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and it can be destabilizing. In general, adaptive foraging 
may or may not promote stable ecological interaction; 
 predictions—not surprisingly—depend on model details.
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Forest simulators are computer models used to predict 
the state and dynamics of a forest. As such, forest simula-
tors are on the more complex end of ecological models, 
both because of the inherent complexity of forest com-
munities and because these models are typically focused 
on predicting real assemblages of trees, not abstract 
“forest vegetation.” Diverse motivations have driven the 
development of forest simulators, but the objectives fall 
into two general classes: (1) to test and extend ecological 
theory and (2) to predict responses to management ac-
tion and environmental change. Increasing scientifi c con-
cern with climate change and the role of forests in global 
C and N cycles, together with advances in computational 
power and modeling, are increasing the importance of 
forest simulators as predictors of forest responses. 

OBJECTIVES OF FOREST SIMULATORS

Forest simulators serve to synthesize our reductionist 
information about how forests work into a coherent, 

ecological interactions. Some combined models evalu-
ate consequences of particular foraging preferences or 
functional responses. Other models assume that foragers 
respond optimally to varying prey density, to predict ef-
fects of adaptive behavior on community stability. The 
body of results is complex; this section lists only a few 
prominent lessons.

Suppose that an individual forager’s effect on the prey 
population’s growth declines as prey density increases. 
The consequent decelerating functional response does 
not tend to reduce density fl uctuations in a consumer–
resource interaction. However, a sigmoid functional re-
sponse accelerates at intermediate prey densities, so that 
the prey mortality imposed by each forager increases 
with the density of prey. Hence, at some prey densities 
a sigmoid functional response can stabilize population 
dynamics. When a consumer population preys on two 
species, a sigmoid functional response can arise if forag-
ers switch between resources and so concentrate preda-
tion on the more common prey. Predator switching can, 
therefore, stabilize the three-species interaction. When 
a switching predator prevents one prey species from ex-
cluding another competitively, the predator’s impact is 
termed a keystone effect. 

Dynamical consequences of foraging preference, and 
its impact on details of the functional response, have 
been deduced in analyses of three-species food chains. 
A resource is exploited by a consumer that, in turn, is 
exploited by a third species. The third species might be 
an omnivore (exploiting both the resource and the con-
sumer) or a top predator specializing on the consumer; 
omnivory should exert the greater stabilizing infl uence 
on density fl uctuations.

Parasitoids often exploit a host population with a 
highly clumped spatial distribution; many patches con-
tain few hosts, and some patches contain many hosts. An 
ineffi cient forager fails to respond to host spatial hetero-
geneity, while an optimal forager searches patches with 
the greatest host density. In models of this interaction, 
optimal patch use by the parasitoid tends to stabilize the 
densities of the two species. Finally, consider a predator 
with access to two prey species of differing profi tabilities. 
Suppose that the contingency model’s average rate of en-
ergy gain enters the dynamics as a component of both 
prey mortality rates and the predator’s birth rate. The 
predator always includes the prey of higher profi tability 
in its diet. It adds or drops the second prey as the den-
sity of the preferred prey changes, according to the opti-
mal diet’s choice criterion. The resulting pattern of prey 
consumption does not tend to stabilize the dynamics, 
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Within the fi rst group, forest simulation is dominated 
by a class of models generally referred to as gap models 
because of their origin in simulating forest gap dynam-
ics, the dominant disturbance for many forest types. Gap 
models originated in the early 1970s with patch-based 
models such as JABOWA and FORET that accounted 
for the height-based competition for light among trees 
of different sizes and species. These models generally 
predict dynamics driven by growth rate and shade toler-
ance, with fast-growing but shade-intolerant early succes-
sional species giving way over time to slower-growing but 
shade-tolerant late successional species. The 1990s saw 
the development of truly spatially explicit, individual-
based forest simulators such as SORTIE. In these models, 
the crowns of individual trees interact with each other 
in three dimensions and the understory light environ-
ment is more heterogeneous, driven by the overlap of the 
shadows cast by each individual tree. Similarly, in these 
spatial individual-level models, seed dispersal becomes 
an explicit two-dimensional process, with models differ-
ing as to whether they treat dispersal from a Lagrangian 
(individual seed, e.g., SORTIE) vs. Eulerian (seed den-
sity, e.g., SLIP) viewpoint. In addition to the spatially 
explicit IBMs, there are also a number of landscape patch 
models, such as LANDIS, that take a simpler represen-
tation of each individual patch but which represent the 
broader scale interactions of vegetation with the abiotic 
environment and which are often focused on broad-scale 
spatial-pattern and disturbance feedbacks.

