
Line 1 obtains the service instance scale down list by following
the criteria: i) idle queues (no data /activity for a configurable
amount of time), ii) idle VMs by using the channels idle time
taking care of multiple channels on the same same VM. Lines
2-9 are self-explanatory.

2) Implementation: The elasticity module is a stand-alone
program written in Python. The statistics obtained from Rab-
bitMQ and Openstack, as well as the scaling actions infor-
mation, are written into a MongoDB database so these values
can later be analyzed/visualized. As a monitoring component
in Brown Dog this module is important to ensure DTS and



Algorithm 2 ScaleUp()
1: Get service scale up candidate list, sList
2: for sName in sList do
3: if sName in service2RunningVMMap then
4: Get the running vmList for the sName
5: Sort vmList based on VM’s cpuLoadRoom, i.e. VM.numvCPUs

− VM.loadAverage
6: for each VM in vmList do
7: if numvCPUs > (loadAverage + cpuBuffer) then
8: Add a service instance to the VM
9: break

10: end if
11: end for
12: continue
13: end if
14: Resume a VM containing the service sName
15: if Resume is successful then
16: continue
17: else if a VM is started containing the service sName within the ScaleUpAl-

lowanceTime then
18: Skip starting a new VM
19: else
20: Start a new VM instance containing the service sName
21: end if
22: end for

Algorithm 3 ScaleDown()
1: Get service instance scale down candidate list, sList
2: for sName in sList do
3: Get the vmList for the service sName
4: for each VM in vmlist do
5: Stop and remove the idle service exName instances from the VM main-

taining minimum number of sName instances
6: end for
7: end for
8: Get Idle VM scale down candidates list
9: Suspend the idle VMs from the list based on its channel’s idle time in the message

bus while maintaining minimum number of service instances

DAP’s performance, robustness, and availability. We run this
module as a service, so that the OS watches and ensures that
this module is up and running.

We used a configuration file to specify the information for
RabbitMQ access, OpenStack access, OpenStack VM images,
and the scaling parameters such as checking interval, queue
length threshold and CPU buffer room. The implementation
obtains run-time RabbitMQ queue and VM information and
idle time using the RabbitMQ management API; obtains run-
time VM information such as load average and #vCPUs
and started/stopped extractor instances through executing SSH
commands on the VMs; and uses the OpenStack Python API
to suspend, resume, and start VMs.

III. EXTENSIBILITY

As the name suggests, a mutt of software, the Brown Dog
services, in particular via Software Servers, are designed to use
and manage potentially any piece of software to carry out con-
versions and extractions. In a manner similar to Apple’s App
Store, Galaxy’s Tool Shed [19], or other such repositories for
applications16 [18, 45] we build a Tools Catalog which allows
users to add new tools and their capabilities to the two services.
As the DAP and DTS can utilize arbitrary code to carry out
operations the Tools Catalog doesn’t actually store the actual
tools (i.e. code, software), but instead references them typically

16https://www.docker.com/

via a URL to a website or source code repository. What is
stored within the repository is information needed to both
call these referenced tools and to give credit to their creators
so as to motivate the addition of new tools. Control of the
tool is done through the wrapper scripts mentioned previously
(Figure 3 and Figure 4), and is designed to be as simple and
straight forward as possible. Credit for the time being is done
via providing citation information, such as a relevant paper,
or to the software directly17. This can be done as simply as
providing a Digital Object Identifier (DOI) and will become
more and more important as the scientific community moves
towards providing as much credit for software and data as it
does articles [3, 4].

Like the Apple App store the Brown Dog Tools Catalog
operates under a tool approval process. Tools added to the
Tools Catalog are not visible or available until an administrator
reviews and approves it. Once approved the tool is visible and
available to others and may also be directly deployed to one
of the main DAP18 and DTS19 instances.

IV. EVALUATION

With regards to performance of the proposed infrastructure
we focus on two measures, scalability, specifically with re-
gards to the very heterogeneous tools that make up the two
services, and capabilities, what types of data are we currently
able to support. Though the deliberate extensibility of the
system plays into the latter criteria it is still not trivial as
elements within the system, e.g. the I/O-graph utilized by the
DAP, allow for combinations of tools to present additional
capabilities (e.g. a chain of conversions to reach a desired
target format). Below we describe our results with regards to
the elastic scaling of the system as well as a framework we are
building towards the continuous evaluation of the capabilities
of the system.