In contrast with community-focused gap models are 
ecosystem-focused forest simulation models. These mod-
els are focused primarily on fl uxes and pools of carbon 
but may represent other biologically important cycles as 
well, most commonly water and nitrogen. Forest ecosys-
tem models tend to be much simpler in terms of their 
representation of interactions among individuals but 
more complicated in their representation of physiological 
processes, such as photosynthesis, carbon allocation, and 
respiration. These models are also more likely to represent 
belowground processes such as rooting, soil moisture, and 
soil biogeochemical cycles. There is a much wider range 
of spatial and temporal scales represented in forest ecosys-
tem models than in forest community models, from indi-
vidual trees up to the globe and from near instantaneous 
in time to millennial. That said, the biological processes 
involved tend to have particular scales they operate at, 
and thus models are generally built around specifi c spatial 
and temporal scales. Indeed, some of the major remain-
ing challenges in forest modeling—both conceptually 
and computationally—revolve around scaling.

quantitative framework that can predict mechanistically 
based on fi rst principles and permit us to verify that in-
clusion of all the “parts” we study in detail allows us to 
reconstruct the “whole.” In this regard, forest simulation 
can drive theory by forcing us to codify our assumptions, 
allowing data–model mismatch to identify false assump-
tions or understudied processes. A related goal has been 
to test theoretical predictions about forest dynamics with 
data from specifi c systems. Examples include investigat-
ing different theories of species coexistence and the roles 
of disturbance and site history in forest dynamics. 

Beyond theory, forest simulators also play an impor-
tant role in management and policy. A number of applied 
forest simulators are routinely used to predict growth 
and yields, such as the U.S. Forest Vegetation Simula-
tor (FVS) and the Canadian Tree and Stand Simulator 
(TASS). These tend to be far ahead of most ecological 
models in terms of the diversity of factors they include 
that impact forest growth, but they also suffer the prob-
lem of overparameterization, which leads to high forecast 
uncertainty. The incredibly high data demands for fully 
calibrating such models means that they are regularly 
used with default parameters that may not be appropri-
ate for a given site or situation. In the last few decades, 
there has also been an explosion of forest simulation re-
search focused on global change issues. The goal here is 
to make projections that help clarify the potential im-
pacts of global change on forests, such as the change in 
ecosystem services or the loss of biodiversity, and equally 
importantly to characterize feedbacks from forests to the 
climate system via energy, water, and carbon fl uxes. These 
global change applications share the goals of informing 
policy and management and prioritizing directions for 
further research. Finally, a more recent application of for-
est simulators has been in data assimilation, where the 
goal is to estimate the current state of the forest, rather 
than some future state, given the constraint of incom-
plete data. For example, a forest simulator might be used 
to estimate the structure of a forest that would be com-
patible with an observed lidar profi le and then to make 
inferences about the likely range of values for other stand 
properties.

CLASSES OF FOREST SIMULATORS

Forest simulators encompass a wide range of models 
dealing with different ecological processes and operat-
ing across a large range of spatial and temporal scales. 
While there are exceptions, most forest simulators can 
be divided into two groups, one that is focused on com-
munity ecology and the other on ecosystem ecology. 
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(e.g., seed bank, seedlings). The focus of these models has 
thus far been on autogenic fi ne-scale heterogeneity, rather 
than fi ne-scale exogenous heterogeneity in soils or topogra-
phy, as a mechanism for promoting coexistence.

Patch Scale

The next spatial scale represented by forest models is the 
“patch” scale, which is on the order of 10–30m in diam-
eter depending on the model, thus encompassing several 
to dozens of individuals in what is assumed to be a locally 
homogeneous, common environment. Patch-based mod-
els average over the fi ne-scale variability of spatially explicit 
models, and the size of patches are set assuming that every 
individual within a patch is able to compete with every 
other and that the mortality of the dominant canopy tree 
is suffi cient to convert a patch to a forest gap. Light within 
a patch-based model is usually represented by a vertical 

SPATIAL SCALES

Individual Scale

The spatial scales represented explicitly by forest models 
range from !1 m to global (Fig. 1). At the fi nest spatial 
scales are the spatially explicit individual-based models, 
such as SLIP and SORTIE, that represent the exact loca-
tion of individual trees and the spatial interactions between 
trees. The primary focus of these models is competition 
for light, which is the limiting resource in most forests 
and which drives interspecifi c and intraspecifi c interac-
tions, tree growth patterns, and demography. Fine-scale 
processes include the 3D representation of light based on 
ray-tracing algorithms, which are particularly important 
for capturing the high degree of heterogeneity in the light 
environment of forest gaps (Fig. 2). Also occurring at a fi ne 
scale is crown competition, 2D seed dispersal, and density-
dependent interactions in the youngest life history stages 

A Global 

B Regional

C Landscape

D Stand and tree levels

Dynamic global vegetation models
Vegetation layers in GCMs

 Ecohydrological models
 Spatially explicit community
  mosaic models 

 Disturbance and fire models

Biomass
      low

      high
Dynamic regional vegetation models
Grid-based models with spatially
 implicit subgrid processes

Gap models
Patch-based models
Spatially explicit individual-based models

FIGURE 1 Spatial scales addressed by di! erent classes of forest simulators: (A) global vegetation; (B) regional vegetation or forest; (C) land-
scapes; and (D) forest stands and individual trees.
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Landscape Scale

The next scale up above patches is the landscape scale 
(Table 1). The spatial extent of landscapes can vary con-
siderably, from hundreds of meters to tens of kilometers 
or more. The critical feature of landscape-scale models is 
not their absolute geographical extent but rather the fact 
that they account for environmental heterogeneity among 
patches and aim to provide insight into the effects of such 
heterogeneity on community or ecosystem dynamics. This 
heterogeneity can be in terms of the physical template of 
the landscape itself (e.g., topography, soils, hydrology, mi-
croclimate), anthropogenic heterogeneity in the landscape 
due to land use and fragmentation, or autogenic hetero-
geneity generated by large-scale disturbances. There is a 
greater emphasis in landscape modeling on real landscapes 
rather than on conceptual ones, which are common in gap 
models that are often focusing on more theoretical ques-
tions about the process of succession and community as-
sembly. With this focus on real landscapes also comes a 
greater emphasis on applied problems and management. 
A frequent “natural” extent for landscape models is the 
 watershed. Landscape-scale models are most often com-
munity focused (e.g., LANDIS, MetaFor), though there 
are also a number of landscape-scale ecosystem models 
(e.g., RHESSYS, ForClim), the majority of which are cou-
pled to watershed hydrology models to address ecohydro-
logical questions. Another common feature of landscape 
models is that there is greater emphasis on spatially con-
tagious pro cesses such as disturbance and dispersal. The 
most studied of these processes is fi re; there are many for-
est landscape models coupled to fi re models that range in 
complexity from simple “contagious” process models to 
very detailed mechanistic models of fi re spread and inten-
sity (e.g., BEHAVE, FIRE-BGC). While the fundamental 
unit in landscape models is the patch, the representation of 
processes within each patch is often simplifi ed compared 
with patch-scale models. Landscape-scale models are often 
operating at a spatial scale that encompasses thousands or 
more patches and necessarily focuses on the distribution of 
vegetation types and stand ages across patches, rather than 
the states and dynamics of individual patches. In apply-
ing landscape models, users typically assume that they are 
large enough that the states of constituent patches reach a 
steady-state distribution (i.e., Watt’s patch mosaic) despite 
the fact that individual patches are far from equilibrium.

Regional to Global Scale

Above the landscape scale are models that take a regional 
to global perspective on forest dynamics. The questions 
driving research at this scale primarily surround climate 

FIGURE 2 Visual representation of forest dynamics in the spatially 
 explicit forest simulator SLIP.

gradient, in which case these models tend to overestimate 
light levels in gaps, though some models do consider the 
shadow cast by each patch onto neighboring patches. 

The patch is the fundamental scale for a large fraction 
of models from both the community and ecosystem per-
spectives, with one key difference: community models are 
still individual based and thus include multiple trees of 
multiple sizes and species within a single patch, whereas 
ecosystem models are based on aggregate carbon pools 
of a single plant functional type. One ramifi cation of 
this difference is that while community models will have 
multiple canopy layers, ecosystem models typically have 
either a single layer of foliage, often referred to as the “big 
leaf,” or two layers of foliage, representing the functional 
difference in leaf structural and photosynthetic proper-
ties between sun-leaves and shade-leaves. Another key 
difference in the two modeling approaches at this scale 
is that because community models are individual based 
they are focused on the demography of individuals. This 
means that the fundamental dynamics are conceived in 
terms of individual demographic responses: the growth 
rate of a tree based on its size, species, and light environ-
ment, the fecundity of individual trees as a function of 
size and sometimes growth, and the mortality of whole 
individual trees as a function of growth rate. The inclu-
sion of individual mortality means that almost all forest 
community models are stochastic, while ecosystem mod-
els are almost all deterministic. A consequence of this is 
that community modelers usually analyze models based 
on runs with large numbers of patches to average over 
stochastic  dynamics, whereas ecosystem models usually 
have just one patch in which mortality is simply a deter-
ministic “coarse litter” fl ux term.
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TABLE 1 
Classifi cation of models discussed in the text 

Model
Spatial 
Scale

Temporal 
Scale

Phenom. or 
Mechanistic

Descriptive or 
Predictive

Deterministic 
or Stochastic

Point 
or Areal

SLIP (Scaleable Landscape Inference and Prediction) Individual Annual Phenom. Proscr. Stochastic Area

SORTIE Individual "Annual Phenom. Proscr. Stochastic Area

TASS (Tree and Stand Simulator) Individual Annual Phenom. Proscr. Stochastic Area

JABOWA (concatenation of authors Janak, Botkin, Wallis) Patch Annual Phenom. Proscr. Stochastic Point

FORET (Forests of Eastern Tennessee) Patch Annual Phenom. Proscr. Stochastic Area

FVS (Forest Vegetation Simulator) Patch "Annual Phenom. Proscr. Stochastic Point

LANDIS (Forest Landscape Disturbance and Succession) Landscape "Annual Phenom. Proscr. Stochastic Area

MetaFor (Forest Meta-model) Landscape Annual Phenom. Proscr. Stochastic Area

RHESSYS (Regional Hydro-Ecologic Simulation System) Landscape Daily Mech. Proscr. Determ. Area

ForClim (Forests in a changing Climate) Landscape Monthly Phenom. Proscr. Stochastic Point

LPJ-GUESS (Lund-Postdam-Jena General Ecosystem 
Simulator)