A. Elasticity

The experimental evaluation is designed to study the effec-
tiveness of our approach and to get insights into the autoscal-
ing behavior of the monitored services. Our experimental setup
comprises of:
• Two extractor types - OpenCV based [49] and OCR [50],

both extractors triggered off of images. Specifically we
consider four OpenCV extractors to detect faces, eyes,
profiles and closeups of faces, and one OCR extractor.

• Created two VM images based on Ubuntu Trusty (14.04)
with 1 GB RAM, 1vCPU, 10GB disk space for the two
extractor types. One image is configured to have one
instance of four OpenCV extractors (faces, eyes, profiles,
closeups) as services with OpenCV already installed. The
second image is configured to have one OCR extractor.

• Single instance of DTS and RabbitMQ server.
• Sixty test image files in the PNG format with varying

sizes between 10KB-4MB . The image contents have a

17http://zenodo.org/
18https://dap.ncsa.illinois.edu
19https://dts.nsca.illinois.edu



varied number of faces, eyes, closeups, profiles, and text.
Each of the images has been tested against the extractors
to make sure the extraction process works correctly.

• The queue length threshold is thirty and Idle Time for
VM before it could be suspended is fifteen minutes.
Minimum number of extractor instances required is two
for all extractors.

For our experiments we utilize an OpenStack cloud run out of
the NCSA Innovative Systems Lab (ISL).

We wrote a Python script to submit 1200 job requests using
the DTS API, uploading 1200 images (20 times each image in
the dataset) for extraction, to observe the autoscaling behavior.
As all OpenCV and OCR extractors process images, each
extractor receives all 1200 files for extraction. We observe
the queue lengths for each extractor, number of extractor
service instances for each queue, load average of each VM,
and number of VMs. Figure 6 shows the plot of the number of
extractor instances started for the observed queue length over
the time. The total time taken to serve all the requests by all
the extractors including the scaling down to suspend idle VMs
was approximately seventy minutes. As seen in the figure, we
see the queue lengths of all the five extractor types grow to
1200 (approximately in three minutes). The new VMs and
extractors are started as the queue lengths cross the threshold
of 30 requests. Once an action to start a VM taken, we wait at
least 3-5 mins, which is the usual startup time for a VM, before
starting a new VM. In the plot we see the number of extractor
instances is increasing unit stepwise. During the scaling up the
total number of new VMs started for the OCR extractor is three
with the total number of OCR extractor instances nine; and
for OpenCV extractor 10 VMs with the number of extractor
instances for faces, eyes, closeups, and profiles started 14, 14,
11, and 20 respectively. The second plot in Figure 6 shows
the load average over the scaling up time for some of the
extractors VMs. As we see in the figure, opencv-27 and ocr-
10 are the initial VMs. After approximately 3-5 minutes, when
a new VM started, the load average for ocr-11 and opencv-28
begin to go up. As new VMs are started, the load average
becomes almost equal for each of those VMs indicating the
load balancing of the tasks.

We then ran the same experiment with the VMs suspended
from the first experiment. The third plot in Figure 6 shows
the plot of the number of extractor instances over time with
no suspended VMs (from the first experiment) and with
suspended VMs at the beginning of the experiment. It is
observed that due to long start up time of a new VM the
scaling up is slow in the first experiment while in the second
experiment, as the suspended VMs from the first experiment
are resumed, takes usually 30-60 seconds. It is also observed
that the number of extractor instances deployed in the second
experiment is more than the first experiment. The final plot
in Figure 6 shows the queue lengths for all extractors over
time for both experiments. We can clearly see the queue
length almost reaches 1200 for all five extractors in the first
experiment while in the second experiment, the maximum
queue lengths reached is approximately 700. OCR and Closeup

faces eyes closeups profiles ocr
0

20

40

60

80

100

120

Extractors

T
o

ta
l 

ti
m

e 
(m

in
s)

 

 

No Elasticity

Elasticity with No Suspended VMs

Elasticity with Suspended VMs

Figure 5. Comparison of total time to serve 1200 job requests by each
extractor with no elasticity module, elasticity module with no suspended
VMs, and with elasticity module with suspended VMs at the beginning of
the experiment.

extractors are computationally less expensive as compared to
the other three extractors. This is also reflected in the total time
to serve the 1200 requests. Figure 5 shows the comparison of
total time to complete 1200 requests with/without the elasticity
module.