Globe Daily Mixed Proscr. Stochastic Avg. point

Hybrid Globe Daily Mech. Proscr. Stochastic Avg. point

ED (Ecosystem Demography) Globe Subdaily Mech. Proscr. Determ. Area

CLM (Community Land Model) Globe Subdaily Mech. Proscr. Determ. Wt. point

Sheffi eld DGVM (Dynamic Global Vegetation Model) Globe Daily Mech. Proscr. Determ. Wt. point

Orchidee (Organizing C & Hydrology in Dynamic Ecosys.) Globe Subdaily Mech. Proscr. Determ. Wt. point

LPJ (Lund-Potsdam-Jena) Globe Daily Mech. Proscr. Determ. Wt. point

Biome-BGC (Biome BioGeochemical Cycles) Globe Daily Mech. Proscr. Determ. Point

CASA (Carnegie-Ames-Stanford-Approach) Globe Monthly Mech. Descr. Determ. Point

NOTE: Many additional excellent models exist in every category. Spatial scale generally refers to the broadest spatial extent the model is designed to run at, though the 
individual-based models (IBM) typically function at the scale between patch and landscape. Temporal scale refers to the time step of the model. For point vs. area,
wt. point refers to models that have multiple points within a grid cell that are weighted by their proportional area while avg. point refers to models that have multiple 
stochastic replicates within each grid cell that are averaged. See the text section “Process Representation in Forest Simulators” for discussion of other groupings.

change impacts on the carbon cycle and to a lesser extent 
on biogeographic/biodiversity issues, though these are 
usually resolved only to the level of biome or plant func-
tional type rather than to species (e.g., Community Land 
Model, Sheffi eld DGVM, Orchidee, LPJ). These models 
all have an ecosystem component, and only a small subset 
considers community processes (e.g., ED, LPJ-GUESS). 
However, there is a growing recognition that disturbance 
history and successional processes can strongly infl uence 
the carbon cycle. These models are typically run on a 
grid where the grid cells are often much larger in extent 
than the landscapes in the landscape models. When these 
models include processes at individual through land-
scape scales, they must represent them as spatially im-
plicit subgrid processes. For example, in the Ecosystem 
 Demography (ED) model forest stands of different ages 
are not given spatial locations but are represented by the 
proportion of the landscape that is in each age class. 

Since most global models are based on deterministic 
ecosystem models, the dynamics of these grid cells are es-
sentially identical to that of a single patch or a weighted av-
erage of noninteracting patches representing different plant 
functional types. Models at this scale include the dynamic 

global vegetation models (DGVMs) that represent the ter-
restrial ecosystems in general circulation models (GCMs). 
While these global models are no longer strictly forest mod-
els, almost all originated as forest models (e.g., Forest–BGC 
evolved into Biome–BGC) and were later modifi ed to in-
corporate other vegetation types. Because of the emphasis 
on global change within this research community, there 
have been a much larger number of model intercomparison 
projects focused on these models than on other classes of 
forest models. These include early efforts such as VEMAP 
(Vegetation/Ecosystem Modeling and Analysis Project) 
and VEMAP2 focused on the continental United States 
as well as more recent intercomparisons such as the glo-
bal scale C4MIP (Coupled Carbon Cycle Climate Model 
Intercomparison Project), the LBA (Large Scale Biosphere 
 Atmosphere) focused on Amazonia, and the two NACP 
(North American Carbon Program) intercomparison 
projects, one focused on the continental scale and the other 
on site-level comparisons to the Amerifl ux network. 

TEMPORAL SCALES

Forest models resolve processes that range in temporal scale 
from the near instantaneous to the millennial. Because the 
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they are less suitable for extrapolating responses to novel 
changes in the  environment drivers or novel  combinations 
of environment variables. In contrast, mechanistic eco-
system models are more robust to extrapolation to differ-
ent conditions, but they often fail to represent long-term 
dynamics both because they do not include the succes-
sional processes that dominate long-term dynamics and 
because they are often only calibrated to short-term data.

PROCESS REPRESENTATION IN FOREST 
SIMULATORS

Beyond space and time, forest models can also be classi-
fi ed by how they represent different processes. Below are 
presented four important contrasts in model dynamics: 
phenomenological vs. mechanistic, descriptive vs. pre-
dictive, stochastic vs. deterministic, and point-based vs. 
area-based. 

Phenomenological vs. Mechanistic

As alluded to above, the phenomenological/statistical ver-
sus mechanistic/physiological dichotomy in many ways 
refl ects the community/ecosystem distinction, but it is 
more useful to view this as a continuum because at some 
scale of biological organization all our ecological mod-
els are phenomenological and within ecosystem models 
there is a good bit of variability in how different pro-
cesses are represented. However, the crux of the distinc-
tion lies in whether tree growth is based on correlations 
with environmental variables or on mechanistic represen-
tations of NPP/photosynthesis because this distinction 
largely determines our degree of belief in extrapolating 
to novel conditions. In principle, other demographic 
transitions might also be modeled mechanistically, but 
in fact mechanistic models for mortality simply do not 
exist, and those for fecundity are rare and diffi cult to pa-
rameterize. The link between growth and productivity is 
largely one of mass balance—a given amount of net car-
bon uptake translates into a given amount of growth, and 
the only real issue is allocation. Mortality, on the other 
hand, is a complex and multifaceted phenomenon that 
is often gradual, with many drivers, feedbacks, and lags. 
Typically, forest gap models assume that mortality is a 
function of growth rate and disturbance, while in ecosys-
tem models mortality can be as simple as assuming some 
constant background rate. Beyond mortality and growth, 
fecundity can be either phenomenological or mechanistic 
(usually some fi xed fraction of NPP), but in either case it 
is usually poorly constrained to data. 

In theory, dispersal can be either phenomenological 
or mechanistic, though in practice we are unaware of a 

processes involved in community models are essentially de-
mographic, they tend to focus on a narrower range of time 
scales, from annual to centennial. In  contrast, all ecosystem 
models resolve intra-annual dynamics and some resolve 
subdaily processes down to a very fi ne scale. There are two 
reasons for forest models to resolve processes at subdaily 
scale. The fi rst reason is to capture the diurnal cycle of pho-
tosynthesis using mechanistic photosynthesis models that 
are driven by instantaneous values of light, temperature, 
humidity, CO2, and wind speed. Since these mechanistic 
models are nonlinear, photosynthesis models operating at 
a coarser time step either have to make approximations 
based on an “average” day or use more empirical relation-
ships. The second reason for subdaily modeling is to ex-
plicitly resolve the mass and energy budgets of the land 
surface. These budgets are calculated using a class of pro-
cess models referred to as land surface models that include 
a large number of environmental processes beyond the 
strictly ecological (e.g., boundary layer mixing, snow phys-
ics, hydrology, and so on). The primary motivation for in-
cluding a land surface submodel within a forest ecosystem 
model is to be able to couple the ecosystem model with 
an atmospheric model, which requires a lower boundary 
condition for the land surface. By operating at fi ne tem-
poral scale and by including atmospheric, vegetation, and 
hydrological processes, land surface models aim to capture 
the turbulent mixing and other energy fl ows that mediate 
feedbacks among the soil, vegetation, and the atmosphere 
that are vital to climate projections and to understanding 
the role of forests in global climate.

At daily to monthly time scales, the processes resolved 
by forest models are ecophysiological in nature, such as 
photosynthesis, respiration, carbon allocation, phenol-
ogy, decomposition, and biogeochemical cycling. Models 
that have a daily or monthly time scale as their small-
est time step typically resolve an explicit mass balance 
but assume that the energy budget is controlled by some 
external meteorological driver. At annual to multiannual 
time steps, forest models typically resolve growth, mortal-
ity, reproduction, and disturbance. For most ecosystem 
models these processes are not resolved explicitly, while 
for most forest community models this represents the 
fundamental time step and these processes are the basis 
for their dynamics. Since most community models ignore 
intra-annual processes, their calculations for demography 
are typically based on data-driven empirical relationships 
rather than physiology. As such, community models are 
often more constrained to fi eld data, especially with re-
spect to long-term dynamics, but because they generally 
rely on correlations rather than well-defi ned mechanisms, 
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models, in contrast, mortality is often modeled as a car-
bon fl ux term. Since the fi ne-scale dynamics of individual 
tree mortality and gap dynamics are thought to play a 
large role in overall forest structure and composition, the 
failure to represent these gaps is one of the main limi-
tations of deterministic ecosystem models at long time 
scales. The approaches to accommodate this scaling 
problem can be divided into two categories. First, there 
are ecosystem models, such as LPJ-GUESS and Hybrid, 
that are coupled with stochastic gap models and scale 
up by sampling (i.e., running a large number of repli-
cate stochastic patches). Second, there is the Ecosystem 
Demography model (ED) and models derived from the 
ED that treat mortality as a deterministic process and ac-
commodate this by explicitly modeling the distribution 
of stand ages across the landscape. In essence, mortality 
is thought of as affecting some fraction of each patch in 
each year, which is reset to a stand age of 0, while the 
remainder of the patch does not experience mortality. 
Simulations with a stochastic version of ED show that 
the deterministic approach accurately captures the mean 
of the stochastic version and also is more effi cient and 
tractable, as demonstrated in work by Moorcroft and col-
laborators (2001). 

Point-Based vs. Area-Based 

The fi nal contrast considered here is between point-based 
and area-based models and has to do with how models 
represent space. Most regional/global models are actually 
point or patch models that are 0D or 1D (vertically struc-
tured) and are simply run on a grid (models represent the 
nodes on the grid). A few contain spatially implicit subgrid 
processes, where different patches within a grid cell repre-
sent different fractional areas, and thus could be considered 
to be quasi-area-based. Stand level models are area based in 
terms of a grid of patches (where each patch truly fi lls the 
area allocated to it) or are IBM that are spatially explicit 
and represent area in 2D or 3D. Landscape models fall in 
between in that they are explicitly based on a map of poly-
gons or grid cells but these grid cells can start to get too big 
to represent every tree in them or to safely assume all trees 
within a cell are interacting. Understanding how a model 
represents space affects how processes scale in the models, 
what data can be used to calibrate or test the model, and 
how we interpret model parameters and model dynamics. 
For example, a leaf property such as maximum photosyn-
thetic rate means very different things if it is referring to 
an individual leaf on a tree, the whole forest canopy within 
a patch, or the aggregate carbon uptake across a 1 # 1 
degree lat/lon grid cell.