B. Curation and the CI-BER Testbed

In order to test and report on the application of Brown
Dog to archival collections, we attempt to simulate archival
processing using the CI-BER20 [27] collection housed at the
UMD Digital Curation Innovation Center. CI-BER contains
52 terabytes, 72 million objects spanning a wide variety of
file formats, scientific datasets, and organizational records.
Through scripted interactions with the services we gather
metrics and identify gaps in function. The scripts are run
over and over again and seeded with different sample data
files. The technology we use for simulation is a testing
framework called Gatling.io21. Gatling is based on the Scala
functional programming language, which lends itself to terse
expressions of complex functional patterns, such as with a
simulation. Gatling adds a domain-specific language (DSL)
for constructing web-based tests. These scenarios may be run
as single user tests or they may be run in parallel as realistic
load tests, simulating the same scenario for hundreds of users
at the same time. Gatling produces detailed metrics on service
performance under load, which can be used by developers to
isolate issues. Gatling also allows custom validation patterns
that our simulations use to verify specific outcomes. We write
our simulation scripts in the Gatling DSL, seeding simulations
with a randomized set of sample files. After each simulation
runs we gather up results from Gatling log files and other
sources to build a database in MongoDB of simulation results.

1) Archival Processing Simulations: The initial approach
was to employ Brown Dog for data format conversions typical
of digital preservation systems, namely the conversion of
legacy materials into current file formats for preservation and
access. Twice a day we take a random sample of modern
and legacy office files from the CI-BER collection, attempting

20https://ciber.umd.edu
21http://gatling.io/



0

50

100

050010001500
0

5

10

15

20

 

Time (mins)
Queue Lengths

 

N
u
m

b
er

 o
f 

E
x

tr
ac

to
r 

In
st

an
ce

s

ncsa.cv.faces

ncsa.cv.eyes

ncsa.cv.closeups

ncsa.cv.profiles

ncsa.image.ocr

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time (mins)

L
o
ad

 A
v
er

ag
e

 

 

ocr−10

ocr−11

opencv−27

opencv−28

opencv−29

opencv−30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

50

Time (mins)

N
u
m
b
e
r
 
o
f
 
E
x
t
r
a
c
t
o
r
 
I
n
s
t
a
n
c
e
s

 

 
faces

eyes

closeups

profiles

ocr

faces−sus

eyes−sus

closeups−sus

profiles−sus

ocr−sus

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

Time (mins)

Q
u
eu

e 
L

en
g
th

s

 

 

faces

eyes

closeups

profiles

ocr

faces−sus

eyes−sus

closeups−sus

profiles−sus

ocr−sus

Figure 6. Experimental evaluation of Brown Dog elasticity module. Left to right: queue lengths vs time vs number of extractors, load average vs time for
a set of VMs, number of extractor instances over time, and queue lengths over time.

to convert them all into PDF using the DAP. Any office
documents that have no conversion path are flagged as a
problem (this can change over time as this is an elastic cloud
based system). We periodically analyze missing conversion
paths and make these into feature requests for the Brown Dog
development team. The Gatling test framework records precise
timestamps at various points in the HTTP interaction. For
instance we can measure conversion time as the time between
when the last byte of the HTTP request was sent, until the time
the first byte of the HTTP response is received. Figure 7 shows
the performance of the office document conversion over time
for 100 file conversions. Each simulation consists of either
100 or 1000 users, each running one conversion. The formats
used included: DOC, DOCX, ODF, RTF, WPD, WP, LWP,
and WSD. We perform a similar file conversion test for image
file formats. Formats currently under test include: TARGA,
PICT, WMF, BMP, PSD, TGA, PCT, EPS, MACPAINT, MSP,
and PCX. These are converted to the TIFF format and any
exceptions are reported to the development team.

While TIFF and PDF are used as preservation formats
by some archives, we do not assume that TIFF and PDF
are the most desirable formats for all archives. Instead, the
TIFF and PDF conversions ensure that the content is not
trapped in the original format, that Brown Dog can open
the original file and get content out of it. Thus far we have
identified numerous samples that are trapped in WordPerfect
(WP and WPD), Photoshop (PSD), and Windows MetaFile
(WMF) formats. A more robust simulation is also being
developed through a policy-based format migration which will
sample files randomly from the CI-BER collection and conult
a lookup table to obtain the preferred preservation format.

Figure 7. Top: Conversion simulation results for document conversions to
PDF. Bottom: Conversion simulation results for image conversions to TIFF.

The simulation will report missing migration paths, as well
as missing migration policies, i.e. data files or formats for
which no preservation format has been recommended.