forest model that has been coupled to a mechanistic dis-
persal model, but this is bound to happen soon due to 
their increasing popularity. Mechanistic dispersal models 
are of varying complexity, but all are fundamentally based 
on wind speed and seed drag or on movement patterns 
of animal dispersers. Phenomenological dispersal mod-
els, on the other hand, are all based on dispersal kernels, 
which are probability density functions that give the 
probability a seed will travel a given radial distance from 
the parent. Either way, data and theory suggest long-dis-
tance dispersal (LDD) is a highly stochastic and inher-
ently unpredictable process. One reason for the use of 
mechanistic dispersal is that LDD is almost impossible to 
determine from seed trap data. While the role of LDD in 
community dynamics is well recognized, its importance 
for ecosystem responses is less well  understood—most 
large-scale models lack explicit dispersal but instead as-
sume one of two extreme cases that defi ne the endpoints 
in LDD: (i) new seed is available at all places at all times 
and thus dispersal is not limiting or (ii) all seed rain
is local.

Descriptive vs. Predictive

Another important dichotomy is between models that are 
descriptive versus predictive. Predictive models attempt 
to predict biotic responses given a set of initial conditions 
and meteorological drivers and thus can be run into the 
future conditioned on meteorological scenarios. Descrip-
tive models, on the other hand, typically require other 
biotic variables to be specifi ed as drivers. Most commonly 
these are remotely sensed data, such as LAI, fAPAR, 
albedo, and the like. Because these models are more con-
strained by data, they are expected to do a better job of 
diagnosing unobserved biotic variables. For example, at-
mospheric inversion models such as the CarbonTracker 
typically base their continental-scale ecosystem carbon 
fl uxes on descriptive models such as CASA. The tradeoff 
is that such models cannot be run into the future, and 
thus climate change forecasts are all based on predictive 
models.

Stochastic vs. Deterministic

A third contrast is between stochastic and deterministic 
models. As mentioned above, most ecosystem models are 
deterministic and most community models are stochas-
tic. This difference is due to mortality and the spatial 
scales of the models. In fi ne-scale models, the death of 
an individual tree is an all-or-nothing event and has a 
large impact on the microenvironment, and thus these 
deaths are represented stochastically. In broad-scale 
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CHALLENGES AND CONCLUSIONS

Forest simulators are likely to continue to play a large role 
in ecological research for the foreseeable future. Many im-
portant basic and applied questions about forest models 
remain unanswered, and important challenges face model 
developers. This fi nal section highlights issues believed by 
the authors to be the most important. In a nutshell, the 
major challenges for forest simulators are that they are very 
data intensive, hard to initialize correctly, computationally 
expensive, lack clear analytical solutions, and face a number 
of scaling issues, particularly when it comes to bridging the 
community/ecosystem dichotomy. One unifying character-
istic of forest models, whether they are ecosystem- or com-
munity-oriented, is that because they are generally aimed 
at predicting real ecosystems they include a lot of pro-
cesses and require a large number of parameters. Work by
Pacala and colleagues in the 1990s on the SORTIE model 
was a key turning point in the shift from parameterization 
of models from “the literature” to being much more data 
driven and connected to experiments designed with model 
parameterization as an explicit goal. This is still an ongoing 
change in perspective, though there is a growing recogni-
tion of the importance of formalizing data–model fusion 
and the propagation of uncertainty through models. 

Data for Parameterization and Generalization

One important remaining challenge is to better understand 
to what extent parameters at one site can be applied to an-
other site. In general, gap model parameters are considered 
site specifi c, and for larger models the impact of ecotypic 
variation is largely unknown. Site-to-site variability is not 
just a “nuance” parameter for models but has large impacts 
on our conceptual understanding of how forests work and 
in testing how general our theories of forest dynamics are. 
Beyond parameterization, forest models are also data in-
tensive when it comes to initialization and drivers. As dis-
cussed in the last section, moving away from simple initial 
conditions that are either “bare ground” or “steady state” to 
ones that are based on the current state of specifi c forests 
requires large amounts of information. Both community 
and ecosystem models have so many internal state variables 
that it is virtually impossible to initialize a model precisely 
for even a single patch, let alone at broader scales, especially 
once one acknowledges that empirical measurement error 
is often nontrivial for many ecological processes (especially 
belowground dynamics). As ecology moves into a “data rich 
era” thanks to modern observational technologies (e.g., re-
mote sensing, eddy covariance) and research networks (e.g., 
NEON, FLUXNET, LTER), these challenges will move 
from the  insurmountable toward the  routine as ecologists 

DISTURBANCE AND STEADY STATES

A number of disturbances have been included in for-
est models, the most common being gap phase dis-
turbance, from which gap models derive their name, 
and fi re. Gap phase disturbance can either be au-
togenic, driven by the mortality of a large adult tree, 
or externally generated by windthrow or ice storms. 
As mentioned above, fi re models vary enormously in 
their complexity from simple contagious processes to 
complex simulations. A number of other disturbances 
are also included sporadically in different models, such 
as land-use/land-change, droughts, insects, and patho-
gens, but overall these have received far less attention 
than fi re and gaps.

One of the reasons the representation of disturbance 
is so critically important to forest models is that they 
have such a large impact on if and when an ecosystem 
reaches steady state. Most community-focused models 
do not assume that the system is at equilibrium at the 
start of a run since they are interested in the transient 
dynamics. Community models often start from bare 
ground or (less often) from some observed or “typical” 
composition/structure. That said, community models 
are often run out to some steady state with a lot of em-
phasis placed on what that steady state is (despite the 
fact that there’s very little information to judge if the 
steady state is correct). This is in part a refl ection of their 
conception around questions of long-term coexistence. 
As the spatial scale increases, more and more models use 
“steady state” as the initial condition for the computer 
experiments. This is done even when there is widespread 
recognition that a particular system is not in steady state 
(and open debate as to whether any ecosystem ever is 
in steady state). There are two interconnected reasons 
for this. First, at broad spatial extents datasets do not
exist to serve as the initial conditions. There may be par-
tial information from inventories or remote sensing, but 
many state variables are unconstrained, especially soil 
properties such as carbon and nitrogen content. The sec-
ond reason for a steady-state assumption at a broad scale 
is that models at these scales generally do not explicitly 
represent successional dynamics and subgrid (landscape, 
patch) heterogeneity. Current research into ecological 
data assimilation is in its infancy, one of its goals is to get 
around the equilibrium assumption at these scales and 
to acknowledge the impact of this uncertainty on model 
predictions. Given what we know about the importance 
and prevalence of disturbance and transient dynamics in 
forest community and ecosystem dynamics, this is a vital 
area of research. 
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computation involved as much as the sheer number 
of trees that need to be tracked. Given that upscaling 
individual-based models, or even patch-based mod-
els, to regional and global scales will effectively never 
be computationally possible, an important unresolved 
question is in what ways do the broad-scale ecosystem 
models lose representative and predictive power by ex-
cluding fi ner-scale processes. These processes are, espe-
cially, (a) neighborhood competition and gap dynamics, 
(b) the importance and persistence of nonequilibrium 
dynamics, and (c) the landscape-scale effects of interac-
tions with the abiotic environment. We cannot solve this 
problem by brute-force computation, so it is essential to 
understand, by extensive model comparison, analytical 
insight, and large-scale fi eld campaigns, what is lost in 
scaling and to devise new scaling approaches. As men-
tioned above, there are already a small number of models 
(LPJ-GUESS, Hybrid, and ED) that explicitly attempt 
to integrate ecosystem and community perspectives and 
to bring together processes operating across a large range 
of spatial and temporal scales, but these are just the start 
and many opportunities for innovation remain.

Species and Functional Types

Another challenge in bridging the community/ecosystem 
dichotomy is that most community models are parameter-
ized around individual species, whereas most broad-scale 
ecosystem models are built around plant functional types 
(PFTs). While the use of PFTs is in part driven by the com-
putational demands of representing diversity, it is more 
often a refl ection of the availability of data to accurately 
parameterize models. This data limitation is only in part 
a refl ection of what trees have been studied but is also a 
function of what data are available to modelers. Although 
there are a number of plant trait database initiatives in 
progress, these databases need to be made more public and 
there needs to be a greater incentive for fi eld researchers to 
archive and document data and to deposit it in such data-
bases. Only with such data can modelers and functional 
ecologists assess how best to summarize species to the level 
of functional type and whether important dynamics are lost 
in doing so. There also needs to be more concerted effort 
on gap-fi lling research to constrain the processes that drive 
model uncertainties, such as belowground dynamics.

Prospects for Forest Simulators

Forests structure the ecological dynamics of many eco-
systems, infl uence regional-scale weather patterns, and 
dominate carbon fl uxes from terrestrial vegetation. They 
are also economically important globally and locally, 

become more adept at data assimilation and informatics. 
This is not to say that we won’t always be data limited, but 
that we will be more sophisticated at dealing with the un-
certainties. We expect an emerging focus for forest model re-
search will be on determining the quantity, quality, and type 
of data required to represent and forecast forest dynamics. 

Computation

Beyond data, one of the persistent challenges in forest 
modeling has been computation. While forest simula-
tors have come a long way since the early days of punch 
cards, the complexity of our models and the scales that we 
wish to run them on seems likely to continue to outpace 
Moore’s law. In general, forest models are among the most 
computationally intensive models in ecology. At fi ne spa-
tial scales, the inclusion of spatially explicit processes can 
dominate computation (e.g., light and dispersal can be 
"95% of the computation) and the algorithms involved 
get disproportionately slower as the spatial scale increases. 
For broad-scale models, the sheer size of the simulation 
is usually daunting. For fast time-scale models, such as 
coupled ecosystem/atmosphere models that include land 
surface models, the closure of the surface energy budget 
is computationally expensive and can necessitate complex 
dynamic numerical integration routines. In all cases, what 
underlies this computational demand is the fact that forest 
models lack an analytical solution and thus need to be un-
derstood using numerical experiments. The combination 
of model complexity and lack of a closed-form solution 
can make forest models diffi cult to interpret and hampers 
the ability to reach broad general conclusions. Progress 
has been made in fi nding analytical approximations to 
forest models, and this is an important area of future re-
search and is also closely related to the issues of scaling 
and crossing the community/ecosystem dichotomy. Part-
nerships among ecologists, modelers, and mathematicians 
will be as important as increasing computer power in 
making these models more useful and interpretable. 