V. CONCLUSION

We have deployed an alpha release of the two services and
begun incorporating tools in support of a number of our use
cases (e.g. supporting ecological model conversion via PEcAn,
supporting Lidar analysis for our hydrology use case, support-
ing human preference modeling for our green infrastructure
use case, as well as other capabilities suited for more general
usage). Further, towards supporting the wide range of users
across our use cases we have begun developing a number of
client interfaces22 to leverage the DAP and DTS. These include
language specific libraries, a bookmarklet interface that can
be used to call the services on arbitrary web pages, a Google
Chrome extension, a command line interface, incorporation
into a scientific workflow system [51], and incorporation back
into Clowder. Efforts moving forward aim to add additional
cloud infrastructure support to the elasticity module, refine the
level of granularity considered during scaling by deploying
Docker instances of converters/extractors within a single VM,
exploring how we might optimize data movement so as to
as efficiently as possible handle large data collections, and
incorporating/using additional information relevant to prove-
nance such as the estimates of information loss incurred during
specific conversions described in [23].

ACKNOWLEDGEMENTS

This research & development has been funded through National
Science Foundation Cooperative Agreement ACI-1261582.

REFERENCES

[1] P. Lyman et al., “How much information 2003?” 2003.
[Online]. Available: http://www2.sims.berkeley.edu/research/
projects/how-much-info-2003/

[2] N. webmaster, “Vision for cyberinfrastructure framework for
21st century science and engineering,” 2013. [Online]. Avail-
able: http://www.nsf.gov/od/oci/cif21/CIF21Vision2012current.
pdf

[3] L. Lannom and F. Berman, “Special issue on the research
data alliance,” D-Lib Magazine, 2014. [Online]. Available:
http://www.dlib.org/dlib/january14/01contents.html

[4] E. Seidel, “The national data service - a vision for acceleration
discovery through data sharing,” 2015. [Online]. Available:
http://www.nationaldataservice.org

22http://browndog.ncsa.illinois.edu/blog.html



[5] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction of in-memory cluster computing,” 9th USENIX
Symposium on Networked Systems Design and Implementation,
2012.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-
cessing on large clusters,” Symposium on Operating System
Design and Implementation, 2004.

[7] K. Jeon et al., “Pigout: Making multiple hadoop clusters work
together,” IEEE BigData, 2014.

[8] W. Michener et al., “Participatory design of dataone - en-
abling cyberinfrastruture for the biological and environmental
sciences,” Ecological Informatics, 2012.

[9] A. Rajasekar, M. Wan, W. Schroeder, and R. Moore, “From
srb to irods: Policy virtualization using rule-based data grids,”
2005.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” IEEE Symposium on Mass Sotrage
Systems and Technologies, 2010.

[11] I. Foster, “Globus online: Accelerating and democratizing sci-
ence through cloud-based services,” IEEE Internet Computing,
2011.

[12] L. Bavoil et al., “Vistrails: Enabling interactive multiple-view
visualizations,” IEEE Visualization, 2005.

[13] M. Turk et al., “yt: A multi-code analysis toolkit for astrophys-
ical simulation data,” The Astrophysical Journal Supplement,
2011.

[14] J. Towns et al., “Xsede: Accelerating scientific discovery,”
Computing in Science Engineering, 2014.

[15] R. Heimann, “Big social data: The long tail of science data,”
Imaging Notes, 2013.

[16] B. Ludascher et al., “Scientific workflow management and the
kepler system,” Concurrence and computation: Practice and
Experience, Special Issue on Scientific Workflows, 2006.

[17] E. Deelman et al., “Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems,” Scientific
Programming Journal, 2005.

[18] G. Klimeck et al., “nanohub.org: Advancing education and
research in nanotechnology,” Computing in Science and Engi-
neering, 2008.

[19] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: A compre-
hensive approach for supporting accessible, reproducble, and
transparent computation research in the life sciences,” Genome
Biology, 2010.

[20] C. Lagoze, S. Payette, E. Shin, and C. Wilper, “Fedora: An ar-
chitecture for complex objects and their relationships,” Journal
of Digial Libraries, 2005.

[21] M. Smith et al., “Dspace: An open source dynamic digial
repository,” D-Lib Magazine, 2003.

[22] L. Marini et al., “Medici: A scalable multimedia environment
for research,” The Microsoft e-Science Workshop, 2010.

[23] K. McHenry, R. Kooper, and P. Bajcsy, “Towards a universal,
quantifiable, and scalable file format converter,” The IEEE
Conference on e-Science, 2009.