Scaling Issues

The frequent dichotomies in the function of forest mod-
els (community/ecosystem, annual/diurnal, fi ne scale/
large scale) arise because the processes that affect  overall 
forest dynamics span such a wide range of scales. For 
computational reasons, it is often impossible to explicitly 
represent processes important to one class of dynamics 
(e.g., the emergence of successional dynamics from tree-
to-tree competitive interactions) at broader spatial scales. 
Indeed, individual-based models seem to be  limited to 
a scale of a few km due to the nonlinear scaling of the 
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FREQUENTIST STATISTICS
N. THOMPSON HOBBS 
Colorado State University, Fort Collins

Frequentist statistics provide a formal way to evaluate eco-
logical theory using observations. Frequentist inference is 
based on determining the probability of observing par-
ticular values of data given a model that describes how the 
data arise. This probability provides a basis for discarding 
models that make predictions inconsistent with observa-
tions. The probability of the data conditional on a model 
also forms the foundation for maximum likelihood esti-
mation, which has been the method of choice for estimat-
ing the values of parameters in ecological models.

AIMS AND BACKGROUND

Purpose

Ecological theory seeks general explanations for specific 
phenomena in populations, communities, and ecosystems. 
Virtually all scientific theory achieves generality by abstrac-
tion, by portraying relationships in nature as mathemati-
cal models. Models are abstractions that make predictions. 
 Statistical analysis provides a process for evaluating the pre-
dictions of models relative to observations, and in so doing 
provides a way to test ecological theory. Frequentist statis-
tics, also known as classical statistics, have been the prevail-
ing system for statistical inference in ecology for decades.

Textbooks that introduce frequentist statistics usually 
emphasize methods—how to estimate a parameter, con-
duct a test, find confidence limits, estimate power, and 
so on. Because these texts give only brief  treatment of 

presenting diffi cult land management challenges such 
as those arising from logging and fi re policy and en-
forcement. For these reasons, forest simulators will play 
an increasingly central role both in forecasting global 
change and in assessing its impacts on existing forests 
and management practices. Yet current models, despite 
their increasing sophistication and power, remain highly 
data dependent and often make predictions without a 
robust accounting of uncertainty. Because of this, it re-
mains very diffi cult to do model intercomparisons and 
to assess model performance confi dently. One of most 
pressing challenges, accordingly, is the availability and in-
tegration of data. There is likely to be rapid progress on 
this front as large new data sources and computational 
methods become available and widespread. A second set 
of challenges lies at the intersection of community and 
ecosystem models: understanding how competitive spa-
tial dynamics and nonequilibrium successional processes 
infl uence ecosystem processes and broad diversity pat-
terns, determining how to scale these processes effi ciently, 
and assessing the adequacy of functional types to bridge 
between species-level dynamics and ecosystem function. 
Finally, richer information about the belowground com-
ponents of ecosystem function—including soil microbial 
ecology and the role of mycorrhizae in fl ows of energy 
and  nutrients—are fertile areas of investigation, and be-
lowground dynamics are becoming an important frontier 
of forest modeling. While these are all very active areas of 
research, there are no clear answers yet, and progress will 
depend on collaboration among mathematicians, model-
ers, and fi eld ecologists.

SEE ALSO THE FOLLOWING ARTICLES

Computational Ecology / Dispersal, Plant / Environmental 
 Heterogeneity and Plants / Gap Analysis and Presence/Absence 
 Models / Gas and Energy Fluxes across Landscapes /  Integrated 
Whole Organism Physiology / Landscape Ecology / Plant 
 Competition and Canopy Interactions / Stoichiometry, Ecological

FURTHER READING

Bugmann, H. 2001. A review of forest gap models. Climatic Change 51: 
259–305.

Gratzer, G., C. D. Canham, U. Dieckmann, A. Fischer, Y. Iwasa,
R. Law, M. J. Lexer, H. Sandmann, T. A. Spies, B. E. Splechtna, and
J. Szwagrzyk. 2004. Spatio-temporal development of forests—current 
trends in fi eld methods and models. Oikos 107: 3–15.

Larocque, G., J. Bhatti, R. Boutin, and O. Chertov. 2008. Uncertainty 
analysis in carbon cycle models of forest ecosystems: research needs 
and development of a theoretical framework to estimate error propaga-
tion. Ecological Modelling 219: 400–412.

McMahon, S. M., M. C. Dietze, M. H. Hersh, E. V. Moran, and J. S. Clark. 
2009. A predictive framework to understand forest responses to global 
change. Annals of the New York Academy of Sciences 1162: 221–236.

9780520269651_Ch_F.indd   3169780520269651_Ch_F.indd   316 1/28/12   1:21 PM1/28/12   1:21 PM