[24] W. Underwood, “Grammar-based specification and parsing of
binary file formats,” International Journal of Digital Curation,
2012.

[25] W. Reggli, J. Kopena, and M. Grauer, “On the long-term reten-
tion of geometry-centric digital engineering artifacts,” Computer
Aided Design, 2010.

[26] F. Soper, “The pronom file format registry,” Experts Workgroup
on the Preservation of Digital Memory, 2004.

[27] J. Heard and R. Marciano, “A system for scalable visualization
of geographic archival records,” IEEE Symposium on Large
Data Analysis and Visualization, 2011.

[28] T. Rath and R. Manmatha, “Word spotting for historical
documents,” International Journal on Document Analysis and
Recognition, 2007.

[29] L. Diesendruck, R. Kooper, L. Marini, and K. McHenry, “Using
lucene to index and search the digitized 1940 us census,”
Concurrency and Computation: Practice and Experience, 2014.

[30] M. Lew, “Content-based multimedia information retrieval: State
of the art and challenges,” ACM Transactions on Multimedia
Computing, Communications, and Applications, 2006.

[31] D. Garette and E. Klein, “An extensible toolkit for computa-
tional semantics,” International Conference on Computational
Semantincs, 2009.

[32] J. Lehmann et al., “Dbpedia - a large scale, multilingual
knowledge base extracted from wikipedia,” Semantic Web, 2012.

[33] J. Myers et al., “Towards sustainable curation and preservation:
The sead project’s data services approach,” Interoperable In-
frastructures for Interdisciplinary Big Data Sciences Workshop,
IEEE eScience, 2015.

[34] M. Dietze, D. LeBauer, and R. Kooper, “On improving the
communication between models and data,” Plant, Cell & Envi-
ronment, 2012.

[35] J. Han et al., “A neotropical miocene pollen database employing
image-based search and semantic modeling,” Apllications in
Plant Sciences, 2014.

[36] E. Spalding and N. Miller, “Image analysis is driving a re-
naissance in growth measurement,” Current Opinion in Plant
Biology, 2013.

[37] S. P. Satheesan, S. Poole, R. Kooper, and K. McHenry, “Group-
scope: A microscope for large dynamic groups research,” IEEE
eScience, 2013.

[38] K. McHenry et al., “A mosaic of software,” The IEEE Interna-
tional Conference on eScience, 2011.

[39] L. Marini et al., “Versus: A framework for general content-based
comparisons,” IEEE eScience, 2012.

[40] T. Yeh, T. Chang, and R. Miller, “Sikuli: Using gui screenshots
for search and automation,” UIST, 2009.

[41] T. McPhillips et al., “Yesworkflow: A user-oriented, language-
independent tool for recovering workflow information from
scripts,” International Journal of Digital Curation, 2015.

[42] M. Beckerle and S. Hanson, “Data format description language
(dfdl) v1.0 specification,” Open Grid Forum, 2014.

[43] A. Luckow et al., “P*: A model of pilot abstractions,” IEEE
eScience, 2012.

[44] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynami-
cally scaling applications in the cloud,” SIGCOMM Comput.
Commun. Rev., vol. 41, no. 1, pp. 45–52, Jan. 2011.

[45] M. Satyanarayanan et al., “Olive: Sustaining executable content
over decades,” XSEDE, 2014.

[46] G. Galante and L. C. E. d. Bona, “A survey on cloud computing
elasticity,” in Proceedings of the 2012 IEEE/ACM Fifth Inter-
national Conference on Utility and Cloud Computing, ser. UCC
’12, 2012, pp. 263–270.

[47] C. Bunch et al., “A pluggable autoscaling service for open cloud
paas systems,” in Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, ser.
UCC ’12, 2012, pp. 191–194.

[48] J. Yang et al., “Workload predicting-based automatic scaling
in service clouds,” in Proceedings of the 2013 IEEE Sixth
International Conference on Cloud Computing, ser. CLOUD
’13, 2013, pp. 810–815.

[49] A. Kaebler and G. Bradski, Learning OpenCV, Computer Vision
in C++ with the OpenCV Library. O’Reilly.

[50] R. Smith, “An overview of the tesseract ocr engine,” Inter-
national Conference on Document Analysis and Recognition,
2007.

[51] R. Kooper et al., “Cyberintegrator: A highly interactive scien-
tific process management environment to support earth obser-
vations,” Geoinformatics Conference, 2007.


